ON THE TOPOLOGY OF SOME EVEN-DIMENSIONAL ALGEBRAIC HYPERSURFACES

A. LIBGOBER[†]

(Received 27 September 1977; revised 20 March 1978)

§1. INTRODUCTION

THE TOPOLOGICAL structure of odd-dimensional hypersurfaces was investigated recently by several authors [5], [9], [10]. These results are the generalization of the classical handle-decomposition of Riemann surfaces and can be summarized as follows.

THEOREM. Let V_n^d be a non-singular algebraic hypersurface of an odd dimension n and of degree d in an (n + 1)-dimensional complex projective space. Let T denote the PL-manifold which is obtained by gluing a cone to the spherical boundary of the plumbing of two copies of the tangent bundles of the sphere Sⁿ. Then there are two cases

(i) If $d \neq \pm 3 \pmod{8}$ or n = 1, 3, 7, then

$$V_n^d = k(S^n \times S^n) \not = M_n^d$$

(ii) If $d \equiv \pm 3 \pmod{8}$ and $n \neq 1, 3, 7$, then

$$V_n^d = (k-1)(S^n \times S^n) \# T \# M_n^d$$

where $k = (1/2)rkH_n(V_n^d, \mathbb{Z})$ and M_n^d is a manifold (generally piecewise-linear in case (ii)) which has the same homology as the projective space \mathbb{CP}^n .

Note also that M_n^d can either be realized as a rational singular projective hypersurface[5] or as a gluing of two copies of some D^{n+1} disk bundle over $\mathbb{CP}^{n-1/2}$ (see Remark 5 below).

The topology of even-dimensional hypersurfaces is considered in [4], where it is proved that it is possible to split off the maximal number of the handles $S^n \times S^n$. The manifold which remains after removing these handles is in general decomposable into a connected sum of more simple manifolds.

In this paper we describe the decomposition of some even-dimensional algebraic hypersurfaces into the connected sum of indecomposable almost differentiable manifolds (PL-manifolds with the differentiable structure on the complement of a point).

Let $F_{2n}(E_8)$ be the 2*n*-dimensional manifold which is the plumbing of the tangent bundles of the sphere S^n according to the graph $E_8[3]$. The boundary of $F_{2n}(E_8)$ is homeomorphic to a sphere and we denote by $F_{2n}(E_8)$ the closed PL-manifold which is obtained by adding the cone over the sphere S^{2n-1} to the boundary of $F_{2n}(E_8)$. Let V_n^d be hypersurface of dimension *n* and degree *d* in \mathbb{CP}^{n+1} . Our main result is the following:

THEOREM. Suppose that n > 2, $n \equiv 2 \pmod{4}$ and d is even. Then $V_n^d \cong a(S^n \times S^n) \# bF_{2n}(E_8) \# M_n^d$ where \cong stands for a PL-homeomorphism, a =

[†]Current address: Department of Mathematics, University of Illinois at Chicago Circle, Chicago, IL 60680, U.S.A.

 $(1/2)(rkH_n(V_n^d) - |\text{sign } V_n^d| - 2)$ and $b = (1/8)|\text{sign } V_n^d|$. The manifold M_n^d can be obtained by gluing two copies of a certain D^n -bundle over $\mathbb{CP}^{n/2}$ by means of a PL-homeomorphism of the boundary.

In conclusion we formulate some results concerning the decomposition of other classes of even-dimensional hypersurfaces; their proof is based on the same ideas used in the proof of the main theorem.

§2. PROOF OF THE MAIN THEOREM

Recall that all non-singular hypersurfaces of a given degree and dimension are diffeomorphic. So it is enough to describe the decomposition for some special model of a hypersurface V_n^d . Let us consider the hypersurface $V_n^d(c)$ which is the projective completion of the affine hypersurface defined by the equation

$$P_n(Z_1 \dots Z_{n+1}) = Z_1^d + Z_2^{d-1} + Z_2 Z_3^{d-1} + \dots + Z_{n-1} Z_n^{d-1} + Z_n Z_{n+1}^{d-1} = c.$$

The properties of this hypersurface are considered in [5]. For c sufficiently close to zero we denote by F_n^d the intersection of $V_n^d(c)$ with the ball B_{ϵ} of a small radius ϵ centered at the point with coordinates $Z_1 = Z_2 = \cdots = Z_{n+1} = 0$. Let

$$G_n^{\ d} = \overline{V_n^{\ d}(c) - F_n^{\ d}}.$$

PROPOSITION [5] (i). The hypersurface $V_n^d(c)$ is a non-singular projective variety for $c \neq 0$ and has a single isolated singularity for c = 0 at the point $Z_1 = \cdots = Z_{n+1} = 0$.

