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Abstract. The present work is a user’s guide to the results of [7], where a
description of the space of characters of a quasi-projective variety was given

in terms of global quotient orbifold pencils.

Below we consider the case of plane curve complements. In particular, an
infinite family of curves exhibiting characters of any torsion and depth 3 will

be discussed. Also, in the context of line arrangements, it will be shown how
geometric tools, such as the existence of orbifold pencils, can replace the group

theoretical computations via fundamental groups when studying characters of

finite order, specially order two. Finally, we revisit an Alexander-equivalent
Zariski pair considered in the literature and show how the existence of such

pencils distinguishes both curves.

1. Introduction

Let X be the complement of a reduced (possibly reducible) projective curve D in
the complex projective plane P2. The space of characters of the fundamental group
Char(X ) = Hom(π1(X ),C∗) has an interesting stratification by subspaces, given
by the cohomology of the rank one local system associated with the character:

(1) Vk(X ) := {χ | dimH1(X , χ) = k}.
The closures of these jumping loci in Char(X ) were called in [23] the characteristic
varieties of X . More precisely, the characteristic varieties associated to X were
defined in [23] as the zero sets of Fitting ideals of the C[π1/π

′
1]-module which is the

complexification π′1/π
′′
1⊗C of the abelianized commutator of the fundamental group

π1(X ) (cf. section 2 for more details). In particular the characteristic varieties
(unlike the jumping sets of the cohomology dimension greater than one) depend
only on the fundamental group. Fox calculus provides an effective method for
calculating the characteristic varieties if a presentation of the fundamental group
by generators and relators is known.

For each character χ ∈ Hom(π1(X ),C∗) the depth was defined in [23] as

(2) d(χ) := dimH1(X , χ)

so that the strata (1) are the sets on which d(χ) is constant.
In [7], we describe a geometric interpretation of the depth by relating it to the

pencils on X i.e. holomorphic maps X → C, dimC = 1 having multiple fibers.
In fact the discussion in [7] is in a more general context in which X is a smooth
quasi-projective variety. 1 The viewpoint of [7] (and [8]) is that such a pencil can
be considered as a map in the category of orbifolds. The orbifold structure of the
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1Much of the discussion in the first two sections below applies to general quasi-projective

varieties (cf. [7]), but in the present paper we will stay in the hypersurface complement context.

As was noted, the characteristic varieties only depend on the fundamental group, hence, by the
Lefschetz-type theorems it is enough to consider the curve complement class.
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curve C is matched by the structure of multiple fibers of the pencil. The main
result of [7] can be stated as follows:

Theorem 1.1. Let X be a quasi-projective manifold and let χ be a character
of π1(X ).

(1) Assume that there are n marked orbifold pencils i.e. maps fi : X → C (i =
1, ...n) where C is a fixed orbicurve, ρ ∈ Charπorb

1 (C) and χ = f∗i (ρ). If
these pencils are strongly independent, then d(χ) ≥ nd(ρ).

(2) If χ is a character of order two and weight two, then there are exactly
d(χ) strongly independent orbifold pencils on X whose target is the global
Z2-orbifold C = C2,2. These pencils are marked with the character ρ of
πorb

1 (C2,2) characterized by the condition that ρ is non-trivial on both stan-
dard generators of the latter orbifold fundamental group.

We refer to section 2 for all the required definitions, and in particular, the defi-
nition of strongly independent pencils.

According to this result, the orbifold pencils on X whose targets have an orb-
ifold fundamental group with characters of positive depth, induce characters in
Hom(π1(X ),C∗) whose depth have the lower bound given in (1). One can compare
this statement with previous results on pencils on quasi-projective manifolds. For
example, consider a character χ which belongs to a positive dimensional compo-
nent of the characteristic variety. Then the results in [2] can be applied to such a
component to obtain a pencil f : X → C and a character ρ ∈ Charπ1(C) such that
χ = f∗(ρ). Here C is the complement in P1 to a finite set containing say d > 2
points. Moreover, the number of independent pencils in the sense of section 2 is
equal to one (cf. [7, Lemma 4.15]; note that the depth of ρ ∈ Charπ1(C) is equal
to d− 2). Hence in this case, the inequality in Theorem 1.1(1) is equivalent to the
shown in [2] Prop.1.7 inequality dimH1(X , χ) ≥ dimH1(C, ρ).

The orbifold structure involved in Theorem 1.1 is essential since the orbifold pen-
cils described there and considered without the orbifold structure, are just rational
pencils whose target might have trivial fundamental group and thus the connection
with the jumping loci disappears.

The part (2) asserts a partial converse for characters of order two i.e. the char-
acters of order two having positive depth are pull-backs of orbifold characters on
C2,2 by orbifold pencils. Note that, as shown in [6] for characters of order 5 on an
affine quintic, not all characters on complements of plane curves can be described
as pull-backs of orbifold pencils.

The goal of this paper is to illustrate in detail both parts (1) and (2) of Theo-
rem 1.1 with examples in which orbifolds are unavoidable. We start with a section
reviewing mainly known results on the cohomology of local systems, characteristic
varieties, orbifolds, and Zariski pairs making possible to read the rest of the paper
unless one is interested in the proofs of mentioned results. Then in section 3, a
family of curves is considered for which the characteristic variety contains isolated
characters having torsion of arbitrary finite order and whose depth is 3. The cal-
culations illustrate the use of Fox calculus for finding an explicit description of the
characteristic varieties. Next, in the context of line arrangements, examples of Ceva
and augmented Ceva arrangements are considered in section 4. Their characteristic
varieties have been studied in the literature via computer aided calculations based
on fundamental group presentations and Fox calculus. Here we present an alterna-
tive way to study such varieties independent of the fundamental group illustrating
the geometric approach of Theorem 1.1. Finally, in section 5 we discuss a Zariski
pair of sextic curves whose Alexander polynomials coincide. We determine this
Zariski pair by the existence of orbifold pencils.
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2. Preliminaries

In this section the necessary definitions used in Theorem 1.1 will be reviewed
together with material on the characteristic varieties and Zariski pairs with the
aim to keep the discussion of the upcoming sections in a reasonably self-contained
manner.

2.1. Characteristic varieties.
Characteristic varieties appeared first in the literature in the context of algebraic

curves in [22]. They can be defined as follows.
Let D := D1∪· · ·∪Dr be the decomposition of a reduced curve D into irreducible

components and let di := degDi denote the degrees of the components Di. Let
τ := gcd(d1, . . . , dr) and X = P2 \ D. Then (cf. [23])

(3) H1(X ;Z) =

〈
r⊕
i=1

γiZ

〉
/〈d1γ1 + · · ·+ drγr〉 ≈ Zr−1 ⊕ Z/τZ,

where γi is the homology class of a meridian of Di (i.e. the boundary of small disk
transversal to Di at a smooth point).

Let ab : G := π1(X )→ H1(X ;Z) be epimorphism of abelianization. The kernel
G′ of ab, i.e. the commutator of G, defines the universal Abelian covering of X ,
say Xab

π→ X , whose group of deck transformations is H1(X ;Z) = G/G′. This
group of deck transformations, since it acts on Xab, also acts on H1(Xab;Z) =

G′/G′′. 2 This allows to endow MD,ab := H1(Xab;Z) ⊗ C (as well as M̃D,ab :=
H1(Xab, π

−1(∗);Z)⊗ C) with a structure of ΛD-module where

(4) ΛD := C[G/G′] ≈ C[t±1
1 , . . . , t±1

r ]/(td11 · . . . · tdrr − 1).

Note that SpecΛD can be identified with the commutative affine algebraic group
Charπ1(X) having τ tori (C∗)r−1

as connected components. Indeed, the elements
of ΛD can be viewed as the functions on the group of characters of G.

