ON THE TOPOLOGY OF SOME
EVEN-DIMENSIONAL ALGEBRAIC HYPERSURFACES

A. LIBGOBER

(Received 27 September 1977; revised 20 March 1978)

1. INTRODUCTION

The topological structure of odd-dimensional hypersurfaces was investigated recently by several authors [5], [9], [10]. These results are the generalization of the classical handle-decomposition of Riemann surfaces and can be summarized as follows.

Theorem. Let V_n be a non-singular algebraic hypersurface of an odd dimension n and of degree d in an $(n + 1)$-dimensional complex projective space. Let T denote the PL-manifold which is obtained by gluing a cone to the spherical boundary of the plumbing of two copies of the tangent bundles of the sphere S^n. Then there are two cases

(i) If $d \equiv \pm 3 \pmod{8}$ or $n = 1, 3, 7$, then

$$V_n = k(S^n \times S^n) \# M_n$$

(ii) If $d \equiv \pm 3 \pmod{8}$ and $n \neq 1, 3, 7$, then

$$V_n = (k - 1)(S^n \times S^n) \# T \# M_n$$

where $k = (1/2)rkH_n(V_n, \mathbb{Z})$ and M_n is a manifold (generally piecewise-linear in case (ii)) which has the same homology as the projective space CP^n.

Note also that M_n can either be realized as a rational singular projective hypersurface [5] or as a gluing of two copies of some D^{n+1} disk bundle over $CP^{n-1/2}$ (see Remark 5 below).

The topology of even-dimensional hypersurfaces is considered in [4], where it is proved that it is possible to split off the maximal number of the handles $S^n \times S^n$. The manifold which remains after removing these handles is in general decomposable into a connected sum of more simple manifolds.

In this paper we describe the decomposition of some even-dimensional algebraic hypersurfaces into the connected sum of indecomposable almost differentiable manifolds (PL-manifolds with the differentiable structure on the complement of a point).

Let $F_{2n}(E)$ be the $2n$-dimensional manifold which is the plumbing of the tangent bundles of the sphere S^n according to the graph E [3]. The boundary of $F_{2n}(E)$ is homeomorphic to a sphere and we denote by $F_{2n}(E)$ the closed PL-manifold which is obtained by adding the cone over the sphere S^{2n-1} to the boundary of $F_{2n}(E)$. Let V_n be hypersurface of dimension n and degree d in CP^{n+1}. Our main result is the following:

Theorem. Suppose that $n \geq 2$, $n \equiv 2 \pmod{4}$ and d is even. Then

$$V_n = a(S^n \times S^n) \# bF_{2n}(E) \# M_n$$

where \approx stands for a PL-homeomorphism. a =
The manifold M_c^d can be obtained by gluing two copies of a certain D^d-bundle over \mathbb{CP}^n by means of a PL-homeomorphism of the boundary.

In conclusion we formulate some results concerning the decomposition of other classes of even-dimensional hypersurfaces; their proof is based on the same ideas used in the proof of the main theorem.

§ 2. PROOF OF THE MAIN THEOREM

Recall that all non-singular hypersurfaces of a given degree and dimension are diffeomorphic. So it is enough to describe the decomposition for some special model of a hypersurface V_n^d. Let us consider the hypersurface $V_n^d(c)$ which is the projective completion of the affine hypersurface defined by the equation

$$P_n(Z_1, \ldots, Z_n) = Z_1^d + Z_2^{d-1} + Z_3^{d-1} + \cdots + Z_n^{d-1} + Z_{n+1} = c.$$

The properties of this hypersurface are considered in [5]. For c sufficiently close to zero we denote by F_n^d the intersection of $V_n^d(c)$ with the ball B_ε of a small radius ε centered at the point with coordinates $Z_1 = Z_2 = \cdots = Z_n = 0$. Let

$$G_n^d = V_n^d(c) - F_n^d.$$

Proposition [5]

(i). The hypersurface $V_n^d(c)$ is a non-singular projective variety for $c \neq 0$ and has a single isolated singularity for $c = 0$ at the point $Z_1 = \cdots = Z_{n+1} = 0$.