(ii). F_n^d is an (n-1)-connected parallellizable 2n-manifold with boundary and its n-dimensional Betti number b_n is given by

$$b_n = \frac{1}{d} \left[(d-1)^{n+2} + (-1)^n (d-1) \right].$$

(iii). The characteristic polynomial $\Delta_n(t)$ of the monodromy of the isolated singularity of $V_n^d(0)$ can be computed by the recursive equation

$$\Delta_{n+1}(t) = \Delta_n^{-1}(t) \frac{t^{d(d-1)^{n+1}} - 1}{t^{(d-1)^{n+1}} - 1}.$$

Sketch of the proof. (i) can be verified by direct computation. (ii) is a consequence of the fact that the polynomial $P_n(Z_1 \ldots Z_{n+1})$ is weighted homogeneous of the weight

$$\left(d, d-1, \ldots, \frac{d(d-1)^{i}}{(d-1)^{i}+(-1)^{i-1}}, \ldots, \frac{d(d-1)^{n}}{(d-1)^{n}+(-1)^{n-1}}\right).$$

(iii) can be checked by using the Milnor-Orlik[8] algorithm for the computation of a characteristic polynomial of the weighted homogeneous singularities[5].

From now on we consider the case *n* is even and n > 2. We denote by $H_n(V_n^d, \mathbb{Z})_0$ the group of vanishing cycles, i.e. Ker $(H_n(V_n^d, \mathbb{Z}) \to H_n(\mathbb{CP}^{n+1}, \mathbb{Z}))$. This group can be also described as the image of the Hurewicz homomorphism $\pi_n(V_n^d) \to H_n(V_n^d)$ or as the orthogonal complement to the homology class *h* of the intersection of V_n^d and $\mathbb{CP}^{n/2+1}[4]$. Let us denote by *l* the projective space defined by $Z_1 = \sqrt[d]{c}Z_0$, $Z_2 = Z_4 =$

 $\cdots = Z_n = 0$ belonging to $V_n^{d}(c)$. Note that the intersection of l with the small ball B_{ϵ} centered at the point with coordinates $Z_1 = Z_2 = \cdots = Z_n = Z_{n+1} = 0$ is a disk. Denote this disk by l_1 and $\overline{l-l_1}$ denote by l_2 . By abuse of notation we let l_1 (resp. l_2) also denote the relative homology class in $H_n(F_n^d, \partial F_n^d)$ (resp. in $H_n(G_n^d, \partial G_n^d)$) defined by l_1 (resp. l_2).

LEMMA 1. (a) The homomorphism

$$i_F: H_n(F_n^d, \mathbb{Z}) \to H_n(V_n^d, \mathbb{Z})$$

is an imbedding and its image is the subgroup of vanishing cycles, $H_n(V_n^d, \mathbb{Z})_0$.

(b) The group $H_n(G_n^d, \mathbb{Z})$ is generated by h and the group $H_n(G_n^d, \partial G_n^d, \mathbb{Z})$ by l_2 . In $H_n(G_n^d, \partial G_{n-1}^d, \mathbf{Z})$ holds the relation $dl_2 = h$.

(c) ∂F_n^d is a Q-homology sphere with $H_{n-1}(\partial F_n^d, \mathbf{Z}) = \mathbf{Z}/d$.

Proof. (a) From (iii) of the proposition we conclude that $\Delta_n(1) = d$ for n even. Hence $H_{n-1}(\partial F_n^d)$ is finite of order d[6]. By Poincare duality $H_n(\partial F_n^d) = 0$. We now consider the following Mayer-Vietoris sequence

$$0 \to H_n(F_n^d) \oplus H_n(G_n^d) \to H_n(V_n^d) \to H_{n-1}(\partial F_n^d) \to 0.$$
⁽¹⁾