Since G is a finitely generated group, the module MD,ab (resp. M̃D,ab) is a
finitely generated ΛD-module: 3 in fact one can construct a presentation of MD,ab
(resp. M̃D,ab) with the number of ΛD-generators at most

(
n
2

)
(resp. n), where n is

the number of generators of G. If G/G′ is not cyclic (i.e. r > 2 or r ≥ 2 and τ > 1)
then ΛD is not a Principal Ideal Domain. One way to approach the ΛD-module
structure of both MD,ab and M̃D,ab is to study their Fitting ideals (cf. [17]).

Let us briefly recall the relevant definitions. Let R be a commutative Noetherian
ring with unity and M a finitely generated R-module. Choose a finite free presen-
tation for M , say φ : Rm → Rn, where M = coker φ. The homomorphism φ has
an associated (n×m) matrix Aφ with coefficients in R such that φ(x) = Aφx (the
vectors below are represented as the column matrices).

2this action corresponds to the action of G/G′ on G′/G′′ by conjugation
3in most interesting examples with non-cyclic G/G′ the group G′/G′′ is infinitely generated.
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Definition 2.1. The k-th Fitting ideal Fk(M) ofM is defined as the ideal generated
by 

0 if k ≤ max{0, n−m}
1 if k > n

minors of Aφ of order (n− k + 1) otherwise.

It will be denoted Fk if no ambiguity seems likely to arise.

Definition 2.2. [22] With the above notations the k-th characteristic variety (k >
0) of X = P2 \ D can be defined as the zero-set of the ideal Fk(MD,ab)

Chark(X ) := Z(Fk(MD,ab)) ⊂ SpecΛD = Charπ1(P2 \ D).

Then Vk(X ) is the set of characters in Chark(X ) which do not belong to Charj(X )
for j > k. If a character χ belongs to Vk(X ) then k is called the depth of χ and
denoted by d(χ) (cf. [23]).

An alternative notation for Chark(P2 \ D) is Chark,P(D).

Remark 2.3. Essentially without loss of generality one can consider only the cases
when the quotient by an ideal in the definition of the ring ΛD in (4) is absent i.e.
consider only the modules of the ring of Laurent polynomials. Indeed, consider a
line L not contained in D and in general position (i.e. which does not contain sin-
gularities of D and is transversal to it). Then ΛL∪C is isomorphic to C[t±1

1 , . . . , t±1
r ].

Moreover, since we assume transversality L t D, then the ΛL∪D-module ML∪D,ab
does not depend on L (see for instance [9, Proposition 1.16]). The characteristic
variety Chark,P(L ∪ D) determines Chark,P(D) (cf. [23, 9]). By abuse of language
it is called the k-th affine characteristic variety and denoted simply by Chark(D).

One can also use the module M̃D,ab to obtain the characteristic varieties of D.
One has the following connection

Chark(X ) \ 1̄ = Z(Fk+1(M̃D,ab)) \ 1̄,

where 1̄ denotes the trivial character.

Remark 2.4. The depth of a character appears in explicit formulas for the first
Betti number of cyclic and abelian unbranched and branched covering spaces (cf.
[22, 20, 27])

Remark 2.5. One can also define the k-th characteristic variety Chark(G) of any
finitely generated group G (such that the abelianization G/G′ 6= 0 or, more gener-
ally, for a surjection G→ A where A is an abelian group) as the k-th characteristic
variety of the ΛG = C[G/G′]-module MG = H1(XG,ab) obtained by considering
the CW-complex XG associated with a presentation of G and its universal abelian
covering space XG,ab (respectively considering the covering space of XG associated
with the kernel of the map to A). Such invariant is independent of the finite pre-
sentation of G (resp. depends only on G → A). This construction will be applied
below to the orbifold fundamental groups of one dimensional orbifolds.

Remark 2.6. Note that one has:

• Chark(D) = SuppΛD ∧
i (H1(Xab;C)),

• SpecΛL∪D = Tr = (C∗)r, for the affine case, and

• SpecΛD = TD = {ωi}τ−1
i=0 × (C∗)r−1 = V (td11 · . . . · tdrr − 1) ⊂ Tr, where ω is

a τ -th primitive root of unity for the curves in projective plane.

Note also that in the case of a finitely presented group G such that G/G′ =
Zr ⊕ Z/τ1Z⊕ · · · ⊕ Z/τsZ one has

(5) SpecΛG = TG = {(ωi11 , . . . , ωiss ) | ik = 0, . . . , τk − 1, k = 1, . . . , s} × (C∗)r,
where as above ΛG = C[G/G′] and ωi is a τi-th primitive root of unity.
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Let X be a smooth quasi-projective variety such that for its smooth compactifi-
cation X̄ one has H1(X̄ ,C) = 0. This of course includes the cases X = P2 \D. The
structure of the closures of the strata Vk(X ) is given by the following fundamental
result.

Theorem 2.7 ([2]). The closure of each Vk(X ) is a finite union of cosets of sub-
groups of Char(π1(X )). Moreover, for each irreducible component W of Vk(X ) hav-
ing a positive dimension there is a pencil f : X → C, where C is a P1 with deleted
points, and a torsion character χ ∈ Chark(X ) such that W = χf∗H1(C,C∗).

2.2. Essential Coordinate Components.
Let D′ ( D be curve whose components form a subset of the set of components

of D. There is a natural epimorphism π1(P2 \ D) � π1(P2 \ D′) induced by the
inclusion. This surjection induces a natural inclusion SpecΛD′ ⊂ SpecΛD. With
identification of the generators of ΛD with components of D as above, this embed-
ding is obtained by assigning 1 to the coordinates corresponding to those irreducible
components of D which are not in D′ (cf. [23]).

The embedding SpecΛD′ ⊂ SpecΛD induces the inclusion Chark(D′) ⊂ Chark(D)
(cf. [23]); any irreducible component of Vk(D′) is the intersection of an irreducible
component of Vk(D) with ΛD′ .

Definition 2.8. Irreducible components of Vk(D) contained in ΛD′ for some curve
D′ ⊂ D are called coordinate components of Vk(D). If an irreducible coordinate
component V of Vk(D′) is also an irreducible component of Vk(D), then V is called
a non-essential coordinate component, otherwise it is called an essential coordinate
component.

See [4] for examples. A detailed discussion of more examples is done in sec-
tions 3, 4, and 5.

As shown in [23, Lemma 1.4.3] (see also [15, Proposition 3.12]), essential coor-
dinate components must be zero dimensional.

2.3. Alexander Invariant. In section 2.1 the characteristic varieties of a finitely
presented group G are defined as the zeroes of the Fitting ideals of the module M :=
G′/G′′ over G/G′. This module is referred to in the literature as the Alexander
invariant of G. Note, however, that this is not the module represented by the
matrix of Fox derivatives called the Alexander module of G.

Our purpose in this section is to briefly describe the Alexander invariant for
fundamental groups of complements of plane curves and give a method to obtain a
presentation of such a module from a presentation of G. In order to do so, consider
G := π1(P2 \ D) the fundamental group of the curve D. Without loss of generality
one might assume that

(Z1) G/G′ is a free group of rank r generated by meridians γ1, γ2, ..., γr,

then one has the following

Lemma 2.9 ([5, Proposition 2.3]). Any group G as above satisfying (Z1) admits
a presentation

(6) 〈x1, ..., xr, y1, ..., ys : R1(x̄, ȳ) = ... = Rm(x̄, ȳ) = 1〉 ,
where x̄ := {x1, ..., xr} and ȳ := {y1, ..., ys} satisfying:

(Z2) ab(xi) = γi, ab(yj) = 0, and Rk can be written in terms of ȳ and xk[xi, xj ]x
−1
k ,

where [xi, xj ] is the commutator of xi and xj.

