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Abstract. We show that the rank of the Mordell-Weil group of an isotrivial

elliptic surface over C(t) can be calculated as the number of isogeny factors
which are elliptic curves in the jacobian of the cyclic cover of a projective line

associated to the elliptic surface. We illustrate this method by calculating the

ranks in several examples, some of which recover already known results, and
discuss relation between open questions on factors of jacobians and elliptic

surfaces.

1. Introduction

In papers [3] and [15] we developed a method for calculation of the ranks of
Mordell-Weil groups of isotrivial complex elliptic threefolds which yields an expres-
sion for these ranks in terms of the Albanese variety of cyclic covers of the base
of the elliptic fibration. In many cases this leads to explicit values of the rank
(cf. [3],[15]) since the structure of Albanese variety, always depending on the sin-
gularities of the discriminant of elliptic fibration, is often rather simple even for
discriminants with quite complicated singularities. In present note we illustrate a
similar approach to the study of Mordell-Weil ranks of isotrivial elliptic surfaces.
The upshot is a relation between the Mordell Weil rank of an elliptic surface with
generic fiber isomorphic to an elliptic curve E and the isogeny factors isomorphic
to E in the Jacobian of the appropriate cyclic cover of the base of elliptic fibration.
More precisely we have the following.

Theorem 1.1. Let E→ P1 be an isotrivial elliptic surface over C. Denote by E a
generic fiber of this fibration and let Γ = AutE. Denote by CΓ the cyclic cover of
P1 branched over the zero set of the discriminant of E over which the pullback of E
is biholomorphic to a direct product. Let Jac(CΓ) be the Jacobian of CΓ and let

(1) r = {max k|Jac(CΓ) ∼Γ E
k ×A}

(here ∼Γ denotes equivariant isogeny of abelian varieties with Γ-action). If E has
a complex multiplication then the rank of Mordell-Weil of E satisfies:

(2) rkMW (E) = 2r

Otherwise this rank is r.

Approach to the study of isotrivial families via covering space over which family
trivializes in the case of surfaces was used in the past (e.g. [8] 1). The advantage
of the case of surfaces over high dimensional elliptic fibrations is that the ranks
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of elliptic surfaces were the objects of intense scrutiny for a long time (cf. [17]).
The theorem 1.1 allows to understand the values of the Mordell-Weil ranks from
a different perspective. As examples we recover several results of Usui (cf. [24]),
Shioda (cf. [21]) and others, in particular a calculation of the maximal known at the
moment rank of elliptic surfaces (i.e.68). Our calculations of Mordell-Weil ranks in
these examples depends on the description of the Jacobian of Fermat curves due to
Koblitz (cf. [10] cf. also [1]) 2 and hyperelliptic curves given in [6] (cf. also [22]).
Understanding products of elliptic curves which appear as factors of Jacobians is
an interesting problem (cf. [4]) and in fact one can use the theorem 1.1 to obtain
for some cyclic covers the multiplicity of a curve in the isogeny decomposition of
the Jacobian (cf. 4.8) using available information on the Mordell-Weil ranks.

The content of the paper is as follows. In section 2 we recall definitions and
introduce notations. Section 3 contains a proof the theorem 1.1 and in section 4
we discuss examples illustrating approach to the ranks of elliptic surfaces using
Jacobians. Concluding section 5 contains a discussion of related problems.

2. Preliminaries

By elliptic surface we mean a smooth projective surface E together with a mor-
phism π : E → C where C is a smooth curve whose generic fiber is a genus one
curve and which moreover is endowed with a section s0 : C → E. Section s0 allows
to give to fibers of π the structure of elliptic curve. An elliptic surface is called
isotrivial (resp. trivial) if the j-invariant of a generic fiber over c ∈ C is a constant
function of c (resp. E is birational to the surface E × C for some elliptic curve E
over C). Below EE denotes the elliptic curve which is a smooth fiber of an isotrivial
surface E (subscript will be omitted when the choice of E is clear from context).
We refer for the basics of the theory of elliptic surfaces to the surveys [17] or [5,
Ch.1]. For additional material related to this discussion see [15].