It follows that i_F is an imbedding. The image of i_F belongs to the subgroup $H_n(V_n^d, \mathbb{Z})_0$ because the Hurewicz homomorphism is onto for the (n-1)-connected 2*n*-manifolds. The rank of $H_n(V_n^d, \mathbb{Z})$ is equal to $(1/d)[(d-1)^{n+2} + (d-1)] + 1[4], [9]$. Hence

$$rkH_n(V_n^d, \mathbf{Z})_0 = \frac{1}{d} \left[(d-1)^{n+2} + (d-1) \right] = rkH_n(F_n^d, \mathbf{Z})$$

by (ii) of the proposition. It follows that $i_F(H_n(F_n^d))$ has finite index in $H_n(V_n^d, Z)_0$. From the diagram

we obtain that this index equals 1 because

$$[H_n(F_n^d):H_n(F_n^d)^*] = [H_n(V_n^d)_0:H_n(V_n^d)_0^*] = d$$

(where for an abelian group E we denote by E^* the dual group Hom (E, \mathbb{Z})).

(b) It follows from the sequence (1) that $H_n(G_n^d, \mathbb{Z})$ is a free cyclic group. Because the number of elements in $H_{n-1}(\partial G_n^d) = H_{n-1}(\partial F_n^d)$ is d we obtain that the square of the generator of $H_n(G_n^d, \mathbb{Z})$ is equal to $\pm d$, i.e. h is a generator of $H_n(G_n^d, \mathbb{Z})$. The other assertions of (b) follows from this.

(c) The manifold ∂F_n^d is (n-2)-connected [6] and because $H_{n-1}(\partial F_n^d, \mathbb{Z})$ is a torsion group (see (a)) we obtain the first part of the assertion. The second one follows from (b).

LEMMA 2. If d is even and $n \equiv 2 \pmod{4}$, then there exists an element $v \in$ $H_n(F_n^d, \partial F_n^d, \mathbb{Z})$ such that $v^2 = -1/d$.

Proof. For any 2*n*-dimensional manifold X we denote by $S(H_n(X))$ the intersection form on $H_n(X, \mathbf{Q})$. Since ∂F_n^d is a rational homology sphere we have ([3] p. 48).

$$(-S(H_n(F_n^d)) \oplus (S(H_n(G_n^d)) = S(H_n(V_n^d)).$$
⁽²⁾

Moreover it is computed in [4] that $l^2 = (1/d)[1 - (1 - d)^{(n/2)+1}]$. Since $l_2 = (1/d)h$ and $h^2 = d$, we have $l_2^2 = 1/d$. Hence $l_1^2 = (1/d)[1 - (1 - d)^{(n/2)+1}] - (1/d)$. According to [4], for d > 2 there exist elements e_1 and e_2 in $H_n(V_n^d, Z)_0$ and hence in $H_n(F_n^d, Z)$ such that $e_1^2 = e_2^2 = 0$ and $e_1e_2 = 1$. Let $a = (l_1, e_1)$ and $b = (l_1, e_2)$. Then the element

$$v = l_1 + \left(b(a-1) - \frac{1}{2d}\left[1 - (1-d)^{(n/2)+1}\right]\right)e_1 + (1-a)e_2$$

has square -1/d. Note that under the assumption of the lemma the coefficient of e_1 is an integer.

LEMMA 3. Let E be a free abelian group endowed with a non-singular integer symmetric bilinear form β . Let $E^*/E = \mathbb{Z}/d$. Then β induces on E^* a bilinear form with values in $\mathbb{Z}_{(d)}$ -subgroup of Q, which consists of the fractions with the divisors of d as denominator. If there also exists an element $v \in E^*$ such that $v^2 = \pm 1/d$ then there exists an orthogonal decomposition $E^* = A \oplus \{v\}$ where A is an inner product space and $\{v\}$ is a subgroup generated by v.

Proof. This is a special case of Theorem 3.2 from [7].

Now we are ready to conclude the proof of the main theorem. Note that the class v which was built during the proof of Lemma 2 can be represented by an immersed disk whose boundary is the sphere ∂l_1 . According to A. Haefliger's theorem for manifolds with boundary ([1] Theorem 4.1) we may suppose that v is realizable by an embedded disk with the same boundary.

