## Math 517. Spring 2004 Abstract Algebra. Midterm 1 A.Libgober

- 1. Show that  $x^5 1 = (x-1)(x^2 4x + 1)(x^2 + 5x + 1)$  in  $\mathbf{F}_{19}[x]$ . Use this to determine up to similarity al  $2 \times 2$  matrices with entries in  $\mathbf{F}_{19}$  having multiplicative order 5. Find the number conjugacy classes of matrices of order 5 over  $\mathbf{C}$ .
  - 2. Determine the Jordan canonical form for the matrix:

$$\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

- **3.** Show that is N is a  $n \times n$  nilpotent matrix then  $N^n = 0$ .
- **4.** Show that A is an endomorphism of a finite dimensional vector space then:

$$exp(\sum_{r=1}^{\infty} Tr(A^r) \frac{t^r}{r}) = det(1 - At)^{-1}$$

- **5.** Let  $M = \mathbf{Z}^n$  and  $N = \{(b_1, ..., b_n) \in M | \sum_i b_i = 0 \mod n\}$ . Find a basis  $e_1, ..., e_n$  in M and integers  $a_1, ..., a_n$  such that  $a_1e_1, ..., a_ne_n$  is a **Z**-basis in N.
  - **6.** Find the degree of  $\mathbf{Q}(\sqrt{2}+\sqrt{3})$  over  $\mathbf{Q}$  and the minimal polynomial of  $\sqrt{2}+\sqrt{3}$ .
  - 7 Find the degree of the splitting field of  $x^4 + 2$  over **Q**.
  - 8 Show that non zero elements of a field with 9 elements form a cyclic group.