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Abstract. We show that the Mordell Weil rank of an isotrivial abelian variety

with a cyclic holonomy depends only on the fundamental group of the com-
plement to the discriminant provided the discriminant has singularities in the

introduced here CM class. This class of singularities includes all unibranched

plane curves singularities. As a corollary we give a family of simple Jacobians
over field of rational functions in two variable for which the Mordell Weil rank

is arbitrary large.

1. Introduction

Let A be an abelian variety over a function field K of characteristic zero.
The group of K-points of A is an interesting analytic invariant. For example,
if dimKA = 1, deg.tr.K/C = 1, the group of K-points (assuming A is non trivial)
is a quotient of the Neron-Severi group of the corresponding elliptic surface (cf.
[34]). In this note we consider a class of abelian varieties A over the function field
K = C(x, y) for which the Mordell Weil rank can be described in topological terms.
This description extends the results of [7] where the case of elliptic curves over
K = C(x, y) was studied in detail.

We shall work with a non singular projective model of A i.e. assume that A is
a smooth projective variety together with a flat morphism

(1) π : A→ P2

such that fibers over closed points in Zariski open subset of X = P2 are polarized
abelian varieties over C

The restrictions which we impose on the abelian variety A, allowing to express
the Mordell-Weil rank in terms of topological invariants are the following:

1. A is isotrivial.
2. The holonomy group of the family (1), (cf. section 2.1) is cyclic.
3.The singularities of the discriminant have CM type (cf. section 3.3).

In the case of elliptic surfaces satisfying the condition (1) and when the condition
(2) is automatic, the Mordell Weil rank is far from being topological as examples
in [28] show. We also present several classes of families A for which the rank can
be calculated explicitly. Besides the conditions (1)-(3) above we limit our-self to
the case of abelian varieties for which the discriminant is irreducible. The latter
imposed to simplify exposition.

The data which affects the Mordell-Weil rank in fact requires only a small portion
of the fundamental group. One needs the same data as the one which controls the
Betti numbers of the branched cyclic covers of P2 with ramification locus coinciding
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with the discriminant of morphism (1). As was shown in [25], cohomology of cyclic
branched covers can be expressed in terms of the quotient π1/π

′′
1 of the fundamental

group by its second commutator. It is convenient to express it in terms of the
Alexander invariant of ∆ ⊂ P2 i.e. the vector space π′1/π

′′
1 ⊗ C considered as the

module over the group ring C[π1/π
′
1] of the abelianization of π1 and ultimately this

Alexander invariant represents the topological data which is responsible Mordell
Weil ranks of abelian varieties (1).

For abelian varieties considered below the Mordell-Weil rank is almost combina-
torial in the sense that it depends, besides the type of the generic fiber and local
type of singularities of the discriminant, only on the dimensions of certain linear
systems of curves determined by the local type of singularities of the latter. This is
a consequence of known results showing that the Alexander invariants of plane sin-
gular curves depend only on this data (cf. [27] and section 2.5 below and references
there). In the case of elliptic curves over C(x, y), in [18] recently was obtained a
relation between the rank of the elliptic curves and the dimensions of such linear
systems in the case when A has the discriminant with cusps and nodes as the only
singularities using methods different than those used in this paper (i.e. studying
the syzygies of the locus of cusps of the discriminant).

One of the key ingredients in the proof of mentioned results, having indepen-
dent interest, is the decomposition theorem of the Albanese varieties of the cyclic
branched covers of P2. In the context of abelian varieties (1) these covers come up
since abelian varieties considered in this paper become trivial over cyclic extensions
of C(x, y). We show that Albanese variety of the cyclic cover of P2, over which the
pull back of A is trivial splits, assuming that that the singularities of the branching
locus of the cyclic cover of P2 have CM type. More precisely we have the following
(similar result was obtained in [7] in the case when A is an elliptic curve but with
slightly different assumptions on singularities):

Theorem 1.1. Let ∆ be an irreducible and reduced curve in P2 such that its sin-
gularities have CM type only. Then the Albanese variety of a cyclic cover of P2

ramified along ∆ is isogenous to a product of abelian varieties of CM type each hav-
ing as its endomorphism algebra an etale algebra which is a product of cyclotomic
fields.

The definition of singularities of CM type in the case of plane curves is given in
terms of the local Albanese variety which is equivalent to the data of weight one part
and its Hodge filtration for the mixed Hodge structure on the cohomology of the
Milnor fiber of the singular points (cf. definition 3.4). The local Albanese variety
is the special case of the abelian variety associated by Deligne with 1-motif in [9].
We say that a plane curve singularity has CM type if its local Albanese variety has
CM type. We refer to [36], [31] or [30] for information on abelian varieties of CM
type but recall that those are abelian varieties A with End(A) ⊗ Q containing an
(etale) Q-subalgebra of rank 2dimA isomorphic to a product of fields (in the case
of CM-singularities we show that these fields are cyclotomic).

The class of plane curve singularities of CM type is rather large: it includes all
unibranched singularities (cf. theorem 3.12), simple singularities, δ-essential singu-
larities in the sense of [7] etc. However an ordinary multiple points of multiplicity
greater than 3 do not have CM type in general (cf. section 3).

Precise relation between the topology of the complement to the discriminant and
the Mordell Weil rank is given as follows.
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Theorem 1.2. Let A be an isotrivial abelian variety over field C(x, y), π be mor-
phism (1) and A be its generic fiber. Let ∆ ⊂ P2 be the discriminant of π and let
G ⊂ AutA be the holonomy group of A (cf. 2.1). Assume that:

a) the holonomy group G of isotrivial fibration (1) over the complement to the
discriminant ∆ is a cyclic group of order d having no fixed subvarieties of positive
dimension in the generic fiber A of (1) .

b) The singularities of ∆ have CM type and ∆ is irreducible.
Then
1. the rank of the Mordell-Weil group of A is zero, unless the generic fiber of π is

an abelian variety of CM-type with endomorphism algebra containing a cyclotomic
field.

2. Assume that generic fiber A of π is a simple abelian variety of CM type
corresponding to the field Q(ζd). Let s be the multiplicity of the factor Φd(t) of the
Alexander polynomial of π1(P2 − ∆) where Φd(t) is the cyclotomic polynomial of
degree d. Then:

(2) rkMW (A,C(x, y)) ≤ s · φ(d)

(here φ(d) = degΦd(t) is the Euler function).
3. Let A be an abelain variety as in 2. If d is the order of the holonomy of A

and the Albanese variety Alb(Xd) of the d-fold cover Xd of X ramified over ∆ has
A is its direct summand with multiplicity s then one has equality in (2).

Theorem 1.2 has as an immediate consequence the following:

Corollary 1.3. If A is a family (1) with generic fiber A for which End(A) ⊗
Q = Q(ζd) and if none of the characteristic polynomials of the monodromy of
singularities of the discriminant has roots of unity of degree d, then rkMW (A) = 0.