Recall that the Mordell-Weil group of E (denoted MW (E)) is the group of sec-
tions s : C → E of π with the group structure given by addition of s1(c), s2(c) ∈ Ec
where Ec is the fiber of E over c with the group structure existing on any smooth
curve of genus one after choice of s0(c) as the zero. This group of sections is finitely
generated, unless E is trivial but in latter case the group of sections modulo the
subgroup of constant sections of C ×E given by se : c→ e, e ∈ E (the Chow trace)
is still finitely generated (cf. [12], [17]). The Mordell-Weil group in the case when
E is trivial, is the quotient of the group of sections by the subgroup of constant
sections. The morphism π gives to E the structure of elliptic curve over C and from
this view point MW (E) is just the group of points of elliptic curve over the function
field C(C) (again if E 6= E ×C and the quotient by the subgroup E(C) otherwise).

Since MW (E) is a finitely generated abelian group, it is isomorphic to Zr ⊕ Tor
where r ∈ Z≥0 and Tor is a finite abelian group. The integer r is called the rank
of the elliptic surface. The rank of E has the following expression: (Shioda-Tate
formula)

(3) r = rkNS(E)− 2−
∑
v∈∆π

(m(Fv)− 1)

2interestingly, Shioda’s calculation in these example depends on properties of Delsarte surfaces
closely related to Fermat surfaces.
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where NS(E) is the Neron-Severi group of E, ∆π is the set of points in C over which
the fibers of π are singular and mv(F ) is the number of irreducible component in
π−1(v). Most calculations of the ranks are based on a use of (3). Note that set
∆π ⊂ C consists of the points at which the discriminant vanishes (the latter is an
element of H0(C,L12) for some line bundle on C cf. [5, th.1.4.1].

In many cases, the ranks and Mordell-Weil groups of elliptic surfaces are known.
However it seems is unknown if there is a universal bound (cf. [17]). The largest
known rank 68 of elliptic surfaces is achieved by y2 = x3 + t360k − 1 (cf. [21] and
the section 4.5 below). Over function fields of characteristic p > 0, the ranks are
unbounded for both isotrivial (cf. [18]) and non-isotrivial cases (cf. [23]).

We shall need the following description of isotrivial surfaces in terms of trivial
ones which we shall briefly sketch (cf. [5, 1.4.2] and references there).

Proposition 2.1. Let π : E→ C be an isotrivial fibration with generic fiber E. Let
Γ = AutE be the automorphism group of E (i.e. a cyclic group of order 2, 4 or 6).
Then there is a curve CΓ and a covering map πΓ : CΓ → C with the covering group
Γ and ramification set supported at ∆π such that one has birational isomorphism:

(4) E×C CΓ = CΓ ×C EE

Proof. As in [15] one can use the results in [13] and [11] to deduce that there is a
Γ-covering C ′−S → C−∆π such that C ′ is a smooth projective curve, S is a finite
subset of C ′ and π−1(C−∆π) = E× (C ′−S)/Γ where the quotient on the right is
taken for the diagonal action of Γ. Using the identification E × (C ′ − S)/Γ×C−∆π

CΓ − S = E × (C ′ − S) the birational equivalence (4) is clear.
Alternatively, since the j-invariant i.e. the map C − ∆π → H/PSL2(Z) is

constant (here H is the upper half-plane) the monodromy representation π1(C −
∆π) → Aut+H1(E,Z) factors through π1(C − ∆π) → Aut(E) (cf. [5, p.40]).
Hence the pullback of E on the covering of C − ∆π corresponding to the latter
homomorphism of the fundamental group yields a family with constant j-invariant
and trivial holonomy i.e. the direct product. �

Finally recall that the Jacobian of a curve C can be characterized as an abelian
variety universal with respect to holomorphic maps into abelian varieties A i.e.

(5) Mor(C,A) = Hom(Jac(C), A)

(on the left is the group of maps up to a translation by a point in A). Moreover
this correspondence is compatible with holomorphic maps of C and in particular if
Γ is a subgroup of Aut(C) acting on A then for the group of Γ-maps one has:

(6) MorΓ(C,A) = HomΓ(Jac(C), A)

where the subscript indicates equivariant maps.