(ii). F_n^d is an $(n-1)$-connected parallelizable $2n$-manifold with boundary and its n-dimensional Betti number b_n is given by

$$b_n = \frac{1}{d} \left((d-1)^{n+2} - 1 \right).$$

(iii). The characteristic polynomial $\Delta_n(t)$ of the monodromy of the isolated singularity of $V_n^d(0)$ can be computed by the recursive equation

$$\Delta_{n+1}(t) = \Delta_n^{-1}(t) \frac{t^{d(d-1)^{n+1} - 1}}{t^{d(d-1)^n} - 1}.$$

Sketch of the proof. (i) can be verified by direct computation. (ii) is a consequence of the fact that the polynomial $P_n(Z_1, \ldots, Z_{n+1})$ is weighted homogeneous of the weight

$$\left(d, d-1, \ldots, \frac{d(d-1)^i}{(d-1)^i + (-1)^{i+1}}, \ldots, \frac{d(d-1)^n}{(d-1)^n + (-1)^{n+1}} \right).$$

(iii) can be checked by using the Milnor–Orlik[8] algorithm for the computation of a characteristic polynomial of the weighted homogeneous singularities[5].

From now on we consider the case n is even and $n \geq 2$. We denote by $H_\ast(V_n^d, \mathbb{Z})$ the group of vanishing cycles, i.e. $\text{Ker}(H_\ast(V_n^d, \mathbb{Z}) \rightarrow H_\ast(\mathbb{CP}^{n+1}, \mathbb{Z}))$. This group can be also described as the image of the Hurewicz homomorphism $\pi_\ast(V_n^d) \rightarrow H_\ast(V_n^d)$ or as the orthogonal complement to the homology class h of the intersection of V_n^d and $\mathbb{CP}^{n+1}[4]$. Let us denote by l the projective space defined by $Z_1 = c'Z_0, Z_2 = Z_4 = \cdots$.
ON THE TOPOLOGY OF SOME EVEN-DIMENSIONAL ALGEBRAIC HYPERSURFACES

. . .= \sum_{i=1}^{n} a_i = 0$ belonging to $V_n^d(c)$. Note that the intersection of l with the small ball B, centered at the point with coordinates $Z_1 = Z_2 = \cdots = Z_n = Z_{n+1} = 0$ is a disk. Denote this disk by l_1 and $l = l_1$ denote by l_2. By abuse of notation we let l_1 (resp. l_2) also denote the relative homology class in $H_n(F_n^d, \partial F_n^d)$ (resp. in $H_n(G_n^d, \partial G_n^d)$) defined by l_1 (resp. l_2).

Lemma 1. (a) The homomorphism

$$i_F: H_n(F_n^d, \mathbb{Z}) \to H_n(V_n^d, \mathbb{Z})$$

is an imbedding and its image is the subgroup of vanishing cycles, $H_n(V_n^d, \mathbb{Z})_0$.

(b) The group $H_n(G_n^d, \mathbb{Z})$ is generated by h and the group $H_n(G_n^d, \partial G_n^d, \mathbb{Z})$ by l_2. In $H_n(G_n^d, \partial G_n^d, \mathbb{Z})$ holds the relation $dl_2 = h$.

(c) ∂F_n^d is a \mathbb{Q}-homology sphere with $H_{n-1}(\partial F_n^d, \mathbb{Z}) = \mathbb{Z}/d$.

