1. Let $V \subseteq \mathbb{A}^n$ be an affine algebraic set and $f \in k[V]$. Show that the collection of points $(a_1, \ldots, a_n, f(a_1, \ldots, a_n)) \in \mathbb{A}^{n+1}$ such that $(a_1, \ldots, a_n) \in V$ is an affine algebraic set. Show that it is isomorphic to V.

2. Let $X = \text{Spec}R$ and X_f be the principal open set corresponding to $f \in R$. Show that $X_f = X$ in and only if f is a unit and that $X_f = \emptyset$ if and only if f is nilpotent.

3. Let $R = \mathbb{Z}_{(2)}$ be the localization of \mathbb{Z} at the prime ideal generated by 2. Let M be \mathbb{Q} considered as a R-module. Find the Jacobson radical of R, the number of generators of $M/2M$ and show that M is not a finitely generated R-module.

4. Let \mathbb{Z}_p be the ring of p-adic integers and let M be the maximal ideal of \mathbb{Z}_p. For each $n \geq 0$ exhibit an element with valuation n and find the dimension of M^n/M^{n+1} as a vector space over the field \mathbb{Z}_p/M.

5. Let

$$
0 \to A \to B \to C \to 0
$$

$$
f \downarrow \quad g \downarrow \quad h \downarrow
$$

$$
0 \to A' \to B' \to C' \to 0
$$

be the commutative diagram. Prove that there is an exact sequence:

$$
\text{Ker} f \to \text{Ker} g \to \text{Ker} h \to \text{Coker} f \to \text{Coker} g \to \text{Coker} h
$$

(i.e. define the maps and show the exactness).

6. Let $R = k[x, y]$ where k is a field and let $I = (x, y)$ be the ideal in R. Let $\alpha : R \to R^2$ be the map given by $\alpha(r) = (yr, -xr)$ and let $\beta : R^2 \to R$ be the map $\beta(r_1, r_2) = r_1x + r_2y$. Show that

$$
0 \to R \to R^2 \to R \to k \to 0
$$

where the map $R \to k = R/I$ is the canonical projection is a free resolution of k as an R-module and show that $\text{Tor}_2^R(k, k) = k$.

7. Let $G = \mathbb{Z}/2\mathbb{Z}$ and $A = \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$. Compute $H^i(G, A)$ in the case when a) the action of G on A is trivial and b) non-trivial element of G interchanges the factors of A.

1