3. Proof of theorem 1.1

In this section we shall prove the theorem 1.1. Let E be isotrivial but non trivial
elliptic surface. Let s : C → E be a point of E over C(C). The map CΓ → E×C CΓ

given by c̃ → (s(πΓ(c̃)), c̃), (c̃ ∈ CΓ) yields the lift s̃ of s which is a section of the
trivial (cf. (4)) elliptic surface CΓ × EE. Unless s has order 2 in MW (E), s̃ is
not constant since otherwise s̃(c̃) = (c̃, e) and e ∈ EE must be Γ-invariant i.e. is a
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2-torsion point. Let Sec′(CΓ×E) be a subgroup of the group of sections of CΓ×E
isomorphic to MW (CΓ × E). 3 It can be defined using a splitting of the sequence

(7) 0→ E → Sec(CΓ × E)→MW (CΓ × E)→ 0

For example, a map Sec(CΓ×E)→ E given by sending s̃ to s̃(c̃) for a point c̃ ∈ CΓ

yields such a split. One has the following isomorphisms of groups in which the first
one is obvious while the second is a consequence of the universal property of the
Jacobian with respect to the maps from the curve to abelian varieties (cf.(5)):

(8) Sec′(CΓ × E) = Mor(CΓ, E) = Hom(Jac(CΓ), E)

The lift of s induces the equivariant map Jac(CΓ)→ E with respect to the natural
action of Γ ⊂ AutE on E. Vice versa, equivariant map from Jacobian of CΓ to E
induces the Γ-equivariant map of CΓ which viewed as a section of CΓ ×E descents
to a section of E. Hence

(9) MW (E) = HomΓ(Jac(CΓ), E)

Next let Jac(CΓ) ∼Γ E
r × A and A is not Γ-isogenous to E × A′. By Poincare

reducibility theorem (cf. [16]) the latter is equivalent to HomΓ(A,E) = 0 and
hence HomΓ(Jac(CΓ), E) = Hom(Er, E) = End(E)r. The latter has rank 2r
if E has complex multiplication since rkEnd(E) = 2 in this case. Otherwise
rkHom(Er, E) = r.

Note that the above argument shows that calculation of the rank in theorem 1.1
also holds if E is trivial.

4. Elliptic surfaces related to Fermat curves

4.1. Cyclic covers of P1. In most examples considered below the curves over
which the elliptic surfaces becomes trivial and Jacobians of which according to the
theorem 1.1 determine the Mordell Weil groups are quotients of Fermat curve. In
particular the Jacobians of these curves are subvarieties of Jacobians of Fermat
curves. We recall results from [10] describing the factors of Jacobians of Fermat
curves.

Let FN be the curve given by the equation:

(10) xN + yN + zN = 0

The one dimensional components of Jac(FN ) = H0(FN ,Ω
1
FN

)∗/H1(FN ,Z) corre-

spond to one dimensional subspaces of H0(FN ,Ω
1
FN

) generated by forms

(11) ωr,s,t =
xNr−1yNs−1dx

yN−1
(Nr,Ns,Nt ∈ Z+, r + s+ t = 1)

Note that ωr,s,t spans an eigenspace for transformation induced by (x, y, z) →
(ζNx, y, z) (resp. transformation induced by (x, y, z) → (x, ζNy, z)) where ζN =

exp( 2π
√
−1

N ) corresponding to the eigenvalue: exp(2π
√
−1r) (resp. exp(2π

√
−1s)).

The curves which are the isogeny components of Jac(FN ) all appear as the
factors of the abelian varieties denoted as J[r,s,t] where [r, s, t] is the orbit of the
triple for the action defined below. J[r,s,t] are all of CM type and as such correspond

3or, if Γ = Z2 or Z4, rather a maximal 2-torsion free subgroup among the subgroups with the
following property: the only constant Γ-invariant (for diagonal action of Γ) element in Sec′(CΓ×E)

is the zero section.
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to the cyclotomic fields Q(ζM ) (cf. [19], [14]) with M |N . The CM type of J[r,s,t] is
given by the subset of Gal(Q(ζM )/Q) = (Z/MZ)∗ defined as follows:

(12) Hr,s,t = {u ∈ (Z/MZ)∗| < ur > + < us > + < ut >= 1}

(here < · > denotes the least non negative rational residue modulo 1). The abelian
varieties J[r,s,t] are labeled by the orbits of the following action of Hr,s,t on triples
(r, s, t): u(r, s, t) = (< ur >,< us >,< ut >). Each of J[r,s,t] is isogenous to the

product ECardHr,s,t for an appropriate CM curve E.