On the other hand, for the Jacobian of the curve over C(x, y) given in (u, v)
plane by the equation

(3) up = v2 + (xp + yp)2 + (y2 + 1)p

one has rkMW = p− 1 (cf. 5.2). The Jacobian of generic fiber of the family (3)
is a simple abelian variety.

Note that inequality (2) does not allow to decide the boundedness on the ranks of
simple abelian varieties over the function field of fixed dimension since it is unknown
if the possible multiplicities of Φd in the Alexander polynomial are bounded ([7]
contains a discussion of the relation between the bounds on the rank and the degree
of the latter). See section 5 for a description of the procedure for finding Mordell-
Weil rank in terms of the Alexander polynomial.

The content of this paper is as follows. In the next section we recall the back-
ground material used below. The section 3 discusses the local Albanese varieties
of plane curve singularities and cases when they have CM type. The decompos-
ability of the Albanese variety of cyclic branched covers (under certain conditions)
is proved in section 4. Section 5 contains the proof of the theorem 1.2 and gives
examples of specific situations in which the above theorem can be applied. The
theorem 1.2 in fact can be used in both direction: it gives many examples in which
one obtains explicitly the rank of Mordell-Weil group. On the other hand it pro-
vides a mean to give a bound on the complexity of the Alexander module of certain
curves (cf. [7]). The example 5.2 is discussed in the end of the last section. Finally,
I want to thank J.I.Cogolludo for comments of this paper.
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2. Abelian varieties over transcendental extensions of C

2.1. Isotrivial abelian varieties, discriminant and holonomy. As in Intro-
duction, we fix a flat proper morphism of smooth complex projective varieties
π : A → X with generic fiber being an abelian variety over C i.e. an abelian
variety over C(X).

A rational section (resp. a section) of π is a rational (resp. regular) map s :
X → A such that π ◦ s is the identity on the domain of s.

An abelian variety π : A → X is called isotrivial if for an open set U ⊆ X the
fibers of π for any pair x, y ∈ U are isomorphic as polarized abelian varieties with
the polarization induced from A. The generic fiber of π will be denoted A.

The discriminant locus ∆ of π is the subvariety of X consisting of points x for
which the fiber π−1(x) is not smooth. The map π−1(X −∆)→ X −∆ is a locally
trivial fibration. It follows from [24] (cf. also [20]) that there is an unramified
Galois covering s : X ′ −∆′ → X −∆ such that

a) the Galois group G is a subgroup of automorphisms of the fiber A preserving
its polarization induced from the polarization of A and

b) such that

(4) A = {(X ′ −∆′)×A}/G
with the action given by g(x, a) = (gx, ga) (x ∈ X ′ −∆′, a ∈ A). The equality (4)
is a birational isomorphism which is biregular if one replaces the left hand side by
the open subset s−1(X −∆) in A.

We shall assume that X ′ −∆′ is an open set in its G-equivariant smooth com-
pactification X ′ i.e X ′ − ∆′ is the complement to a divisor ∆′ ⊂ X ′ where X ′ is
a G-equivariant resolution of singularities of any G-equivariant compactification of
X ′ −∆′.

Definition 2.1. The holonomy group of an isotrivial abelian variety A is a group G
which satisfies the conditions a) and b) above and such that no quotient ofG satisfies
these conditions. The holonomy map is the composition π1(X −∆)→ G→ AutA.

Note that the first homomorphism is the one corresponding to the covering map
X ′ −∆′ → X −∆.

In this paper we are concerned only with the case X = P2. Since we assume
in Th. 1.2 b) that the image of the holonomy is non trivial it follows that ∆ has
codimension one in X.

2.2. Chow trace of isotrivial families. Next recall Lang-Neron’s finite genera-
tion result for abelian varieties over function fields starting with the definition of
Chow trace (cf. [21], [8]). Given an extension K/k of fields and an abelian variety
A over K, there exist an abelian variety B over k (called the Chow trace) and
homomorphism τ : B ⊗k K → A 1 defined over k such that for any extension E/k
disjoint from K, abelian variety C over E and morphism α : C → A over KE there
exists α′ : C → B such that α = τ ◦ α′ (after appropriate field extensions of A and
B). A description of Chow trace in the case of relative Picard schemes is given in
[15] (cf. Prop.2.2, also [35]). In the case of isotrivial abelian varieties we have the
following (which in the case of relative Picard schemes is a consequence from the
latter):

1B ⊗k K is the result of field extension of B.
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Proposition 2.2. Let A → X be an isotrivial abelian variety over C(X) with
holonomy G. Then C-trace of A is isomorphic to the abelian subvariety AG of A
which is the maximal subvariety of A fixed by the holonomy group G.

Proof. For any path γ : [0, 1] → X − ∆ the identification (4) provides the map:
hπ : π−1(0) → π−1(1) as the composition of a fixed identification of π−1(0) with
the fiber over a point in s−1(γ(0)) and restriction of projection (X ′ −∆′) × A →
(X ′−∆′)/G ⊂ A in (4) on the end point of the s-lift of path γ. This is well defined
since the lift of s is unique but change of the path γ(t) results in a composition
of hπ with an automorphism from G. In particular one has an identification of
subvarieties AG of any two fibers of π and the map AG×(X−∆)→ A can be defined
using continuation along paths. This yields the trace map τ : AG ⊗ k(X)→ A.

Next, given a map T : B × (X − A) → A commuting with projections on
X −A, restricting it on a loop γ in X −∆ yields a holonomy transformation g ∈ G
one sees that T |(B×γ(0)) : B × γ(0) → Aγ(0) (the fiber of A over γ(0)) has the

image belonging to AG i.e. we have factorization of T through τ . This implies the
universality property in the definition of trace. �

An automorphism group G of a polarized abelian variety is finite (cf. [5] Ch.5
Cor.1.9) and (4) can be used to construct isotrivial family of polarized abelian
varieties for any etale covering of X −∆ with Galois group G ⊂ AutA.

With notion of trace in place one can state a function field version of the Mordell-
Weil theorem as follows:

Theorem 2.3. (cf. [21]) Let K be a function field of a variety over a field k. Let A
be an abelian variety defined over K and τ : B → A is its trace. Then the Mordell
Weil group A(K)/τB(k) is finitely generated.