A presentation satisfying (Z2) is called a Zariski presentation of G.
From now on we will assume G admits a Zariski presentation as in (6). In order

to describe elements of the module M it is sometimes convenient to see Z[G/G′]
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as the ring of Laurent polynomials in r variables Z[t±1
1 , ..., t±1

r ], where ti represents
the action induced by γi on M as a multiplicative action, that is,

(7) tig
M
= xigx

−1
i

for any g ∈ G′.

Remark 2.10.

(1) One of course needs to convince oneself that action (7) is independent, up
to an element of G′′, of the representative xi as long as ab(xi) = γi. This
is an easy exercise.

(2) We denote by “
M
=” equalities that are valid in M .

Example 2.11. Note that

(8) [xy, z]
M
= [x, z] + tx[y, z],

where x, y, and z are elements of G and tx denotes ab(x) in the multiplicative
group. This is a consequence of the following

[xy, z] = xyzy−1x−1z−1 = x(yzy−1z−1)x−1xzx−1z−1 M
= tx[y, z] + [x, z].

As a useful application of (8) one can check that

(9) [xy, z]
M
= [x, z] + (tz − 1)[y, x],

where xy := yxy−1.

Note that xij := [xi, xj ], 1 ≤ i < j ≤ r and yk, k = 1, ..., s are elements in G′,
since ab(xij) = ab(yk) = 0. Therefore

(10) xk[xi, xj ]x
−1
k

M
= tkxi,j

(see (7) and (Z2)). Moreover,

Proposition 2.12. For a group G as above, the module M is generated by x̄i,j :=
{xij}1≤i<j≤r and ȳ := {yk}k=1,...,s.

Example 2.13. The module M is not freely generated by the set mentioned above,
for instance, note that according to (Z2) and (10) any relation in G, say Ri(x̄, ȳ) = 1
(as in (6)) can be written (in M) in terms of {̄xij} and ȳ as Ri(x̄ij , ȳ). In other
words, Ri(x̄ij , ȳ) = 0 is a relation in M .

Example 2.14. Even if G were to be the free group Fr, M would not be freely
generated by {̄xij} and ȳ. In fact,

(11) J(x, y, z) := (tx − 1)[y, z] + (ty − 1)[z, x] + (tz − 1)[x, y]
M
= 0

for any x, y, z in G. Using Example 2.11 repeatedly, one can check the following
(12)

[xy, z] =

{ M
= [x, z] + tx[y, z]

= [yx
−1

x, z]
M
= [yx

−1

, z] + ty[x, z]
M
= [y, z]− (tz − 1)[x, y] + ty[x, z],

where ab = bab−1. The difference between both equalities results in J(x, y, z) = 0.
Such relations will be referred to as Jacobian relations of M .

A combination of Examples 2.13 and 2.14 gives in fact a presentation of M .

Proposition 2.15 ([9, Proposition 2.39]). The set of relations R1,...,Rm as de-
scribed in Example 2.13 and J(i, j, k) = J(xi, xj , xk) as described in Example 2.14
is a complete system of relations for M .
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Example 2.16. Let G = Fr be the free group in r generators, for instance, the
fundamental group of the complement to the union of r + 1 concurrent lines. Ac-
cording to Propositions 2.12 and 2.15, M has a presentation matrix Ar of size(
r
3

)
×
(
r
2

)
whose columns correspond to the generators xij = [xi, xj ] and whose rows

correspond to the coefficients of the Jacobian relations J(i, j, k), 1 ≤ i < j < k ≤ r.
For instance, if r = 4

A4 :=


(t3 − 1) −(t2 − 1) 0 (t1 − 1) 0 0
(t4 − 1) 0 −(t2 − 1) 0 (t1 − 1) 0

0 (t4 − 1) −(t3 − 1) 0 0 (t1 − 1)
0 0 0 (t4 − 1) −(t3 − 1) (t2 − 1)

 .
Such matrices have rank

(
r−1

2

)
if ti 6= 1 for all i = 1, ..., r, and hence the depth of

a non-coordinate character is r− 1. On the other hand, for the trivial character 1̄,
the matrix An has rank 0 and hence 1̄ has depth

(
r
2

)
(see Definitions 2.1 and 2.2 for

details on the connection between the rank of An and the depth of a character).

2.4. Orbicurves. As a general reference for orbifolds and orbifold fundamental
groups one can use [1], see also [19, 28]. A brief description of what will be used
here follows.

Definition 2.17. An orbicurve is a complex orbifold of dimension equal to one.
An orbicurve C is called a global quotient if there exists a finite group G acting
effectively on a Riemann surface C such that C is the quotient of C by G with the
orbifold structure given by the stabilizers of the G-action on C.

We may think of C as a Riemann surface with a finite number of points R :=
{P1, ..., Ps} ⊂ C labeled with positive integers {m(P1), ...,m(Ps)} (for global quo-
tients those are the orders of stabilizers of action of G on C). A neighborhood of a
point P ∈ C with m(P ) > 0 is the quotient of a disk (centered at P ) by an action
of the cyclic group of order m(P ) (a rotation).

A small loop around P is considered to be trivial in C if its lifting in the above
quotient map bounds a disk. Following this idea, orbifold fundamental groups can
be defined as follows.

Definition 2.18. (cf. [1, 28, 19]) Consider an orbifold C as above, then the orbifold
fundamental group of C is

πorb
1 (C) := π1(C \ {P1, . . . , Ps})/〈µ

mj

j = 1〉

where µj is a meridian of Pj and mj := m(Pj).

According to Remark 2.5 the Definition 2.2 can be applied to the case of finitely
generated groups. In particular one defines the k-th characteristic variety Chark(C)
of an orbicurve C as Chark(πorb

1 ). Therefore also the concepts of a character χ on
C and its depth are well defined.

Example 2.19. Let us denote by P1
m1,...,ms,k∞ an orbicurve for which the under-

lying Riemann surface is P1 with k points removed and s labeled points with labels
m1, ...,ms. If k ≥ 1 (resp. k ≥ 2) we also use the notation Cm1,...,ms,(k−1)∞ (resp.

C∗m1,...,ms,(k−2)∞) for P1
m1,...,ms,k∞. We suppress specification of actual points on

P1. Note that

πorb
1 (P1

m1,...,ms,k∞) =

{
Zm1(µ1) ∗ ... ∗ Zms(µs) ∗ Z ∗ k−1. . . ∗ Z if k > 0

Zm1(µ1) ∗ ... ∗ Zms(µs)/
∏
µi if k = 0

(here Zm(µ) denotes a cyclic group of order m with a generator µ). Note that a
global quotient orbifold of P1 \ {nk points} by the cyclic action of order n on P1
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that fixes two points, that is, [x : y] 7→ [ξnx : y] (which fixes [0 : 1] and [1 : 0]) is
P1
n,n,k∞.

Interesting examples of elliptic global quotients occur for P1
2,3,6,k∞, P1

3,3,3,k∞,

and P1
2,4,4,k∞, which are global orbifolds of elliptic curves E \ {6k points}, E \

{3k points}, and E\{4k points} respectively, see [11] for a study of the relationship
between these orbifolds (k = 0) and the depth of characters of fundamental groups
of the complements to plane singular curves.

Definition 2.20. A marking on an orbicurve C (resp. a quasiprojective variety
X ) is a non-trivial character of its orbifold fundamental group (resp. its funda-
mental group) of positive depth k, that is, an element of Hom(πorb

1 (C),C∗) (resp.
Hom(π1(X ),C∗)) which is in Vk(C) (resp. Vk(X )).

A marked orbicurve is a pair (C, ρ), where C is an orbicurve and ρ is a marking
on C. Analogously, one defines a marked quasi-projective manifold as a pair (X , χ)
consisting of a quasi-projective manifold X and a marking on it.