Proposition 4.1. The abelian varieties J[r,s,t] having the curve E0 with j-invariant
zero as an isogeny component are given in the following table:

(13)

M Mr Ms Mt CardHr,s,t label
3 1 1 1 1 3(i)
6 1 1 4 1 6(i)
6 1 2 3 1 6(ii)
12 1 1 10 2 12(i)
12 1 2 9 2 12(ii)
12 1 3 8 2 12(iii)
12 1 4 7 2 12(iv)
12 1 5 6 2 12(v)
15 1 2 12 4 15(i)
15 1 4 10 4 15(ii)
18 1 3 14 3 18(i)
21 1 4 16 6 21(i)
21 1 8 12 6 21(ii)
24 1 1 22 4 24(i)
24 1 4 19 4 24(ii)
24 1 5 18 4 24(iii)
24 1 6 17 4 24(iv)
24 1 7 16 4 24(v)
24 1 10 13 4 24(vi)
24 1 11 12 4 24(vii)
30 1 5 24 4 30(i)
30 1 10 19 4 30(ii)
39 1 16 22 12 39(i)
48 1 22 25 8 48(i)
60 1 10 49 8 60(i)

Proof. Abelian varieties J[r,s,t] admitting the curve E0 as isogeny component admit
the automorphism of order 6 and hence Q(ζ6) is a subfield of End(J[r,s,t]) ⊗ Q =
Q(ζM ). Therefore 3|M . The table (13) is the part of the table from [10] corre-
sponding to M with this divisibility condition. �

Proposition 4.2. Let C6m be the cyclic cover of P1 which is a compactification
of the curve s6 = t6m − 1. Denote by T the automorphism of Jacobian induced
by the automorphism of C6m given by (s, t) → (ζ6s, t). Let S(E0) be the set of
ordered triples 6m

M (r, s, t) (where M |6m) such that r
M = 1

6 and such that no two
triples belong to the same orbit of Hr,s,t. Then the maximal number of E0-factors
in Jac(C6m) on the tangent space at identity of which T acts as multiplication by
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ζ6 is equal to

(14)
∑

(r,s,t)∈S(E0)

CardHr,s,t

Proof. C6m is the quotient of F6m by the action of the group of roots of unity
generated by (x, y, z)→ (ζmx, y, z). Hence Jac(C6m) is component of the product
of varieties J[r,s,t] such that 6m(r, s, t) ∈ (Z+)3 and such that 6r ∈ Z+. The

equivariance condition restricts r further to r = 1
6 . The claim follows. �

The following examples were obtained by Shioda and Usui (cf. [24]) using a
different method which we shall derive from Prop. 4.2.

Example 4.3. Elliptic surface E6 : y2 = x3 + t6 − 1 The curve C6 is the Fermat
curve F6 and we count the number of E0-components in the isogeny class of Jac(F6).
This is the number of triples in the table (13) with M |6, and r = 1

6 . We obtain the
following triples (Mr,Ms,Mt):

(15) (1, 1, 4), (1, 4, 1), (1, 2, 3), (1, 3, 2).

Hence Jac(C6) ∼ E4
0 ×A where A does not have E0 isogeny components and hence

rkMW (E6) = 8 (cf. [24] where the corresponding lattice given by the height pairing
is identified with the lattice E8).

Example 4.4. Consider the elliptic surface E9 : y2 = x3 + t9 − 1. rkMW (E9)
depends on the number of E0 components of u6 = t9−1. This curve is the quotient
of F18 by the action of µ3 × µ2 given by multiplication of coordinates. Hence the
E0 components of Jac(F18/µ3 × µ2) correspond to triples (a, b, c) such that,

a) a+ b+ c = 18 and
b) 3|a, 2|b
c)M |18
The triples satisfying these conditions are:

(16) 3(i) : (6, 6, 6), 6(i) : (3, 12, 3), 6(ii) : (3, 6, 9), 6(ii)∗ : (9, 6, 3), 18(i) : (3, 14, 1).