2.3. Examples of isotrivial families of abelian varieties with cyclic group
of automorphisms. We shall be interested in isotrivial families with cyclic holo-
nomy. If the automorphism group of an abelian variety is cyclic then any family
of abelian varieties with such fiber will have cyclic holonomy group. One way to
obtain such examples is the following. Jacobians of curves with cyclic automor-
phism groups have cyclic automorphism groups as well since by Torelli theorem
Aut(J(C)) = Aut(C)/±I (resp. Aut(J(C)) = Aut(C)) for non-hyperelliptic curves
(resp. for hyperelliptic curves). (cf. [23], [41])). As example of curves with cyclic
automorphism group one can consider the curves Cp−2,p with the following equation
of the affine part (cf. [22],[3],[17] and section 3.4 below):

(5) up = vp−2(1− v)

Example 2.4. Let Φ(x, y) be a curve in C2 which is the affine portion of a smooth
projective curve having degree p 2. Consider the curve over C(x, y) given by

(6) upΦ(x, y) = vp−2(1− v)

Over the complement to Φ(x, y) = 0 we have the family of curves isomorphic to the
curve (5). This family is trivialized over X ′ given by zp = Φ(x, y). The Jacobian of
(6) over C(x, y) provides an example of an isotrivial abelian variety over this field.

2Assumption of smoothness will be used below to show that the Mordell Weil rank in this case
is zero. The construction in this example yields an isotrivial family of Jacobians for any Φ.
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2.4. Abelian varieties of CM type. A large class examples of abelian varieties
admitting cyclic group of automorphisms, which will appear in several contexts
below, is given by abelian varieties of CM type. Recall that a CM field is an
imaginary quadratic extension of totally real number field (cf. [31], [36], [30]). A
CM-algebra is a finite product of CM-fields. Such an algebra E is endowed with an
automorphism ιE such that for any ρ : E → C one has ρ ◦ ιE = ρ̄ (the conjugation
of ρ). CM-type of an CM-algebra E is:

(7) {Φ ⊂ Hom(E,C)|Hom(E,C) = Φ ∪ ιE(Φ),Φ ∩ ιE(Φ) = ∅}
For a CM field K of degree g over Q, a CM type Φ is a collection of pairwise not

conjugate embeddings σ1, ..., σg of K → C.
For a CM algebra E with a chosen CM-type Φ and a lattice in E i.e. a subgroup

Λ such that Λ ⊗Z Q (e.g. product of the rings of integers of each of CM-fields
composing E) corresponds the torus E ⊗R/Λ with the complex structure induced

from the identification E⊗QR→ C
dimQE

2 given by the direct sum of the homomor-
phisms φ ∈ Φ where Φ is the CM type. This complex torus is an abelian variety (cf.
[36],[31], [30]). The following example of CM type appears below in the context of
singularities:

Example 2.5. Let p be an odd prime. Consider the set Φ of roots of unity of
degree p with positive imaginary part (i.e. exp 2πik

p for 1 ≤ k ≤ p−1
2 ). The set of

embeddings of Q(ζp) induced by the maps exp( 2πi
p ) → ω, ω ∈ Φ provides a CM

type of Q(ζp).
Note that this CM type is primitive in the sense that the corresponding abelian

variety is simple (cf. [36], section 8.4, p.64).
More generally, for a pair of primes p, q the set of primitive roots of unity of

degree p · q with positive imaginary part provides a CM type of the field Q(ζpq).

2.5. Alexander polynomials. The Alexander polynomial is an invariant of the
fundamental group which allows to state conditions under which the first Betti
number of a cyclic cover is positive (cf. [27]). Recall that for a group G and a
surjection σ : G→W onto a cyclic group W one defines the Alexander polynomial
as follows. Let K = Kerσ and K/K ′ be the abelianization of K. It follows from
exact sequence 0→ K ′/K ′′ → K/K ′′ →W that W acts on K ′/K ′′ via conjugation
on K ′.

Definition 2.6. The Alexander polynomial ∆D(t) of G relative to surjection σ is
the characteristic polynomial of a generator of W acting on the vector space K/K ′⊗
C (this space has a finite complex dimension cf. [27]; in the case where W is finite
one choose the polynomial of minimal degree among polynomials corresponding to
different actions of generator). Moreover, one has a cyclic decomposition K ′/K ′′⊗
C = ⊕iC[W ]/λi

3 in terms of which ∆D(t) = Πiλi(t) where t acts as a generator
of W .

3If W is finite then C[W ] is isomorphic to C[t, t−1]/(t|W | − 1) and λi ∈ C[W ] are viewed as
polynomials in C[t] having minimal degree it its coset. This definition is slightly different from
the one used in [25] where only infinite W ’s were used. This was done by replacing projective

curve D by its affine portion such that the line at infinity L is transversal to D. If D is irreducible
then H1(P2 −D,Z) = ZdegD but H1(P2 −D ∪L,Z) = Z. Moreover for reduced D, the surjection

π1(P2−D∪L)→ ZdegD given by mod degD linking number with D yields the same polynomial

as surjection onto Z given by the linking with D.
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The properties of the Alexander polynomials of the fundamental groups of the
complements to the algebraic curves in P2 are summarized in the following:

Theorem 2.7. Let G = π1(P2−D) where D is a projective curve of degree d with
arbitrary singularities and with r irreducible components. Let ∆D(t) denote the
Alexander polynomial of D relative to surjection G → ZdegD sending a loop to its
total linking number with D (cf. [25])

1. For each singularity P of the curve D denote by ∆P (t) the Alexander poly-
nomial of the local fundamental group π1(BP − BP ∩D) where BP is a small ball
about P in P2 defined relative to surjection π1(BP − BP ∩ D) → Z given by the
total linking number with BP ∩D.

Then the Alexander polynomial ∆D(t) polynomial of π1(P2 − D) divides the
product:

(8) ΠP∈Sing(H∩D)∆P (t)

In particular the Alexander polynomial of π1(P2 −D) is cyclotomic.
2. Let XN be an N -fold cyclic branched covering space of P2 ramified over D,

and corresponding to a surjection of W onto a cyclic group of order N . Then the
characteristic polynomial of the generator of W acting on H1(XN ,C) is equal to

(9)
∑
i

gcd(tN − 1, λi(t))

3. With each singularity P and a rational number κ ∈ (0, 1) one associates the
ideal I(P, κ) in the local ring of P (the ideal of quasi-adjunction) 4 with the following
properties. Let Iκ ⊂ OP2 be the ideal sheaf for which the support of OP2/Iκ is the
set of singularities of D different than nodes and stalk of Iκ at P is I(P, κ) then

(10) ∆D(t) = (t− 1)r−1Πκ[(t− exp(−2πiκ))(t− exp(2πiκ))]dimH
1(P2,Iκ(d−3−κd))

where the product is over all κ = i
d , 1 ≤ i ≤ d− 1

In particular, for curves with singularities locally equivalent to up = vq only, one
has:

(11) ∆D(t) = [
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
]s

where s = dimH1(P2, I(( 1
p + 1

q )d− 3)) and I is the ideal sheaf with OP2/I supported

at singularities of D and having the maximal ideal of the local ring as the stalk at
each singular point. 5

We refer to [25], [27] for proofs of these results but note that much of the ar-
guments in the proof of the theorem 4.1 are Hodge theoretical refinement of the
topological arguments in the proof of the first part of the theorem 2.7. The lo-
cal type of singularities of plane curves which come up part 2 in theorem 2.7 and
associated mixed Hodge structures are discussed in the next section.