A marked orbicurve (C, ρ) is a global quotient if C is a global quotient of C, where
C is a branched cover of C associated with the unbranched cover of C \ {P1, ..., Ps}
corresponding to the kernel of π1(C \{P1, ..., Ps})→ πorb

1 (C) ρ→ C∗. In other words,
the covering space in Definition 2.17 corresponds to the kernel of ρ.

2.5. Orbifold pencils on quasi-projective manifolds.

Definition 2.21. Let X be a quasi-projective variety, C be a quasi-projective curve,
and C an orbicurve which is a global quotient of C. A global quotient orbifold pencil
is a map φ : X → C such that there exists Φ : XG → C where XG is a quasi-
projective manifold endowed with an action of the group G making the following
diagram commute:

(13)
XG

Φ→ C
↓ ↓
X φ→ C

The vertical arrows in (13) are the quotients by the action of G.
If, in addition, (X , χ) and (C, ρ) are marked, then the global quotient orbifold

pencil φ : X → C called marked if χ = φ∗(ρ). We will refer to the map of pairs
φ : (X , χ) → (C, ρ) as a marked global quotient orbifold pencil on (X , χ) with
target (C, ρ).

Definition 2.22. Global quotient orbifold pencils φi : (X , χ)→ (C, ρ), i = 1, ..., n
are called independent if the induced maps Φi : XG → C define Z[G]-independent
morphisms of modules

(14) Φi∗ : H1(XG,Z)→ H1(C,Z),

that is, independent elements of the Z[G]-module HomZ[G](H1(XG,Z), H1(C,Z)).
In addition, if

⊕
Φi∗ : H1(XG,Z) → H1(C,Z)n is surjective we say that the

pencils φi are strongly independent.

Remark 2.23. Note that if either n = 1 or H1(C,Z) = Z[G], then independence is
equivalent to strong independence (this is the case for Remark 2.26(1) and Theo-
rem 1.1(2)).

2.6. Structure of characteristic varieties (revisited). The following are rele-
vant improvements or additions to Theorem 2.7:

Theorem 2.24 ([24, 8]). The isolated zero-dimensional characters of Vk(D) are
torsion characters of Char(D).



CHARACTERS OF FUNDAMENTAL GROUPS OF CURVE COMPLEMENTS AND ORBIFOLD PENCILS9

In [15, Theorem 3.9] (see also [16]) there is a description of one-dimensional
components χf∗H1(C,C∗) ⊂ Chark(X ) mentioned in Theorem 2.7 and most im-
portantly, of the order of χ in terms of multiple fibers of the rational pencil f .

In [23], an algebraic method is described to detect the irregularity of abelian
covers of P2 ramified alongD. This method is very useful to compute non-coordinate
components of Vk(D) independently of a presentation of the fundamental group of
the complement X of D.

Theorem 1.1 (see [7]) has [15, Theorem 3.9] as a consequence, but uses the point
of view of orbifold pencils. Using this result also the zero-dimensional components
can be detected (in particular essential coordinate components) and in some cases
characterized (see section 4).

Another improvement of Theorem 2.7 was given in [8] were the point of view of
orbifolds was first introduced as follows:

Theorem 2.25 ([8]). Let X be a smooth quasi-projective variety. Let V be an
irreducible component of Vk(X ). Then one of the two following statements holds:

(1) There exists an orbicurve C, a surjective orbifold morphism ρ : X → C and
an irreducible component W of Vk(πorb

1 (C)) such that V = ρ∗(W ).
(2) V is an isolated torsion point not of type (1).

One has the following consequences from 1.1(2) that allows us to characterize
certain elements of Vk(D):

Corollary 2.26. Let (X , χ) be a marked complement of D. Then possible targets
for marked orbifold pencils are (C, ρ) with C = P1

m1,...,ms,k∞ (see Example 2.19).
Assume that there are n strongly independent marked orbifold pencils with such a
fixed target (C, ρ). Then,

(1) In case C has no orbifold points, that is s = 0, the character χ belongs
to a positive dimensional component V of Char(X ) containing the trivial
character. In this case, d(χ) = dimV − 1 = n− 2.

(2) In case χ is a character of order two, there is a unique marking on C = C2,2

and d(χ) is the maximal number of strongly independent orbifold pencils
with target C.

(3) In case χ has torsion 3,4, or 6, there is a unique marking on C = P1
3,3,3,

C = P1
2,4,4, or C = P1

2,3,6 respectively and d(χ) is the maximal number of
strongly independent orbifold pencils with target C.

Part (1) is a direct consequence of Theorem 2.7 and part (3) had already appeared
in the context of Alexander polynomials in [11].

In section 4 we will describe in detail examples of Corollary 2.26(2) for line
arrangements.

2.7. Zariski pairs. We will give a very brief introduction to Zariski pairs. For
more details we refer to [9] and the bibliography therein.

Definition 2.27 ([3]). Two plane algebraic curves D and D′ form a Zariski pair if
there are homeomorphic tubular neighborhoods of D and D′, but the pairs (P2,D)
and (P2,D) are not homeomorphic.

The first example of a Zariski pair was given by Zariski [33], who showed that
the fundamental group of the complement to an irreducible sextic (a curve of degree
six) with six cusps on a conic is isomorphic to Z2 ∗ Z3 whereas the fundamental
group of any other sextic with six cusps is Z6. This paved the way for intensive
research aimed to understand the connection between the topology of (P2,D) and
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the position of the singularities of D (whether algebraically, geometrically, com-
binatorially...). This research has been often in the direction of a search for finer
invariants of (P2,D).

Characteristic varieties (described above) and the Alexander polynomials (i.e.
the one variable version of the characteristic varieties), twisted polynomials [13],
generalized Alexander polynomials [26, 11], dihedral covers of D ([32]) among many
others are examples of such invariants.

Definition 2.28. If the Alexander polynomials ∆D(t) and ∆D′(t) coincide, then
we say D and D′ form an Alexander-equivalent Zariski pair.

In section 5 we will use Theorem 1.1 to give an alternative proof that the curves
in [4] Alexander-equivalent Zariski pair, without computing the fundamental group.

3. Examples of characters of depth 3: Fermat Curves

Consider the following family of plane curves:

Fn := {fn := xn1 + xn2 − xn0 = 0},
L1 := {`1 := xn0 − xn2 = 0},
L2 := {`2 := xn0 − xn2 = 0}.

We will study the characteristic varieties of the quasi-projective manifolds Xn :=
P2 \ Dn, where Dn := Fn ∪ L1 ∪ L2, in light of the results given in the previous
sections, in particular the essential torsion characters will be considered and their
depth will be exhibited as the number of strictly independent orbifold pencils.

3.1. Fundamental Group. Note that Dn is nothing but the preimage by the
Kummer cover [x0 : x1 : x2]

κn7→ [xn0 : xn1 : xn2 ] of the following arrangement of three
lines in general position given by the equation

(x0 − x1)(x0 − x2)(x0 − x1 − x2) = 0.

Such a map ramifies along B := {x0x1x2 = 0}. We will compute the fundamental
group of Xn as a quotient of the subgroup Kn of π1(P2 \ L) associated with the
Kummer cover, where

(15) L := {x0x1x2(x0 − x2)(x0 − x1)(x0 − x1 − x2) = 0}

is a Ceva arrangement. More precisely, the quotient is obtained as a factor of Kn by
the normal subgroup generated by the meridians of the ramification locus κ−1

n (B)
in Xn.

The fundamental group of the complement to the Ceva arrangement L is given
by the following presentation of G.

(16) 〈e0, ..., e5 : [e1, e2] = [e3, e5, e1] = [e3, e4] = [e5, e2, e4] = e4e3e5e2e1e0 = 1〉

where ei is a meridian of the component appearing in the (i + 1)-th place in (15),
[α, β] denotes the commutator αβα−1β−1, and [α, β, δ] denotes the triple of com-
mutators [αβδ, α], [αβδ, β], and [αβδ, δ] leading to a triple of relations in (16).