The equivariance conditions yield that a = 3. This is satisfied by: 6(i), 6(ii), 18(i).
CardHr,s,t in the first two cases is 1 and in the case 18(i) it is 3. Hence Jacobian
contains E5

0 and hence rkMW (E9) = 10 (cf. [24]).

Example 4.5. Consider the surface E360 : y2 = x3 + t360− 1. Shioda’s calculation
yields rkMW (E360) = 68. To see this from the viewpoint of the theorem 1.1
we need to calculate the number of (equivariant) E0-factors of Jac(C360). They
correspond to the triples (r, s, t) such that M |360 and one of components (r, s, t) is
1
6 . Note that this implies that 6|M . The triples satisfying these condition are given
by the following list. Below (R,S, T ) = 360(r, s, t); each triple in the list comes
from the triple 1

(g.c.d(R,S,T )) (R,S, T ) appearing in the table with M = R+S+T
g.c.d(R,S,T ) ;

we indicate its label in table (13) in front and add asterisk if it is obtained by a
permutation of a triple in (13).

(17)
6(i) : (60, 60, 240), 6(i)∗ : (60, 240, 60), 6(ii) : (60, 120, 180), 6(ii)∗ : (60, 180, 120),

(18)
12(ii) : (60, 30, 270), 12(ii)∗ : (60, 270, 30), 18(i) : (60, 20, 280), 18(ii)∗ : (60, 280, 20),
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(19)
24(ii) : (60, 15, 285), 24(ii)∗ : (60, 285, 15), 30(i) : (20, 60, 288), 30(i)∗ : (20, 288, 60),

(20) 60(i) : (60, 6, 294), 60(i)∗ : (60, 294, 6)

However 60(i), 60(i)∗ give the same abelian 4-fold since (60, 6, 294)·72 = (60, 294, 6)
(H[1,10,49] = {7i31j |i, j ∈ Z/4Z× Z/2Z} cf. [10]). Similarly (60, 15, 285) · (7 · 13) =

(60, 285, 15) ((H[1,4,19] = {7i13j |i, j ∈ Z/2Z×Z/2Z}) i.e. J[60,285,15] coincides with
J[60,15,285]. There are no other repetitions in abelian varieties corresponding to
triples (17)-(20) as follows by direct calculation using data on Hr,s,t from [10]. The
dimensions of J[r,s,t] above are as follows. For 6(i), 6(i)∗, 6(ii), 6(ii)∗ the dimension
is equal to 1, for 12(ii), 12(∗∗) it is 2, for 18(i), 18(ii)∗ it is 3, for 24(ii), 24(ii)∗ it
is 4, for 30(i), 30(i)∗ it is 4 and for 60(i), 60(i)∗ it is 8. Taking into account that,
as was mentioned, J[1,10,49] = J[1,49,10] and J[4,19,1] = J[4,1,19] we obtain:

(21)
∑

CardHr,s,t = 1 + 1 + 1 + 1 + 2 + 2 + 3 + 3 + 4 + 4 + 4 + 8 = 34

Hence the total rank is 2× 34 = 68

Example 4.6. The case of surfaces y2 = x3 + t360k − 1 can be analyzed similarly.
We need to know the number of factors of the Jacobian of s6 = t360k − 1 which are
µ6-equivalent to the curve with j-invariant zero with given automorphism of order
6. Those are all the factors of the Jacobian of Fermat curve (10) with N = 360k.
The equivariance conditions on (r, s, t) to appear as the factor in the Jacobian of
the curve s6 = t360k − 1 is Mu · (NM ) = N

6 i.e. Mu = M
6 (where u = r, s, t) which

is the same as in the case k = 1. Hence the collection of the varieties J[r,s,t] which
are the product of the curves E0 is independent of k i.e. rkMW by theorem 1.1 is
independent of k as well.

Example 4.7. In [6] the authors show that the hyperelliptic curve:

(22) H : y2 = x(x− 1)(x− λ)(x− µ)(x− ν)

where µ = ν 1−λ
1−ν and λ, µ, ν are pairwise distinct, different from 0 and 1 has the

Jacobian isogenous to the product of two copies of the curve:

(23) E : y2 = x(x− 1)(x− Λ)

where Λ is a solution of

(24) ν2λ2Λ2 + 2νµ(−2ν + Λ)Λ + µ2 = 0.