4I(P, κ) is defined in terms of the germ of the curve and κ ∈ Q (cf. [26]); there is identification

of the ideals of quasi-adjunction and the multiplier ideals (ibid.)
5the maximal ideal is the ideal of quasi-adjunction of up = vq and κ = 1− 1

p
− 1

q
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3. Local Albanese varieties and singularities of CM-type

The main result of this section is the theorem 3.12 describing the structure of the
local Albanese varieties of unibranched singularities showing in particular that they
have CM type. Section 3.1 contains a description of several constructions of the
mixed Hodge structures associated with plane curve singularities. This mainly fol-
lows from previous discussions in [26] and [7]. In section 3.2 we recall the definitions
of local Albanese variety following [7]. Then we introduce plane curve singularities
of CM-type as those for which the local Albanese varieties will have a CM type.
The assertion that unibranched singularities have CM type is proven in section 3.4.

3.1. Mixed Hodge structures associated with a link. Let f(x, y) be a germ
of a plane curve singularity at the origin (0, 0). Recall the comparison of the limit
mixed Hodge structure associated with degeneration f(x, y) = t defined in the
case of isolated singularities of arbitrary dimension in [37], and the mixed Hodge
structure constructed in [10] on the cohomology of punctured neighborhood of the
exceptional set of a resolution of the singularity of zn = f(x, y) (or equivalently the
link of the latter surface singularity).

Let V be a germ of an algebraic space having an isolated singularity at P ∈ V .
Let H∗P (V ) be the local cohomology of V . It is shown in [38] ( using a mapping cone
construction) that H∗P (V ) supports a mixed Hodge structure. The cohomology of
the link L of singularity of V , i.e. the intersection of a small sphere in CN centered
at P , is related to the local cohomology as follows:

(12) H∗(L) = H∗+1
P (V )

In particular one obtains the mixed Hodge structure on the cohomology of L. Since
L is a retract of a deleted neighborhood of the exceptional set of a resolution of sin-
gularity of V , one can describe this mixed Hodge structure using the presentation:

(13) Ṽ − E = Ṽ
⋂
V̄ − E

where Ṽ is a resolution of the germ V , E is the exceptional set of the resolution, V̄
is a smooth projective variety containing Ṽ . Here one views Ṽ as a small tubular
neighborhood of the exceptional set E. In particular (cf. [10]) one has the Mayer-
Vietoris sequence, which is a sequence of the mixed Hodge structures:

(14) −→ Hk(Ṽ )⊕Hk(V̄ − E)→ Hk(Ṽ − E)→ Hk+1(V̄ ) −→

The weights on Hk(Ṽ ) = Hk(E) (resp. Hk(V̄ − E)) are 0, ..., k, since E is a
normal crossing divisor, (resp. k, ..., 2k since V̄ − E is smooth). The weight of
Hk+1(V̄ ) is k + 1 since V̄ is smooth projective. However Gabber purity theorem
yields that for 0 ≤ k < n the weights on Hk(L) are less than or equal to k and for
n ≤ k ≤ 2n− 1 are greater or equal than k + 1 (cf. [12]).

Applying this to the case when V is the cyclic cover Vf,n given by zn = f(x, y)
one obtains for its link Lf,n the mixed Hodge structure with weights on H1(Lf,n)
being 0, 1 and weights on H2(Lf,n) being 3, 4.

On the other hand, the vanishing cohomology of the family of germs f(x, y) = t,
or equivalently the cohomology of Milnor fiber Ff , supports the limit mixed Hodge
structure H1

lim(Ff ) (with weights (0, 1, 2)). The following comparison between the
mixed Hodge structures on H1(Ff ) and H2(Lf ) is given for example in [7].
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Proposition 3.1. Let f(x, y) be a germ of a plane curve (possibly reducible and
non-reduced) with semi-simple monodromy of order N and the Milnor fiber Ff . Let
Lf,N be link of the corresponding surface singularity zn = f(x, y). Then there is
the isomorphism of the mixed Hodge structures:

(15) GrW3 H2(Lf,N )(1) = GrW1 H1(Ff )

where the mixed Hodge structure on the left is the Tate twist of the mixed Hodge
structure constructed in [10] and the one on the right is the mixed Hodge structure
on vanishing cohomology constructed in [37]

.
Hence one has the following:

Corollary 3.2. If the monodromy of f(x, y) = t is semisimple then the mixed
Hodge structure on the Milnor fiber of f(x, y) has type (1, 1), (1, 0), (0, 1). The
mixed Hodge structure on either side of (15) is pure polarized of weight 1.

Proof. Since the monodromy has a finite order, one has GrW0 = 0 (cf. [37] p.547).
Moreover, GrW1 H1(F ) = ⊕H1(Di) where Di are smooth curves appearing in the
semistable reduction of the family f(x, y) = t. (ibid). Therefore we obtain the
polarization of the term on the right hand side of (15).

Note that the action of the monodromy on GrW2 H1(Ff ) (resp. GrW1 H1(Ff )) is
trivial (resp. does not have 1 as an eigenvalue).

�

3.2. Local Albanese Variety. Given a pure Hodge structure (HZ, F ) of weight
−1, one associates to it a complex torus (a more general case of mixed Hodge
structures of type (0, 0), (0,−1), (−1, 0), (−1,−1) is discussed in [9]) as follows:

(16) AH = HZ\HC/F
0HC

If the Hodge structure is polarized then AH is an abelian variety.

Definition 3.3. Local Albanese variety Albf of a plane curve singularity f(x, y) =
0 is the abelian variety (16) corresponding to the Hodge structure on homology
H1(Ff ,Z) of the Milnor fiber which is dual to the cohomological mixed Hodge
structure considered in the proposition 3.1.

3.3. CM-singularities. Recall that if the monodromy acting on the (co)homology
of the Milnor fiber is semisimple then it preserves the Hodge filtration (cf. [37]).

Definition 3.4. A plane curve singularity is called a singularity of CM type if its
local Albanese variety is isogenous to a product of simple abelian varieties of CM
type.

The local Albanese variety has the monodromy operator of the singularity as
its automorphism. The following provides a description of the eigenvalues of the
induced action on its tangent space at identity.

Proposition 3.5. Let Albf be the local Albanese variety of singularity f(x, y) =
0. The eigenvalues of the induced automorphism of the tangent space of Albanese
variety at identity are exponents of the elements α of the spectrum of this singularity
(cf. [37]) which satisfy 0 < α < 1.
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Proof. Indeed the above tangent space can be identified with Gr0
FH

1(Ff ). Now
the claim follows from the definition of the spectrum of singularity. �

For unibranched singularities of plane curves the spectrum was calculated in [32].