In other to obtain (16) one can use the non-generic Zariski-Van Kampen method
on Figure 3.1 (see [9, Section 1.4]). The dotted line ` represents a generic line where
the meridians e0, ..., e5 are placed (note that the last relation on (16) is the relation
in the fundamental group of ` \ (L ∩ `) ≈ P1

6∞). The first two relations on (16)
appear when moving the generic line around `1. The third and fourth relations
come from moving the generic line around `4.
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`1 ` `4

`3

`5

`2

Figure 1. Ceva arrangement

The fundamental group of the complement to Dn ∪ B is equal to the kernel Kn

of the epimorphism

(17)

G
α→ Zn × Zn

e0 7→ (1, 1)
e1 7→ (1, 0)
e2 7→ (0, 1)
e3 7→ (0, 0)
e4 7→ (0, 0)
e5 7→ (0, 0)

since it is the fundamental group of the abelian cover with covering transformations
Zn ×Zn. Therefore a presentation of the fundamental group of the complement to
Dn can be obtained by taking a factor of Kn by the normal subgroup generated by
en0 , en1 , and en2 (which are the meridians to the preimages of the lines x0, x1, and x2

respectively). Using the Reidemeister-Schreier method (cf. [21]) combined with the
triviality of en0 , en1 , and en2 one obtains the following presentation for Gn := π1(Xn):

(18) Gn = 〈 e3,i,j , e4,i,j , e5,i,j :

(R1) e3,i+1,j = e−1
5,i,je3,i,je5,i,j ,

(R2) e4,i,j+1 = e−1
5,i,je4,i,je5,i,j ,

(R3) e5,i+1,j = e−1
5,i,je

−1
3,i,je5,i,je3,i,je5,i,j ,

(R4) e5,i,j+1 = e−1
5,i,je

−1
4,i,je5,i,je4,i,je5,i,j ,

(R5) [e3,i,j , e4,i,j ] = 1,

(R6)
∏n−1
k=0 e4,k,ke3,k,ke5,k,k = 1

〉

where i, j ∈ Zn and

ek,i,j := ei1e
j
2eke

−j
2 e−i1 , k = 3, 4, 5.

As a brief description of the Reidemeister-Schreier method, we recall that the gen-
erators of Gn are obtained from a set-theoretical section of α in (17) (in our case

s : Zn × Zn → G is given by (i, j) 7→ ei1e
j
2) as follows

s(i, j) ek (α(ek)s(i, j))−1.

Thus the set {ek,i,j} above forms a set of generators of Gn. Finally a complete
set of relations can be obtained by rewriting the relations of G in (16) (and their
conjugates by s(i, j)) in terms of the generators of the subgroup Gn.

Example 3.1. In order to illustrate the rewriting method we will proceed with the
second relation of G in (16).

s(i, j)[e1, e2]s(i, j)−1 = ei1e
j
2(e3e4e

−1
3 e−1

4 )e−j2 e−i1 =

(ei1e
j
2e3e

−j
2 e−i1 ) (ei1e

j
2e4e

−j
2 e−i1 ) (ei1e

j
2e
−1
3 e−j2 e−i1 ) (ei1e

j
2e
−1
4 e−j2 e−i1 ) = [e3,i,j , e4,i,j ]
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3.2. Essential Coordinate Characteristic Varieties. Now we will discuss a
presentation of G′n/G

′′
n as a module over Gn/G

′
n, which will be referred to as

MDn,ab. For details we refer to section 2.3. Note that Gn/G
′
n is isomorphic to

Z2n and is generated by the cycles γ5, γ3,j , γ4,i, (i, j ∈ Zn) where γ5 = ab(e5,i,j),
γ3,j = ab(e3,i,j), and γ4,i = ab(e4,i,j) satisfying nγ5 +

∑
j γ3,j +

∑
i γ4,i = 04. Let

t5 (resp. t3,j , t4,i) be the generators of Gn/G
′
n viewed as a multiplicative group

corresponding to the additive generators γ5 (resp. γ3,j , γ4,i). The characteristic
varieties of Gn are contained in

(C∗)2n = SpecC[t±1
5 , t±1

3,i , t
±1
4,j ]/(t

n
5

∏
j

t3,j
∏
i

t4,i − 1).

As generators of MDn,ab we select commutators of the generators of Gn as given
in (16). In order to do so, note that using relations (R1)− (R4) in (18), a presen-
tation of Gn can be given in terms the 2n+ 1 generators e5 := e5,0,0, e3,j := e3,0,j ,

and e4,i := e4,i,0. Hence, by Proposition 2.12, MDn,ab is generated by the
(

2n+1
2

)
commutators

(19) {[e5, e3,j ], [e5, e4,i], [e4,i, e3,j ], [e4,i1 , e4,i2 ], [e3,j1 , e3,j2 ]}i∗,j∗∈Zn
,

as a C[Z[t±1
1 , ..., t±1

4 , t±1
5 ]]-module. Also, according to Proposition 2.15, a complete

set of relations of MDn,ab is given by rewriting the following relations
(20)

(M1) [
∏n−1
i=0 e5,i,j , e3,j ] = 0

(M2) [
∏n−1
i=0 e5,i,j , e4,i] = 0

(M3) [e5,i,j+1, e3,i,j+1e5,i,j+1]e−1
5,i,j+1 = [e5,i+1,j , e4,i+1,je5,i+1,j ]e

−1
5,i+1,j

(M4)
∏n−1
i=0 e4,i,ie3,i,ie5,i,i = 0

in terms of commutators (19) and by the Jacobian relations:

(21)

(t3,j − 1)[e5, e4,i] + (t4,i − 1)[e3,j , e5] + (t5 − 1)[e4,i, e3,j ] = 0,
(t3,j1 − 1)[e5, e3,j2 ] + (t3,j2 − 1)[e3,j1 , e5] + (t5 − 1)[e3,j2 , e3,j1 ] = 0,
(t4,i1 − 1)[e5, e4,i2 ] + (t4,i2 − 1)[e4,i1 , e5] + (t5 − 1)[e4,i2 , e4,i1 ] = 0,
...

In order to rewrite relations (M1) − (M4) one needs to use (19) repeatedly. In
what follows, we will concentrate on the characters of Char(Dn) contained in the
coordinate axes t3,j = t4,i = 1. Computations for the general case can also be
performed, but are more technical and tedious.

Since we are assuming t3,j = t4,i = 1, and t5 6= 1, relations in (21) become
[e4,i, e3,j ] = [e3,j2 , e3,j1 ] = [e4,i2 , e4,i1 ] = 0 and hence (R5) in (18) become redun-
dant. A straightforward computation gives the following matrix where each line is

4Recall that ab is the morphism of abelianization
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a relation from (20) written in terms of the commutators {[e5, e3,i], [e5, e4,i]}i∈Zn
.

An :=



φn 0 0 ... 0 0 0 0 0 ... 0 0
0 φn 0 ... 0 0 0 0 0 ... 0 0

.

.

.

.

.

.
0 0 0 ... 0 φn 0 0 0 ... 0 0

0 0 0 ... 0 0 φn 0 0 ... 0 0
0 0 0 ... 0 0 0 φn 0 ... 0 0

.

.

.

.

.

.
0 0 0 ... 0 0 0 0 0 ... 0 φn

1 −1 0 ... 0 0 1 −1 0 ... 0 0
1 −1 0 ... 0 0 0 t −t ... 0 0

.

.

.

.

.

.

1 −1 0 ... 0 0 0 0 0 ... tn−2 −tn−2

1 −1 0 ... 0 0 −tn−1 0 0 ... 0 tn−1

.

.

.

.

.

.

0 0 0 ... tn−2 −tn−2 1 −1 0 ... 0 0

0 0 0 ... tn−2 −tn−2 0 t −t ... 0 0

.