Proof. (a) From (iii) of the proposition we conclude that $\Lambda_n(1) = d$ for n even. Hence $H_{n-1}(\partial F_n^d)$ is finite of order d [6]. By Poincare duality $H_n(\partial F_n^d) = 0$. We now consider the following Mayer–Vietoris sequence

$$0 \to H_n(F_n^d) \oplus H_n(G_n^d) \to H_n(V_n^d) \to H_{n-1}(\partial F_n^d) \to 0. \quad (1)$$

It follows that i_F is an imbedding. The image of i_F belongs to the subgroup $H_n(V_n^d, \mathbb{Z})_0$ because the Hurewicz homomorphism is onto for the $(n-1)$-connected $2n$-manifolds. The rank of $H_n(V_n^d, \mathbb{Z})$ is equal to $(1/d)(d-1)^{n-2} + (d-1)] + 1$ [4], [9]. Hence

$$rkH_n(V_n^d, \mathbb{Z})_0 = \frac{1}{d} [(d-1)^{n-2} + (d-1)] = rkH_n(F_n^d, \mathbb{Z})$$

by (ii) of the proposition. It follows that $i_F(H_n(F_n^d))$ has finite index in $H_n(V_n^d, \mathbb{Z})_0$.

From the diagram

$$\begin{array}{c}
H_n(F_n^d) \xrightarrow{i_F} H_n(V_n^d, \mathbb{Z})_0 \\
\downarrow \quad \quad \quad \downarrow \\
H_n(\partial F_n^d, \mathbb{Z})^* \leftarrow H_n(V_n^d, \mathbb{Z})_0^*
\end{array}$$

we obtain that this index equals 1 because

$$[H_n(F_n^d): H_n(F_n^d)^*] = [H_n(V_n^d)_0: H_n(V_n^d)^*_0] = d$$

(wher for an abelian group E we denote by E^* the dual group $\text{Hom}(E, \mathbb{Z})$).

(b) It follows from the sequence (1) that $H_n(G_n^d, \mathbb{Z})$ is a free cyclic group. Because the number of elements in $H_{n-1}(\partial G_n^d) = H_{n-1}(\partial F_n^d)$ is d we obtain that the square of the generator of $H_n(G_n^d, \mathbb{Z})$ is equal to d, i.e. h is a generator of $H_n(G_n^d, \mathbb{Z})$. The other assertions of (b) follows from this.

(c) The manifold ∂F_n^d is $(n-2)$-connected [6] and because $H_{n-1}(\partial F_n^d, \mathbb{Z})$ is a torsion group (see (a)) we obtain the first part of the assertion. The second one follows from (b).

Lemma 2. If d is even and $n \equiv 2 \pmod{4}$, then there exists an element $v \in H_n(F_n^d, \partial F_n^d, \mathbb{Z})$ such that $v^2 = -1/d$.
Proof. For any $2n$-dimensional manifold X we denote by $S(H_n(X))$ the intersection form on $H_n(X, \mathbb{Q})$. Since ∂F^d is a rational homology sphere we have ([3] p. 48)

$$(- S(H_n(F^d))) \oplus (S(H_n(G^d))) = S(H_n(V^d)).$$

Moreover it is computed in [4] that $l_i^2 = (1/d)[1 - (1 - d)^{2i+1}]$. Since $l_i = (1/d)h$ and $h^i = d$, we have $l_i^2 = 1/d$. Hence $l_i^2 = (1/d)[1 - (1 - d)^{2i+1}] - (1/d)$. According to [4], for $d > 2$ there exist elements e_i and e_i in $H_n(V^d, \mathbb{Z})$ and hence in $H_n(F^d, \mathbb{Z})$ such that $e_i^2 = 0$ and $e_i e_j = 1$. Let $a = (l_i, e_i)$ and $b = (l_i, e_i)$. Then the element

$$v = l_i + \left(b(a - 1) - \frac{1}{2d} [1 - (1 - d)^{2i+1}] \right) e_i + (1 - a) e_i$$

has square $-1/d$. Note that under the assumption of the lemma the coefficient of e_i is an integer.