Example 3.6. For unibranched curve singularities with one characteristic pair
i.e. singularities with links equivalent to the links of singularity xp = yq where
gcd(p, q) = 1, the number of eigenvalues of the monodromy acting on Gr0

FH
1(M)

(M is the Milnor fiber) is equal to (p−1)(q−1)
2 . More precisely, the action on H1(M)

is semi-simple and has as the characteristic polynomial

(17) ∆p,q =
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)

The characteristic polynomial of the action on Gr0
FH

1(M) is

(18) Π(t− exp(−2π
√
−1α)),

where

(19) α =
i

p
+
j

q
, 0 < α < 1, 0 < i < p, 0 < j < q

(cf. [32] and references there). In particular for f(x, y) = x2+y3 the only eigenvalue

on F 0 is exp( 2π
√
−1

6 ). More generally, for the singularity x2 + yp where p is an odd
prime, the field generated by the roots of (17) is Q(ζp) and the CM type corresponds

to subset set exp( 2π
√
−1j
p ) where 1

2 + j
p < 1 i.e. coincides with the CM type discussed

in example 2.5.

Theorem 3.7. Let f(x, y) be a germ of a plane curve singularity such that the
monodromy is semisimple. If the characteristic polynomial does not have multiple
roots then the singularity f(x, y) has CM-type.

Proof. Let Tf denotes linear operator induced by the monodromy f of GrW1 H1(Ff ).
Since the monodromy Tf of the Milnor fiber is semisimple it preserves the Hodge
filtration and the algebra End◦(Albf ) = End(Albf )⊗Q contains the algebra Q[Tf ].
The latter has the dimension equal to the degree of the minimal polynomial of Tf
which is equal to the Milnor number µf as follows from the assumption that the
monodromy has no multiple eigenvalues. Since the Hodge structure on H1(Mf ) is
pure, one has

(20) 2dimAlbf = rkH1(Mf ,C) ≤ [End◦(Albf ) : Q]red

(notations as in [30] p.10 6) Prop.3.1 in [30] yields that in fact one has equality in
(20) and the claim follows (cf. for example def. 3.2 [30]). �

Example 3.8. Simple singularities have CM type (cf. [7]). Indeed, the charac-
teristic polynomials of the monodromy of Milnor fiber of simple singularities are

readily available. For singularity A2k it is equal to (t2k+1)(t−1)
t2−1

For singularity x2y + yn−1 of type Dn it is equal to

(21) ∆(t) = (tn−1 + (−1)n−1)(t− 1)

6i.e. [ΠBi : k]red =
∑

[Bi : ki]
1
2 [ki : k] for a product of simple algebras Bi over k, with

respective centers ki.
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For singularities E6, E8 i.e. y3 + z4, y3 + z5 the characteristic polynomials of
monodromy are given in example 3.6 and for E7 i.e. yz3 + y3 the characteristic
polynomial is equal to t7 − 1.

Example 3.9. Consider singularity f(x, y) = Πi=4
i=1(x − αiy) = 0 where αi are

generic complex numbers. The characteristic polynomial of the monodromy is
(t − 1)3(t2 + 1)2(t + 1)2. So the theorem 3.7 cannot be applied. In fact the local
Albanese coincides with the Jacobian of the only exceptional curve of the resolution
of singularity z4 = f(x, y). This curve is a 4-fold cyclic cover of P1 totally ramified
at 4 points. It cannot generically have CM type since the Jacobian of such curve
surjects onto a 2-fold cover of P1 branched at 4 points which hence represents a
generic elliptic curve.

Example 3.10. Consider the singularity of plane curve with the Puiseux expan-
sion:

(22) x
3
2 + x

21
10 = x

3
2 + x

3
2 + 6

2·5

The Puiseux pairs are (k1, n1) = (3, 2), (k2, n2) = (6, 5) which yields correspond-
ing data w1 = 3, w2 = w1n1n2 + k2 = 36 (cf. [32]) and hence the characteristic
polynomial of the monodromy of this singularity is (∆p,q is given by (17))

(23) ∆(t) = ∆3,2(t5)∆36,5(t)

(cf. [40] for formulas for the characteristic polynomial of the monodromy in terms
of Puiseux expansion) i.e.

(24) ∆(t) = [t10 − t5 + 1][
(t36·5 − 1)(t− 1)

(t36 − 1)(t5 − 1)
]

Since the cyclotomic polynomial of degree 10 divides the polynomials in both brack-
ets in (24) ∆(t) has multiple roots. Nevertheless the local Albanese for this singu-
larity has CM type (cf. theorem 3.12).

3.4. Structure of a local Albanese variety of singularities of CM type.

Theorem 3.11. Let f(x, y) = 0 be a singularity with a semi-simple monodromy
and let N be the order of the monodromy operator. The Albanese variety of germ
f(x, y) = 0 is isogenous to a product of Jacobians of the exceptional curves of
positive genus for a resolution of:

(25) zN = f(x, y)

Proof. Denote by P the isolated singularity of a germ X of the surface (25) and

consider a resolution X̃ → X of X. The dual graph of such a resolution does
not contain cycles (cf. [11]) since the monodromy is assumed semi-simple 7. Let
E = ∪Ei be the decomposition of the exceptional set of the resolution of (25)
into irreducible components. We shall use the identification H2(L) = H3

P (X) and
the exact sequence (cf. [38, Corollary (1.12)] of mixed Hodge structures on local
cohomology:

(26) 0→ H3
P (X)→ H3

E(X̃)→ H3(E)→ 0

7Note that without assumption that surface singularity has form (25), the finiteness of the
order of monodromy is not sufficient to conclude the absense of cycles cf. [1].



12 A.LIBGOBER

The last term is trivial i.e. one has the identification of the first two. Moreover one
has the duality isomorphism (cf. [38, (1.6)]):

(27) H3
E(X̃) = Hom(H1(E),Q(−2))

Since H1(E) = ⊕iH1(Ei) we infer the isomorphism:

(28) H3(L) = ⊕Hom(H1(Ei),Q(−2))

The claim follows since for the curves Ei having positive genus the Jacobians are
identified with the Albanese varieties.

�

Theorem 3.12. Unibranched plane curve singularities have CM type.

The proof of theorem 3.12 will consist of two steps. Firstly we shall show that all
exceptional curves in a resolution of are Belyi cyclic covers in the following sense:

Definition 3.13. A Belyi cyclic cover is a cyclic cover of P1 branched at most
three points.

Secondly we shall use the following (cf. [14],[19]):

Lemma 3.14. The Jacobian of a Belyi cyclic cover is an abelian variety of CM
type.

Then theorem 3.12 follows from the theorem 3.11. A proof of lemma 3.14 is given
in Appendix.

Proof. (of theorem 3.12)

Lemma 3.15. Exceptional curves of a resolution of singularity (25) are Belyi cyclic
covers.