.

.

.

.

.

0 0 0 ... tn−2 −tn−2 0 0 0 ... tn−2 −tn−2

0 0 0 ... tn−2 −tn−2 −tn−1 0 0 ... 0 tn−1

1 t t2 ... tn−2 tn−1 1 t t2 ... tn−2 tn−1


More precisely, the first (resp. second) block of An corresponds to the n relations

given in (M1) (resp. (M2)) of (20), φn := tn−1
t−1 , and t = t5. The following n blocks

of An (between double horizontal lines) correspond to the n2 relations given in
(M3) of (20). Note that the last row of each of these blocks is a consequence of
the remaining n− 1 rows. The last block corresponds to the relation given in (M4)
of (20).

Example 3.2. In order to illustrate An we will show how to rewrite the first
relation for n = 3, that is,

[e5,0,je5,1,je5,2,j , e3,j ]
M
= φn[e5, e3,j ].

Using (8) one has

[e5,0,je5,1,je5,2,j , e3,j ]
M
= [e5,0,j , e3,j ] + t[e5,1,j , e3,j ] + t2[e5,0,j , e3,j ].

Therefore, it is enough to show that [e5,i,j , e3,j ] = [e5, e3,j ]. Note that e5,i,j is a
conjugate of e5 (using (R4) and (R4)), hence, by (9) one obtains [e5,i,j , e3,j ] =
[e5, e3,j ] (since we are assuming t3,j = 1).

Also note that, performing row operations, one can obtain the following equiva-
lent matrix

Bn :=



φn 0 0 ... 0 0 0 0 0 ... 0 0
0 φn 0 ... 0 0 0 0 0 ... 0 0

.

.

.

.

.

.
0 0 0 ... 0 φn 0 0 0 ... 0 0
0 0 0 ... 0 0 φn 0 0 ... 0 0
0 0 0 ... 0 0 0 φn 0 ... 0 0

.

.

.

.

.

.
0 0 0 ... 0 0 0 0 0 ... 0 φn

1 −1 0 ... 0 0 1 −1 0 ... 0 0
1 −1 0 ... 0 0 0 t −t ... 0 0

.

.

.

.

.

.

1 −1 0 ... 0 0 0 0 0 ... tn−2 −tn−2

0 t −t ... 0 0 0 0 0 ... tn−2 −tn−2

.

.

.

.

.

.

0 0 0 ... tn−2 −tn−2 0 0 0 ... tn−2 −tn−2

1 t t2 ... tn−2 tn−1 1 t t2 ... tn−2 tn−1


Finally, one can write the presentation matrix Bn in terms of the basis

{[e5, e3,i]− [e5, e3,i+1], [e5, e3,n−1], [e5, e4,i]− [e5, e4,i+1], [e5, e4,n−1]}i=0,...,n−2
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resulting in

φn φn 0 ... 0 0 0 0 0 ... 0 0
0 φn φn ... 0 0 0 0 0 ... 0 0

.

.

.

.

.

.
0 0 0 ... φn φn 0 0 0 ... 0 0
0 0 0 ... 0 φn 0 0 0 ... 0 0
0 0 0 ... 0 0 φn φn 0 ... 0 0
0 0 0 ... 0 0 0 φn φn ... 0 0

.

.

.

.

.

.
0 0 0 ... 0 0 0 0 0 ... φn φn
0 0 0 ... 0 0 0 0 0 ... 0 φn

1 0 0 ... 0 0 1 0 0 ... 0 0
1 0 0 ... 0 0 0 t 0 ... 0 0

1 0 0 ... 0 0 0 0 t2 ... 0 0

.

.

.

.

.

.

1 0 0 ... 0 0 0 0 0 ... tn−2 0

0 t 0 ... 0 0 0 0 0 ... tn−2 0

0 0 t2 ... 0 0 0 0 0 ... tn−2 0

.

.

.

.

.

.

0 0 0 ... tn−2 0 0 0 0 ... tn−2 0
φ1 φ2 φ3 ... φn−1 φn φ1 φ2 φ3 ... φn−1 φn


One can use the units in the third block to eliminate columns, leaving the equivalent
matrix

φn 0 0 ... 0 0 0 0 0 ... 0 0
0 0 0 ... 0 0 0 0 0 ... −φn 0
0 0 0 ... 0 φn 0 0 0 ... 0 0
0 0 0 ... 0 0 0 0 0 ... 0 φn

1 0 0 ... 0 0 1 0 0 ... 0 0

1 0 0 ... 0 0 0 0 0 ... tn−2 0

 ∼=
 0 −φn 0 0

0 0 −φn 0
φn 0 0 0
0 0 0 φn

0 −1 tn−2 0

 .
Finally, a last combination of row operations using the units to eliminate columns
results in 0 0 −φnt

n−2 0
0 0 −φn 0
φn 0 0 0
0 0 0 φn

0 −1 tn−2 0

 ∼= [ 0 −φnt
n−2 0

0 −φn 0
φn 0 0
0 0 φn

]
∼=
[

0 φn 0
φn 0 0
0 0 φn

]
.

Hence the n− 1 non-trivial torsion characters χin := (ξin, 1, ..., 1), i = 1, ..., n belong
to Char(Dn) and have depth 3, that is, χin ∈ V3(Dn).

3.3. Marked Orbifold Pencils. By Theorem 1.1(1) we know there are at most
three strongly independent marked orbifold pencils from the marked variety (Xn,χn).
Our purpose is to explicitly show such three strongly independent pencils. Note
that

(22)
jk : P2 \ (Fn ∪ Lk) → C∗n = P1

(n,[1:0]),(∞,[0:1]),(∞,[1:1])

[x : y : z] 7→ [fn : xnk ],

for j = 1, 2 are two natural orbifold pencils coming from the n-ordinary points
of Fn coming form the triple points of the Ceva arrangement L which are in B.
Consider the marked orbicurve (Cn,n, ρn), where ρn = (ξn, 1), the first coordinate
corresponds to the image of a meridian µ1 around [0 : 1] ∈ P1

(n,[0:1]),(n,[1:0]),(∞,[1:1])

and the second coordinate corresponds to the image of a meridian µ2 around [1 : 0]
(note that πorb

1 (Cn,n) = Zn(µ1) ∗ Zn(µ2)).
In order to obtain marked orbifold pencils with target (Cn,n, ρn) one simply

considers the following composition, where ik and jk are inclusions

ψk : Xn
ik
↪→ P2 \ (Fn ∪ Lk)

jk→ P1
(n,[1:0]),(∞,[0:1]),(∞,[1:1])

i
↪→ P1

(n,[0:1]),(n,[1:0]),(∞,[1:1]).

Such pencils are clearly marked global quotient orbifold pencils from (Xn, χn) to
(Cn,n, ρn), where (Cn,n, ρn) is the marked quotient of Cn := P1 \ {[ξjn : 1]}j∈Zn

by
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the cyclic action [x : y] 7→ [ξnx : y]. The resulting commutative diagrams are given
by

(23)

Xn
Ψk→ Cn

[x0 : x1 : x2 : w] 7→ [w : xk]
↓ π ↓
Xn

ψk→ Cn,n
[x0 : x1 : x2] 7→ [fn : xnk ],

k = 1, 2, where Xn is the smooth open surface given by {[x0 : x1 : x2 : w] ∈ P3 |
wn = fn} \ {fn`1`2 = 0}.

Note that there is a third quasitoric relation involving all components of Dn,
namely,

(24) fnx
n
0 + `1`2 = xn1x

n
2

and hence a global quotient marked orbifold map

(25)
ψ3 : Xn → Cn,n = P1

(n,[0:1]),(n,[1:0]),(∞,[1:1])

[x : y : z] 7→ [−fnxn0 : xn1x
n
2 ],

which gives rise to the following diagram

(26)

Xn
Ψ3→ Cn

[x0 : x1 : x2 : w] 7→ [−wx0 : x1x2]
↓ πn ↓
Xn

ψk→ Cn,n
[x0 : x1 : x2] 7→ [−fnxn0 : xn1x

n
2 ].