Let T denote the tubular neighbourhood of this disk. Let us consider the manifolds $\overline{M}_n^d = G_n^d \cup T$ and $\overline{N}_n^d = \overline{F_n^d - T}$. The abelian group $H_n(\overline{N}_n^d, \mathbb{Z})$ endowed with the intersection form is isomorphic to A from Lemma 3, which built for $E = H_n(F_n^d, \mathbb{Z})$. It follows that the intersection form on $H_n(\overline{N}_n^d, \mathbb{Z})$ is unimodular, even and indefinite. Because \overline{N}_n^d is parallelizable ((ii) of proposition) it follows that $\overline{N}_n^d = a(S^n \times S^n) \models bF^-(E_8)$ (\clubsuit denotes the boundary connected sum.)

Now we consider M_n^d which is \overline{M}_n^d with added cone to the boundary. Let P_1 denote the union of l_2 with the disk in F_n^d which represents V. Obviously P_1 is diffeomorphic to the projective space $\mathbb{CP}^{n/2}$. It follows from (2) that the self-intersection index of P_1 is equal to zero. Let P_2 be obtained by a slight translation of P_1 in such a fashion that it does not intersect P_1 . Let T_1 and T_2 be non-intersecting tubular neighbourhoods of P_1 and P_2 respectively. We prove that $\overline{M_n^d - T_1 - T_2}$ is an *h*-cobordism between ∂T_1 and ∂T_2 . Indeed from the exact sequence of closed subspace

$$\rightarrow H_i(P_1) \rightarrow H_{i+n-1}(M-P_1) \rightarrow H_{i+n-1}(M) \rightarrow H_{i-1}(P_1) \rightarrow$$

it follows that $M_n^d - T_1$ has the same homotopy type as P_2 . Using the exact sequence of the pair we obtain that

$$H_i(\overline{M_n^d-T_1-T_2},\,\partial T_2)=H_i(\overline{M_n^d-T_1},\,T_2)=0.$$

Hence the assertion of the theorem about M_n^d follows from the theorem about *h*-cobordism for PL-manifolds.

§3. SOME CONCLUDING REMARKS

Remark 1. The PL-homeomorphism which is mentioned in the main theorem is not in general smooth, because M_n^{d} does not generally admit a differential structure. For example for M_6^{4} we obtain the following values of the Pontrjagin classes $p_1 = -8h^2$; $p_2 = 156h^4$ (*h* denotes the standard generator of $H^2(M_6^4, \mathbb{Z}) \simeq H^2(V_6^4, \mathbb{Z})$). Furthermore, the signature of M_6^4 is zero; thus if we assume that M_6^4 is a differentiable manifold we obtain [2]

$$0 = \operatorname{sign}(M_6^4) = \frac{1}{945}(62p_3 - 13p_2p_1 + 2p_1^3)$$

and therefore p_3 cannot be an integer cohomology class.

Remark 2. The hypersurfaces V_n^d for which $n \equiv 2 \pmod{4}$ and d is even are exactly the hypersurfaces whose intersection forms on $H_n(V_n^d, \mathbb{Z})$ have even type (see [4]).

Remark 3. If $n \equiv 0 \pmod{4}$ or d is odd then a decomposition $V_n^d = N_n^d \# M_n^d$ where N_n^d is (n-1)-connected and $rkH_n(N_n^d) = rkH_n(V_n^d) - 2$ exists in the following cases. Either $d \equiv 0 \pmod{8}$ (and then sign $M_n^d = 0$), or $d \equiv 2 \pmod{8}$ and all prime divisors of d has form 4l + 1 (and then sign $M_n^d = 2$). Indeed, the existence of such a decomposition will imply that $H_n(F_n^d, \mathbb{Z})$ has a subgroup A of corank 1 on which the intersection form is unimodular. It would then follow that in $H_n(F_n^d, \partial F_n^d, \mathbb{Z})$ there exists an element v for which $v^2 = \pm 1/d$, but that is possible just in the cases listed above.

Note that non-existence of such a decomposition in the cases $d \neq 0, 2 \pmod{8}$ and $n \equiv 0 \pmod{4}$ or d is odd and $n \equiv 2 \pmod{4}$ follows from the fact that the intersection form on $H_n(V_n^d, \mathbb{Z})_0$ has even type together with the following lemma.

LEMMA 4. If $n \equiv 2 \pmod{4}$ and d is even then sign $V_n^d \equiv 0 \pmod{8}$, otherwise sign $V_n^d \equiv d \pmod{8}$.