A resolution of the singularity (25) can be obtained as follows. Let π : C̃2 → C2

be a sequence of blow ups of C2 containing the germ f(x, y) = 0 and yielding a

resolution of the latter, f̃ : C̃2 → C be the composition of π and f : C2 → C and
let C̃→ C be the N -fold cover of C branched at the origin. Then one has the map
of the normalization X̃ of the fiber product

(29) X̃
N→ C̃2 ×C C̃→ X

Here X̃ has at most simple surface singularities and their standard resolution com-
posed with the maps in (29) provides a resolution ofX. Moreover already X̃ contains
all the curves of positive genus appearing in a resolution of X.

Note that N replaces each exceptional curve D of resolution C̃2 → C2 by its
cyclic branched cover of degree gcd(N,m) where m is the multiplicity of π∗(f)
along D. Moreover, the ramification occurs at the intersection points of E with
the remaining exceptional curves. To finish the proof of lemma 3.15 it is enough to
show that each exceptional curve of π has at most three intersections with remaining
exceptional curves. This is the case as one can see for example from an inductive
argument observing that collection of exceptional curves on say k + 1 step in a
resolution of f = 0 is obtained from the collection of exceptional curves on step
k by blowing up up the intersection point of proper preimage of f appearing on
k-th step and the intersection point of exceptional curves of k-th and (k− 1) steps.
Such triple intersection occurs iff exceptional curve on k − 1 step was tangent to
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the proper preimage of f on that step. This yields the above claim on the number
of intersections of each E can have with remaining exceptional curves.

�

We shall conclude this section indicating how one can obtain the identification
of the CM type of isogeny components of the local Albanese. The argument above
implies that the components of resolution of surface singularity (25) having non-
trivial Jacobians (i.e. the components with positive genus) corresponds to the
rapture points of the resolution tree of f(x, y) = 0 (cf. [40]) 8. As follows from a
discussion above, the valency of each rapture point is equal to 3. The degree d of
the corresponding Belyi cover of a component E of exceptional set corresponding
to such rapture point is equal to gcd(N,m(E) where m(E) is the multiplicity of the
pull back of the germ f on the resolution on E. The ramification points of the Belyi
cover correspond to the intersections with other exceptional curves in the resolution.
The ramification index at the intersection of C with another exceptional curve E′

is equal to m(E)
gcd(m(E),m(E′) . As was mentioned, this identified the cyclic Belyi cover

and using the formulas in lemma 6.1 one can derive the CM type of corresponding
Jacobian and hence the isogeny components of local Albanese variety.

Example 3.16. Consider the singularity x2 + y5. The dual graph of its resolution
has one rapture point. The multiplicity of corresponding component is equal to
10 with multiplicities of other three intersecting curves equal to 5, 4, 1 respectively.
The corresponding Belyi cover is

(30) y10 = x4(x− z)z5

(49) yields that the non zero eigenvalues of the covering transformation are e
2π
√
−1

10

and e
−2π
√
−1

10 . This determines the CM type of the Jacobian of the genus two curve
(30) corresponding to Q(ζ10).

Example 3.17. For y = x
3
2 + x

7
4 the characteristic polynomial of the monodromy

is

Φ26(t)Φ6(t2) = Φ26(t)Φ12(t)

where Φn(t) denotes the cyclotomic polynomial of degree n The corresponding
local Albanese variety is the product of simple CM-abelian varieties corresponding
to Q(ζ26) and Q(ζ12). The CM type of each field is given by (19).

4. Splitting of Albanese varieties

In this section we show that the Albanese variety of certain cyclic branched
covers of P2 is isogenous to a product of abelian varieties of CM type. Similar
result on existence of an isogeny between the Albanese variety of a cyclic cover and
a product of elliptic curves was obtained in [7] but somewhat different condition on
the singularities of the discriminant.

Recall that a construction of a model of cyclic branched cover with given ram-
ification curve can be given as follows (cf. [25]). Let D be a reduced irreducible
curve in P2 and let π1(P2 − D) → ZN be a surjection onto a cyclic group. The
corresponding unramified cyclic covering of P2−D of degree N is uniquely defined

8i.e. the point of the dual graph of resolution where with valency greater than 2
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just by D, since the surjection π1(P2−D)→ ZN up to an automorphism of ZN co-
incides with the surjection given by the linking number with D. The affine portion
of the N fold cyclic cover is given by

(31) zN = F (x, y)

where F = 0 is an equation of D. A compactification of the surface (31) combined
with a resolution of singularities yields a smooth model XN of covering space of P2

branched over D. If N = degD then the projective closure of (31) yields a model
with isolated singularities in P3. In the cases when degD > N a model with isolated
singularities can be obtained by the normalization of the projective closure.

Theorem 4.1. Let D be a curve in X = P2 with singularities of CM type only
Then for a smooth projective model XN of N -fold cyclic cover of P2 branched over
D (or equivalently the surface (31)), the Albanese variety Alb(XN ) is isogeneous of
a product of abelian varieties of CM type.

Proof. Let ψ : XN → X = P2 be the projection of a smooth model of the N -
fold cyclic cover (31). Let E = ∪Ei be the exceptional set. We shall denote by
R̄ the proper preimage of the branching locus of ψ in XN . This branching locus
R contains D and possibly the line at infinity in (x, y)-plane of the cover (31)
(depending on the gcd(degD,N)). The cohomology H1(XN − R̄) supports the
Mixed Hodge structure of type (1, 0), (0, 1), (1, 1) and hence one can consider the
Albanese variety corresponding to the weight one part (cf. [16], [2])

Step 1. Albanese of branched and unbranched covers. We claim that one has the
identification:

(32) Alb(XN − R̄ ∪ Ei) = Alb(XN )

We have the following exact sequence of the pair:

(33) → 0 = H1(XN , XN − R̄ ∪ Ei)→ H1(XN )→ H1(XN − R̄)→

H2(XN , XN − R̄ ∪ Ei)→ H2(XN )

The identification of cohomology Hi(XN , XN − R̄∪Ei) = H4−i(R̄∪Ei) shows that
the left term is zero and that the right map is injective since the intersection form
on H2(XN ) restricted on subgroup generated by fundamental cycles of R̄, Ei, is
non degenerate.

The sequence (33) is a sequence of mixed Hodge structures with the Hodge
structure on H1(XN − R̄ ∪ Ei) having weights 1 and 2. Hence (33) induces the
isomorphism (32).

Step 2 Homology of unbranched cover and homology of regular neighborhood of
D.

Let U be a small regular neighborhood of D in P2. Since D is ample, there exists
divisor D′ ⊂ U such that π1(D′ − D ∩ D′) → π1(X − D) is a surjection (by the
Lefschetz hyperplane section theorem on quasi-projective manifold X − D). The
latter surjection can be factored as

(34) π1(D′ −D ∩D′)→ π1(U −D)
iU−D→ π1(X −D)

and hence the right map is surjective. If KX−D ⊂ π1(X − D) (resp. KU−D ⊂
π1(U −D)) is the kernel of surjection lkN : π1(X −D) → ZN (resp. the kernel of
composition lkN ◦ iU−D) then iU−D|KU−D : KU−D → KX−D is surjective as well.
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Hence denoting by (U −D)N the N -fold cover of U −D corresponding to index N
subgroup KU−N on π1(U −D) we obtain the surjection:

(35) H1((U −D)N ,Z)→ H1(XN − R̄ ∪ Ei)
(one verifies that the points at infinity do not provide contributions since D is
always assumed to be transversal to the line at infinity cf. [25]). Moreover, both
groups support a mixed Hodge structure and hence the map (35) by embedding
induces a surjection of mixed Hodge structures.