Note that, when extending πn to a branched covering, the preimage of each line
{`k,i = 0} ⊂ Lk (k = 1, 2) in Dn (`k,i := x0 − ξinxk) decomposes into n irreducible
components

⋃
j∈Zn

`k,i,j and thus allows to consider γk,i,j (k = 1, 2, i, j ∈ Zn)

meridians around each component of {`k,i,j = 0}. Also consider a meridian γ0

around the preimage of Fn.

Theorem 3.3. The marked orbifold pencils ψ1, ψ2, and ψ3 described above are
strongly independent and hence they form a maximal set of strongly independent
pencils.

Proof. Consider Ψε,∗ : H1(Xn;Z) → H1(Cn;Z) = Z[ξn], ε = 1, 2, 3 the three
equivariant morphisms described above. Using the commutative diagrams (23)
and (26) one can easily see that

(27) Ψε,∗(γk,i,j) =


ξjn if ε = k ∈ {1, 2}
ξi+jn if k = 3

0 otherwise

and

Ψε,∗(γ0) = 0

and therefore Ψε,∗ are surjective Z[ξn]-module morphisms. Also note that [γk,i,j ] =
µjn[γk,i,0] ∈ H1(Xn;Z). Consequently according to (27) one has

(Ψ1,∗ ⊕Ψ2,∗ ⊕Ψ3,∗) (γk,i,0) =

{
(1, 0, ξin) if k = 1

(0, 1, ξin) if k = 2

which implies that Ψ1,∗⊕Ψ2,∗⊕Ψ3,∗ is surjective. After the discussion of section 3.2,
since the depth of ξin is three, the set of strongly independent pencils is indeed
maximal. �
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4. Order Two Characters: augmented Ceva

From Theorem 1.1(2), for any order two character χ of depth k in the char-
acteristic variety of the complement of a curve there exist k independent pencils
associated with χ whose target is a global quotient orbifold of type C2,2.

Interesting examples for k > 1 of this scenario are the augmented Ceva arrange-
ments CEVA(2, s), s = 1, 2, 3 (or erweiterte Ceva cf. [10, Section 2.3.J, pg. 81]).
Consider the following set of lines:

(28)
`1 := x
`2 := y
`3 := z

`4 := (y − z)
`5 := (x− z)
`6 := (x− y)

`7 := (x− y − z)
`8 := (y − z − x)
`9 := (z − x− y).

The curve C6 :=
{∏6

i=1 `i = 0
}

is a realization of the Ceva arrangement CEVA(2)

(a.k.a. braid arrangement or B3-reflection arrangement). Note that this realization

is different from the one used in section 3. The curve C7 :=
{∏7

i=1 `i = 0
}

is

the augmented Ceva arrangement CEVA(2, 1) (a.k.a. a realization of the non-

Fano plane). The curve C8 :=
{∏8

i=1 `i = 0
}

is the augmented Ceva arrangement

CEVA(2, 2) (a.k.a. a deleted B3-arrangement). Finally, C9 :=
{∏9

i=1 `i = 0
}

is the

augmented Ceva arrangement CEVA(2, 3).
The characteristic varieties of such arrangements of lines are well known (c.f [30,

31, 15]). Such computations are done via a presentation of the fundamental group
and using Fox derivatives. In most cases (except for the simplest ones) the need of
computer support is basically unavoidable. In [15, Example 3.11] there is an alter-
native calculation of the positive dimensional components of depth 1 via pencils.

Here we will give an interpretation via orbifold pencils of the characters of
depth 2, which will account for the appearance of these components of the charac-
teristic varieties independently of computation of the fundamental group.

4.1. Ceva and augmented Ceva Pencils. Note that x(y− z)− y(x− z) + z(x−
y) = 0 and hence

fC : P2 → P1

[x : y : z] 7→ [`1`4 : `2`5]

is a pencil of conics such that (f∗C([0 : 1]) = `1`4, f
∗
C([1 : 0]) = `2`5, f

−1
C ([1 : 1]) =

`3`6) (we will refer to it as the Ceva pencil). Analogously

x(y − z)(x− y − z)2 − y(x− z)(y − z − x)2 + z(x− y)(z − x− y)2 = 0

and hence
fSC : P2 → P1

[x : y : z] 7→ [`1`4`
2
7 : `2`5`

2
8]

is a pencil of quartics such that (f∗SC([0 : 1]) = `1`4`
2
7, f
∗
SC([1 : 0]) = `2`5`

2
8, f
∗
SC([1 :

1]) = `3`6`
2
9) (we will refer to it as the augmented Ceva pencil).

4.2. Characteristic Varieties of Ci, i = 6, 7, 8, 9. We include the structure of
the characteristic varieties of these curves for the reader’s convenience. As reference
for such computations see [30, 31, 18, 14, 23, 25].

We will denote by X∗ the complement of the curve C∗ in P2, for ∗ = 6, 7, 8, 9.

4.2.1. Arrangement C6. The characteristic variety Char(C6) consists of four non-
essential coordinate components associated with the four triple points of C6 (see
Remark 2.26(1))5 and one essential component of dimension 2 and depth 1 given

5a.k.a. local components
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by the Ceva pencil

ψ6 := fC |X6
: X6 → P1 \ {[0 : 1], [1 : 0], [1 : 1]}.

4.2.2. Arrangement C7. The characteristic variety Char(C7) consists of six (resp.
four) non-essential coordinate components associated with the six triple points of
C7 (resp. four C6-subarrangements) of dimension 2 and depth 1. In addition, there
is one extra character of order two, namely,

χ7 := (1,−1,−1, 1,−1,−1, 1)

of depth 2.6 In order to check the value of the depth, one needs to find all marked
orbifold pencils in (X7, χ7) of target (C2,2, ρ) where ρ := (−1,−1) is the only pos-
sible non-trivial character of C2,2. Two such independent pencils are the following,

ψ7,1 := fC |X7
: X7 → P1 \ {[0 : 1], [1 : 0], [1 : 1]} → P1

(2,[1:0]),(2,[1:1]),(∞[0:1])

and

ψ7,2 := fSC |X7
: X7 → P1

(2,[1:0]),(2,[1:1]),(∞[0:1]).

This is the maximal number of independent pencils by Theorem 1.1.

4.2.3. Arrangement C8. The characteristic variety Char(C8) consists of six (resp.
five) non-essential coordinate components associated with the six triple points of
C8 (resp. four C6-subarrangements) of dimension 2 and depth 1. In addition, there
is one 3-dimensional non-essential coordinate component of depth 2 associated with
its quadruple point (see Remark 2.26(1)).

Consider the following augmented Ceva pencil

ψ8,1 := fSC |X8
: X8 → P1

(2,[1:1]),(∞[0:1]),(∞[1:0]).

Computation of the induced map on the variety of characters shows that this map
yields the only non-coordinate translated component of dimension 1 and depth 1
observed in the references above. Finally, there are two characters of order two,
namely,

χ8,1 := (1,−1,−1, 1,−1,−1, 1, 1) and
χ8,2 := (−1, 1,−1,−1, 1,−1, 1, 1)

of depth 2. In order to check the value of the depth, one needs to find two marked
orbifold pencils on (X8, χ8,1) with target (C2,2, ρ), where

C2,2 := P1
(2,[1:0]),(2,[1:1]),(∞[0:1])

and ρ := (−1,−1, 1) is the only non-trivial character of C2,2. Two such independent
pencils can, for example, be given as follows

ψ8,2 := fC |X8
: X8 → P1 \ {[0 : 1], [1 : 0], [1 : 1]} → P1

(2,[1:0]),(2,[1:1]),(∞[0:1])

and

ψ8,3 := fSC |X8 : X8 → P1
(2,[1:1]) \ {[1 : 0], [0 : 1]} → P1

(2,[1:0]),(2,[1:1]),(∞[0:1]).