Proof. As above let *l* denote the homology class of $\mathbb{CP}^{n/2}$ in V_n^d and *h* denote the class of the intersection of V_n^d with $\mathbb{CP}^{n/2+1}$. Each element $c \in H_n(V_n^d, \mathbb{Z})$ can be represented as $c = c_0 + \kappa l$ where $c_0 \in H_n(V_n^d, \mathbb{Z})_0$ and $\kappa = (c, h)$. It follows then that $(h, c) \equiv (c, c) \mod 2$ if $n \equiv 0 \pmod{4}$ or $n \equiv 2 \pmod{4}$ and *d* is odd. Hence from the ven der Blij lemma (see [7]) it follows that $d = h^2 \equiv \operatorname{sign} V_n^d \pmod{8}$.

If $n \equiv 2 \pmod{4}$ and d is even then the intersection form on $H_n(V_n^d, \mathbb{Z})$ has even type and the congruence sign $V_n^d \equiv 0 \pmod{8}$ follows from [7].

Remark 4. Nevertheless if n = 4 (resp. n = 8) we have the following decomposition

$$V_n^d \# P = N_n^d \# M_n^d$$

where P denotes the projective plane over the quaternions (resp. over the Caley numbers), N_n^d is an (n-1)-connected manifold and M_n^d is a gluing of two copies of a D^n -disk bundle over $\mathbb{CP}^{n/2}$, and $rkH_n(V_n^d \# P) = rkH_n(N_n^d) + 2$.

Remark 5. Let *n* be odd and $V_n^d = M_n^d \# N_n^d$ where $rkH_n(N_n^d) = rkH_n(V_n^d)$ and N_n^d is an (n-1)-connected manifold [5], [9], [10]. Then M_n^d also can be represented as a gluing of two copies of a D^{n+1} -bundle over $\mathbb{CP}^{n-1/2}$ by means of some homeomorphism of the boundary.

Indeed, let P_1 denote $\mathbb{CP}^{n-1/2}$ embedded in M_n^d such that the induced map $H_i(\mathbb{CP}^{n-1/2}, \mathbb{Z}) \to H_i(M_n^d, \mathbb{Z})$ is an isomorphism for $i \leq n-1$. Let P_2 be obtained by translation of P_1 in such a fashion that it does not intersect P_1 . Let T_1 and T_2 be non-intersecting tubular neighbourhoods of P_1 and P_2 respectively. Then by a computation similar to the above of homology groups it can be shown that $\overline{M_n^d - T_1 - T_2}$ is an *h*-cobordism and therefore M_n^d is equivalent to a gluing of T_1 and T_2 by means of some homeomorphism of the boundaries.

Acknowledgement—The author is very grateful to Prof. B. Moishezon. Without his influence this work would not have been possible.

REFERENCES

- 1. A. HAEFLIGER: Plongements differentiables des variétés dans variétés, Comm. Math. Helv. 36 (1962).
- 2. F. HIRZEBRUCH: Topological Methods in Algebraic Geometry. Springer-Verlag, Berlin (1966).
- 3. F. HIRZEBRUCH, W. NEWMANN and S. S. KOH: Differentiable Manifolds and Quadratic Forms. Marcel Dekkar, New York (1971).
- 4. R. KULKARNI and J. WOOD: On the topology of non-singular hypersurfaces. Advances in Mathematics.
- 5. A. LIBGOBER: Geometrical procedure for killing the middle-dimensional homology groups of algebraic hypersurfaces, *Proc. Amer. Math. Soc.* 63 (1977), 198-202.
- 6. J. MILNOR: Singular Point of Complex Hypersurfaces. Princeton University Press, New Jersey (1968).
- 7. J. MILNOR, HUSEMOLLER: Symmetric Bilinear Forms. Springer, Berlin (1973).
- 8. J. MILNOR, ORLIK: Isolated singularities defined by weighted homogeneous polynomials. Topology 9 (1970), 385-393.
- 9. S. MORITA: The Kervaire invariant of hypersurfaces in complex projective spaces. Comment. Math. Helv. 50 (1975), 403-419.
- 10. J. WOOD: Removing handles from non-singular algebraic hypersurfaces in CP_{n+1} . Invent. Math. 31 (1975)] 1-6.
- 11. C. T. C. WALL: Classification of (n-1)-connected 2n-manifolds. Ann. Math. 75 (1962), 163-198.

Department of Mathematics of Tel-Aviv University,

Ramat-Aviv, Tel-Aviv, Israel