Step 3. Homology of regular neighborhood of D and homology of singular neigh-
borhoods of singular points.

The covering space (U −D)N can be viewed as the regular neighborhood of the
union of the exceptional set of XN and the proper preimage of D in XN . As such, it
is naturally a union of regular neighborhood UD−SingD of D−SingD in XN (where
SingD is set of singular points of D) and regular neighborhoods of the exceptional
sets of each of the singular points P ∈ SingD. The Mayer -Vietoris sequence yields
the surjection:
(36)
⊕P∈SingDH1(LN,P )⊕H1(UD−SingD)→ H1((U−D)N )→ H1(XN−D∪Ei) = H1(XN )

Indeed the homomorphism following in the Mayer Vietoris sequence after the left
map in (36) is the map of a sum of zero dimensional homology groups equivalent
to injective map CCardSingD → CCardSingD+1. The action of the covering group
on H1(UD−SingD) is trivial and hence the image of this group in H1(XN ) is trivial
since the eigenspace on H1(XN ) corresponding to eigenvalue 1 has the same rank
as H1(X,Z) and hence is zero.

This yields the surjection of direct sum of the Albanese varieties corresponding
to the remaining summands in the left term of (36) (i.e. the local Albanese varieties
of all singular points of D) onto Alb(XN ) and the claim of the theorem follows from
Poincare complete reducibility theorem ([5]).

�

5. Proof of the theorem and Examples

In this section we shall finish the proof of the theorem and provide some exam-
ples.

Proof. (Of theorem 1.2) Let π1(P2 −∆) → Zd be the holonomy representation of
the isotrivial family (1). Let Xd denotes (a smooth model of) the d-fold cyclic cover
of D branched over ∆ and ∆′ ⊂ Xd be such that Xd−∆′ → P2−∆ is an unramified
cyclic cover. The holonomy group Zd acts on A×(P2−∆)Xd containing Zd invariant
subset (Xd − ∆′) × A ( with the diagonal action (cf. 2.1). Since by assumption
the Chow trace of A is trivial MW (A) is the group of section of morphism π (cf.
theorem 2.3). We have the following:

Proposition 5.1. One has the canonical identification

(37) MW (A) = MW (Xd ×P2 A)Zd = Hom(Alb(Xd), A)Zd

Indeed, assigning to s : P2−∆→ A the regular section (Xd−∆′)×(P2−∆) s(P2−
∆) of (Xd −∆′)×P2−∆ A (which is invariant under the action of Zd) provides the
first isomorphism. The second follows from the identification:

(38) MW (Ad) = Mor(Xd,A) = Hom(Alb(Xd), A)
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Since Alb(Xd) has CM type it follows that the group Hom(Alb(Xd), A) is trivial
unless the abelian variety A has CM type as well. Moreover, if A is simple and cor-
responds to a cyclotomic field of degree d then rkMW is positive only if decomposi-
tion of Alb(Xd) into simple components contains A. This yields the inequality (2).
If A is a component of Alb(Xd) with multiplicity s then MW (Ad) = Hom(As, A)
which has rank sdimEnd◦(A) = sφ(d). �

Proof. (Of corollary 1.3) If none of characteristic polynomials of local monodromy
of singularities of ∆ has as its zeros the roots of unity of degree d then the global
Alexander polynomial does not contain the factor Φd and hence the Albanese of
Xd cannot have as a factor a variety of CM type corresponding to the field Q(ζd).
The example in the corollary (1.3) discussed below. �

Example 5.2. Consider the curve Cp,2 in (u, v)-plane over C(x, y) given by

(39) up = v2 + (xp + yp)2 + (y2 + 1)p

This curve over C(x, y) is isotrivial since all curves

(40) up = vq + c, c ∈ C, c 6= 0

are biholomorphic. Moreover (39) has as its discriminant the curve

(41) Cp,2 : (xp + yp)2 + (y2 + 1)p

The Alexander polynomial of the complement is the cyclotomic polynomial of de-
gree 2p ([25]):

(42) Φ2p =
(t2p − 1)(t− 1)

(t2 − 1)(tp − 1)

The curve (40) is the Belyi cyclic cover and its Jacobian was described earlier as
A(Q(ζ2p)) with the CM type as in example 3.6. Moreover the Albanese variety of
the covering of degree 2p of P2 ramified along Cp,2 is isomorphic to A(Q(ζ2p)) as
well. Since End0(A(Q(ζ2p)) = Q(ζ2p) the claim follows. Note that it follows that
the above Jacobian is simple as as a consequence of discussion of example 3.6.

Example 5.3. The Jacobian of the curve (6) considered in section 2.3 has Mordell-
Weil rank equal to zero unless the Alexander polynomial of the curve Φ(x, y) has
a root in Q(ζp). If Φ(x, y) is the equation (41) then the curve (6) is birational over
C(x, y) to the curve (39) and hence the Mordell Weil rank for the Jacobian of (6)
for such Φ(x, y) is p− 1.

Remark 5.4. The Jacobain of the curve in example 5.2 is a simple isotrivial abelian
variety over C(x, y) such that rank of its Mordell Weil group is equal to p − 1. In
particular the rank of abelian varieties over C(x, y) can be arbitrary large.

In [7] it was shown that the question of a bound on the rank of Mordell Weil
group for isotrivial elliptic curves over C(x, y) with discriminant having only nodes
and cusps as its singularities is equivalent to a bound 9 on the multiplicity of the
factor t2 − t+ 1 in the Alexander polynomial of the discriminant (in [7] also more
general cases including ADE singularities are considered). For curves with nodes
and cusps the largest known at the moment multiplicity is 4 (cf. [7]). Similarly
for abelian varieties A with generic fiber being a simple abelian variety of CM type
corresponding to Q(ζd) and CM type as in example 3.6 the rank of MW (A) is

9either constant or depending on the degree of the discriminant
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related to the multiplicity of the factor φd(t) (the cyclotomic polynomial of degree
d) in the Alexander polynomial of the discriminant. Note however that there are
very few known examples of plane curves with non-trivial Alexander polynomials
and singularities beyond those of ADE type (cf. [7], [27]). In particular the largest
multiplicity of φpq for p, q > 3 is achieved for curves studied in [6]. They correspond
to threefolds given in the exmaple below

Example 5.5. Let

(43) u2 = v2k+1 + (x2(2k+1) + y2(2k+1) + 1− 2x2k+1 + 2(xy)2k+1 + y2k+1)

be the curve over C(x, y). The discriminant is given by the second summand in the
right hand side of (43). This is the curve studied in [6] where it was shown that
the Alexander polynomial is

(44) (
t2k+1 + 1

t+ 1
)3

Generic fiber of hyperelliptic curve. For 2k + 1 = p its Jacobian is simple abelian
variety of CM type and the rank of Mordell Weil of the corresponding to (43) family
of Jacobians is 3(p− 1).