Then the elliptic surface

(25) E ×H/µ2

where the diagonal action of µ2 is via multiplication by −1 on the first factor and
via hyperelliptic involution on the second has the following ranks:

(26) rkMW =

{
2 if E is without CM

4 if E has CM

This provides isotrivial elliptic surface with arbitrary j-invariant and positive Mordell-
Weil rank. Many examples with large rkMW can be constructed using examples
of hyperelliptic curves with split Jacobian given in [22]
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Example 4.8. In work [2] the authors calculated the rank of elliptic surface y2 =
x3−27(t12−11t6−1) is equal to 18. For the curve u6 = t12−11t6−1 this translates
into Jac = E9

0 ×A with A � E0 ×A′ for any A′.

5. Abelian varieties, families with higher dimensional bases and some
questions

5.1. Isotrivial abelian varieties. Using results from [15] theorem 1.1 can be
extended to the case of abelian varieties over C(t):

Theorem 5.1. Let A → P1 be isotrivial family of abelian varieties over C with a
simple generic fiber. Fix a projective embedding of A, denote by A a generic fiber of
this fibration and let Γ be the automorphism group of A preserving the polarization.
Denote by CΓ the cover of P1 branched over the zero set of the discriminant of A

over which the pullback of A is biholomorphic to a direct product (cf. [15], section
2.1 references there). Let Jac(CΓ) denote the Jacobian of CΓ and let

(27) r = {max k|Jac(CΓ) ∼Γ A
k ×B}

(here ∼Γ denotes equivariant isogeny of abelian varieties with Γ-action). Then

(28) rkMW (A) = rdimQEnd(A)⊗Q

Example 5.2. Let E be an isotrivial elliptic surface with fiber being the curve E0

and such that rkMW (E) > 0. Let An = E ×P1 ... ×P1 E (n-fold product). Then
rkMW (An) = γ · n γ ∈ Z.

Indeed, An becomes trivial over the same cover C of P1 as A1, and the argument
used in the proof of 1.1 yields that rkME(An) = rdimHom(E0, E

n
0 ) = 2nr where

r is the multiplicity of E0 in Jac(C).

5.2. Remarks on isotrivial elliptic threefolds. The following relation, shown
for example in [7], between the Mordell-Weil ranks of elliptic surfaces and ranks of
Mordell-Weil groups of threefolds was used in [3] in order to obtain restrictions on
the fundamental groups of the complements to discriminants.

Proposition 5.3. Let E → P2 be an elliptic threefold, Let L be a generic line in
P2 and E|L is the restriction of E on L. Then rkMW (E) ≤ rkMW (E|L).

In particular universal bounds on ranks of elliptic surfaces over C(t) yield bounds
on ranks of n-folds (over Pn−1). The relation between the fundamental groups and
ranks from [3] is the following:

Theorem 5.4. Let D be the zero set of the discriminant of elliptic threefold E→ P2.
Assume that D is irreducible and that the only singularities of C are either ordinary
nodes or ordinary cusps. Then

(29) rkMW (E) = rkπ1(P2 −D)′/π′′1 (P2 −D)

(right hand side is the quotient of the commutator of the fundamental group by the
second commutator)

Known bounds on the right hand side in (29), coming from various interpreta-
tions, (cf. [3], [9]) are linear in degree d of D. This leads to the following question:
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Question 5.5. Let f(t) be a polynomial of degree d ≡ 0(mod 6) and Cd(f) be the
cyclic cover of P1 given by equation the u6 = f(t). Consider the elliptic surface Ef
given by

(30) y2 = x3 + f(t)

Does exist ε > 0 and a positive constant α such that for the rank of Ef one has

(31) rkMW (Ef ) ≤ αd1−ε

By the theorem 1.1 this is equivalent to the following:

Question 5.6. Does there exist a bound on the number of isogeny component of
Jac(Cd(f)) isomorphic to E0 of the form αd1−ε?

Note that for the curve Cd(f) in (5.5) one has g(Cd(f)) = 5
2d − 5 i.e. ε ≥ 0 in

(31). As was mentioned known examples in characteristic zero obeys bound (31)
with ε = 1. It would be interesting to know what is ε in positive characteristic.
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