6the subscript 7 refers to the arrangement C7. Similar notation will be used in the examples
that follow. A second subscript (when necessary) will be used to index the characters considered.
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4.2.4. Arrangement C9. The characteristic variety Char(C9) consists of four (resp.
eleven) non-essential coordinate components associated with the four triple points
of C9 (resp. eleven C6-subarrangements), which have dimension 2 and depth 1.
In addition, there are three 3-dimensional non-essential coordinate components of
depth 2 associated with the quadruple points of C9. Consider the following aug-
mented Ceva pencil

ψ9,1 := fSC |X9 : X9 → P1 \ {[1 : 0], [0 : 1], [1 : 1]}.

Computations of the induced map on the variety of characters show that this pencil
yields the only non-coordinate translated component of dimension 2 and depth 1
observed in the references above.

Finally, there are also three characters of order two

χ9,1 := (−1,−1, 1,−1,−1, 1, 1, 1, 1),
χ9,2 := (−1, 1,−1,−1, 1,−1, 1, 1, 1), and
χ9,3 := (1,−1,−1, 1,−1,−1, 1, 1, 1)

of depth 2. In order to check the value of the depth, one needs to find two inde-
pendent marked orbifold pencils on (X9, χ9,1) with target (C2,2, ρ) where C2,2 :=
P1

(2,[0:1]),(2,[1:0]),(∞[1:1]) and ρ := (−1,−1, 1) is the only non-trivial character on C2,2.

Two such independent pencils can be given, for example, as follows

ψ9,2 := fC |X9
: X9 → P1 \ {[0 : 1], [1 : 0], [1 : 1]} → P1

(2,[0:1]),(2,[1:0]),(∞[1:1])

and

ψ9,3 := fSC |X9
: X9 → P1 \ {[0 : 1], [1 : 0], [1 : 1]} → P1

(2,[0:1]),(2,[1:0]),(∞[1:1]).

Remark 4.1. Note that the depth 2 characters in Char(C8) and Char(C9) lie in the
intersection of positive dimensional components and this fact forces them to have
depth greater than 1, see [8, Proposition 5.9].

4.3. Comments on Independence of Pencils.

• Depth conditions on the target: First of all note that the condition
on the target (C, ρ) to have d(ρ) > 0 is essential in the discussion above,
i.e. pencils with target satisfying d(ρ) = 0 may not contribute to the
characteristic varieties. For instance, the space X6 also admits several global
quotient pencils coming from the augmented Ceva pencil, namely

ψ′6 := fSC |X6 : X6 → P1
(2,[0:1]),(2,[1:0]),(2,[1:1]) → P1

(2,[0:1]),(2,[1:0]).

However, the orbifold P2,2 is a global quotient orbifold whose orbifold fun-
damental group is abelian, so no non-trivial characters belong to its char-
acteristic variety.

• Independence of Pencils. Here is an explicit argument for independence
of pencils for one of the cases discussed in last section. Consider the pen-
cils ψ9,2 and ψ9,3 described above as marked pencils from (X9, χ9,1) having
(C2,2, ρ) as target. The marking produces the following commutative dia-
grams:

X9,2
Ψ9,2→ C2

[x : y : z : w] 7→ [`1`4 : w]
↓ π ↓ π̃
X9

ψ9,2→ C2,2

[x : y : z] 7→ [`1`4 : `2`5],
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and
X9,2

Ψ9,3→ C2

[x : y : z : w] 7→ [`1`4`7 : w`8]
↓ π ↓ π̃
X9

ψ9,3→ C2,2

[x : y : z] 7→ [`1`4`
2
7 : `2`5`

2
8],

where X9,2 is contained in {[x : y : z : w] | w2 = `1`4`2`5}, C2 := P1 \ {[1 :
1], [1 : −1]} and π̃ is given by [u : v] 7→ [u2 : v2].

Consider γi,k, i = 3, 6, 7, 8, 9, k = 1, 2 the lifting of meridians around
`i in X9,2. Also denote by Z[Z2] the ring of deck transformations of π̃ as
before, where Z2 acts by multiplication by ξ2 = (−1). Note that, as before
Ψ9,2(γ3,k) = Ψ9,2(γ3,k) = (−1)k and Ψ9,3(γ4,k) = Ψ9,3(γ4,k) = (−1)k+1.
However, Ψ9,2(γ9,k) = 0 and Ψ9,3(γ9,k) = (−1)k. Therefore ψ9,2 and ψ9,3

are independent pencils of (X9, χ9,1) with target (C2,2, ρ).

5. Curve Arrangements

Consider the space M of sextics with the following combinatorics:

(1) C is a union of a smooth conic C2 and a quartic C4;
(2) Sing(C4) = {P, S} where S is a cusp of type A4 and P is a node of type A1;
(3) C2 ∩ C4 = {S,R} where S is a D7 on C and R is a A11 on C.

In [4] it is shown thatM has two connected components, sayM(1) andM(2). The
following are equations for curves in each connected component:

f
(1)
6 = f

(1)
2 f

(1)
4 :=

(
(y + 3x) z + 3y2

2

)(
x2z2 −

(
xy2 + 15

2 x2y + 9
2x

3
)
z − 3x y3 − 9x2y2

4 + y4

4

)
for C(1)

6 ∈M(1) and

f
(2)
6 = f

(2)
2 f

(2)
4 :=

((
y + x

3

)
z − y2

6

)(
xz2 −

(
xy2 + 9x2y

2 + 3x3

2

)
z + y4

4 + 3x2y2

4

)
for C(2)

6 ∈M(2).

The curves C(1)
6 and C(2)

6 form a Zariski pair since their fundamental groups are
not isomorphic. This cannot be detected by Alexander polynomials since both are
trivial. In [4] the existence of an essential coordinate character of order two in the

characteristic variety of C(2)
6 was shown enough to distinguish both fundamental

groups, since the characteristic variety of C(1)
6 is trivial.

By Theorem 1.1(2) this fact can also be obtained by looking at possible orbifold
pencils. Note that there exists a conic Q := {q = 0} passing through S and R such

that (Q, C(1)
4 )S = 4, (Q, C(2)

4 )S = 5, and (Q, C(2)
2 )R = 3, (Q, C(2)

2 )R = 3. Consider
L := {` = 0} the tangent line to Q at S. One has the following list of multiplicities
of intersection:

(Q, C(2)
2 + 2L)S = (Q, C(2)

4 )S = 5 (Q, C(2)
2 + 2L)R = (Q, C(2)

4 )R = 3

(C(2)
4 , 2Q)S = (C(2)

4 , C(2)
2 + 2L)S = 10 (C(2)

4 , 2Q)R = (C(2)
4 , C(2)

2 + 2L)R = 6

(C(2)
2 , C(2)

4 )S = (C(2)
2 , 2Q)S = 2 (C(2)

2 , C(2)
4 )R = (C(2)

2 , 2Q)R = 6

(L, C(2)
4 )S = (L, 2Q)S = 4 (L, C(2)

4 )R = (L, 2Q)R = 0.

By [12], this implies that (C(2)
2 + 2L, C(2)

2 , 2Q) are members of a pencil of quartics.

In other words, there is a marked orbifold pencil from C := P2 \ C(2)
6 marked with

χ := (−1, 1) to P1
(2,[0,1]),(2,[1:0]),(∞[1:1]) given by [x : y : z] 7→ [f

(2)
2 `2 : q2] whose

target mark is the character ρ := (−1,−1, 1).
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