6. Appendix: Jacobians of Belyi covers

In this appendix we shall prove the lemma 3.14 i.e. that the Jacobians of Belyi
covers are abelian varieties of CM type. Though the lemma 3.14 is apparently not
new (cf. [14],[19]) the proof given below for convenience contains explicit formulas
for the eigenvalues of the automorphisms of Belyi covers acting on the space of
holomorphic 1-forms.

Proof. (of lemma 3.14) We claim that a generator of the group of deck transforma-
tions of a cyclic Belyi cover acting on H1 does not have multiple eigenvalues. Once
this is established, an argument as in the proof of the theorem 3.7, shows that for
the Jacobian of such cover one has 2dimJ = dimEnd◦(J) i.e. J has CM type.

Let C → P1 be a Belyi cyclic cover and let d be its degree i.e. the group of roots
of unity of degree µd acts on C with three points having non-trivial stabilizers. Let
a, b, c be the indices these stabilizers in µd. As a model of such Belyi cover one can
choose the normalization of plane curve:

(45) yd = xa(x− z)b(x+ z)c, a+ b+ c = d.

The action of µd is given by T : (x, y, z)→ (x, e
2πi
d y, z). Let T∗ be the induced map

on H1(X,C). Now, the proper preimage for the map

(46) (x, y)→ (xd, ybxa)

of the affine model

(47) yd = xa(x− 1)b

of the curve (45) yield a curve which has a component the Fermat curve

(48) yd = xd − 1.

Since the Jacobian of Fermat curve is a product of abelian varieties of CM type (cf.
[19]) this implies that the same is the case for cyclic Belyi covers.

�
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The following allows effectively calculate the CM type of local Albanese varieties
in many cases. These formulas extend the special case presented in [42]. We have
the following:

Lemma 6.1. 1. The multiplicity of the eigenvalue ωjd = e
2π
√
−1j
d of T∗ acting on

the space of holomorphic 1-forms of Belyi cyclic cover as above is equal to:

(49) −([−aj
d

] + [−bj
d

] + [
(a+ b)j

d
]) + 1)

where [·] denotes the integer part. In particular this multiplicity is equal either to
zero or one.

2.Let gcd(a, b, c, d) = 1 (i.e. the Belyi cover is irreducible). Then the character-
istic polynomial of the deck transformation acting on H1 is given by

(50) ∆(t) =
(td − 1)(t− 1)2

(tgcd(a,d) − 1)(tgcd(b,d) − 1)(tgcd(c,d) − 1)

Proof. (of lemma 6.1) First note that the indices of stabilizers for the branching
points of the cover (45) as the subgroups of the covering group are gcd(a, d), gcd(b, d), gcd(c, d)
respectively. Hence Riemann-Hurwitz formula yields that the genus of C is given
by (cf. [17])

(51) g =
d− gcd(a, d)− gcd(b, d)− gcd(c, d) + 2

2
.

We shall represent explicitly the cohomology classes of H0(Ω1
C) and calculate the

action of covering group on holomorphic 1-forms. Recall that the space of holo-
morphic 1-forms on a plane curve of degree d can be identified with the space of
adjoint curves of degree d − 3 i.e. the curves of degree d − 3 which equations at
each singular point satisfy the adjunction conditions or equivalently belong to the
adjoint ideal of this singularity. This can be made explicit since any holomorphic
1-form can be written as the residue of 2-form on its complement i.e. as

(52)
P (x, y)dx

yd−1
degP ≤ d− 3

The curve (45) may have singular points only at (0, 1), (1, 0), (1, 1) and near each
the local equation is equivalent to xl + yd = 0 (by abuse of language we shall refer
to these points as “singular” even if the curve is smooth there) . To calculate the
number of adjunction conditions we shall use the following (cf. [29]):

Proposition 6.2. The conditions of adjunction for the singularity yd + xl is the
vanishing of the coefficients of monomials xijj such that (i + 1, j + 1) is below or
on the diagonal of the rectangle with vertices (0, 0), (0, d), (l, 0), (l, d). The number
of adjunction conditions for singularity yd + xl is equal to

(53)
(d− 1)(l − 1) + gcd(d, l)− 1

2

This implies that the dimension of the space of curves of degree d− 3 satisfying
the conditions of adjunction at all three singularities is greater or equal:

(d− 1)(d− 2)

2
− (d− 1)(a− 1) + gcd(d, a)− 1

2
− (d− 1)(b− 1) + gcd(d, b)− 1

2

− (d− 1)(c− 1) + gcd(d, c)− 1

2
=
d+ 2− gcd(a, d)− gcd(b, d)− gcd(c, d)

2
.
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Comparison of this with the genus formula (51) shows that the conditions of ad-
junction imposed by three singular points are independent i.e. one has the exact
sequence

0→ H0(Ω1
C̃

)→ H0(P2,Ω2
P2(d))→ ⊕s∈SingCMs → 0

where C̃ is the normalization of C and Ms is the quotient of the local ring of singular
point by the adjoint ideal.

To calculate the action of T∗ on H1(C̃,C) we shall use the identification (52)
of adjoints with the forms and that the action of T ∗ on monomial is given by
g(xiyj) = ωjdx

iyj . Also note that the cardinality of the set of solutions to linear
inequality (for a fixed j) is given as follows:

(54) Card{i|0 < i, di+ aj ≤ da} = a+ [−aj
d

]

The multiplicity of the eigenvalue corresponding to the monomial xiyj−1 (i.e.

ωj−dd ) in representation of µd in H0(P2,Ω2
P2(d)) = H0(Ω1

C̄
) where C̄ is a smoothing

of C is Card{i|0 < i, i + j − 1 ≤ d− 3} = d− 1− j. Hence the multiplicity of the
eigenvalue ωj is equal to

(55) d− 1− j − a− [−aj
d

]− b− [−bj
d

]− c− [−cj
d

] =

= −([−aj
d

] + [−bj
d

] + [
(a+ b)j

d
] + 1).

The last assertion of 6.1 i.e. that the multiplicity does not exceed 1 follows from
the property [x+ y] ≤ [x] + [y] + 1.

The formula for the characteristic polynomial can be derived using the additivity
of zeta function similarly to the expression for the euler characteristic obtained
earlier �

To finish a proof of lemma 3.14 just note that absence of multiple eigenvalues
implies that the Jacobian must have CM type (as in the proof of theorem 3.7).
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