Lemma 3. Let E be a free abelian group endowed with a non-singular integer symmetric bilinear form β. Let $E'/E = \mathbb{Z}/d$. Then β induces on E' a bilinear form with values in $\mathbb{Z}_{(d)}$-subgroup of \mathbb{Q}, which consists of the fractions with the divisors of d as denominator. If there also exists an element $v \in E'$ such that $v^3 = \pm 1/d$ then there exists an orthogonal decomposition $E' = A \oplus \{v\}$ where A is an inner product space and $\{v\}$ is a subgroup generated by v.

Proof. This is a special case of Theorem 3.2 from [7].

Now we are ready to conclude the proof of the main theorem. Note that the class v which was built during the proof of Lemma 2 can be represented by an immersed disk whose boundary is the sphere ∂l_i. According to A. Haefliger’s theorem for manifolds with boundary ([1] Theorem 4.1) we may suppose that v is realizable by an embedded disk with the same boundary.

Let T denote the tubular neighbourhood of this disk. Let us consider the manifolds $M^d_n = G^d_n \cup T$ and $N^d_n = F^d_n - T$. The abelian group $H_n(N^d_n, \mathbb{Z})$ endowed with the intersection form is isomorphic to A from Lemma 3, which built for $E = H_n(F^d_n, \mathbb{Z})$. It follows that the intersection form on $H_n(N^d_n, \mathbb{Z})$ is unimodular, even and indefinite. Because N^d_n is parallelizable (iii) of proposition) it follows that $N^d_n = a(S^n \times S^n) \cong bF^d(E_8)$. (\cong denotes the boundary connected sum.)

Now we consider M^d_n which is M^d_n with added cone to the boundary. Let P_1 denote the union of l_2 with the disk in F^d_n which represents V. Obviously P_1 is diffeomorphic to the projective space CP^n_2. It follows from (2) that the self-intersection index of P_1 is equal to zero. Let P_2 be obtained by a slight translation of P_1 in such a fashion that it does not intersect P_1. Let T_1 and T_2 be non-intersecting tubular neighbourhoods of P_1 and P_2 respectively. We prove that $M^d_n - T_1 - T_2$ is an h-cobordism between ∂T_1 and ∂T_2. Indeed from the exact sequence of closed subspace

$$\rightarrow H_i(P_1) \rightarrow H_{i-1}(M - P_1) \rightarrow H_{i-1}(M) \rightarrow H_{i-1}(P_1) \rightarrow$$

it follows that $M^d_n - T_1$ has the same homotopy type as P_2. Using the exact sequence of the pair we obtain that

$$H_i(M^d_n - T_1, T_2) = H_i(M^d_n - T_1, T_2) = 0.$$
Hence the assertion of the theorem about M_n^d follows from the theorem about h-cobordism for PL-manifolds.

§3. SOME CONCLUDING REMARKS

Remark 1. The PL-homeomorphism which is mentioned in the main theorem is not in general smooth, because M_n^d does not generally admit a differential structure. For example for M_6^d we obtain the following values of the Pontrjagin classes $p_1 = -8h^2$; $p_2 = 156h^4$ (h denotes the standard generator of $H^2(M_n^d, \mathbb{Z}) = H^2(V_n^d, \mathbb{Z})$). Furthermore, the signature of M_n^d is zero; thus if we assume that M_n^d is a differentiable manifold we obtain $[2]

\begin{equation}
0 = \text{sign}(M_n^d) = \frac{1}{945} (62p_3 - 13p_2p_1 + 2p_1^3)
\end{equation}

and therefore p_1 cannot be an integer cohomology class.

Remark 2. The hypersurfaces V_n^d for which $n = 2 \pmod{4}$ and d is even are exactly the hypersurfaces whose intersection forms on $H_*(V_n^d, \mathbb{Z})$ have even type (see [4]).

Remark 3. If $n \equiv 0 \pmod{4}$ or d is odd then a decomposition $V_n^d = N_n^d \neq M_n^d$ where N_n^d is $(n-1)$-connected and $rkH_* (N_n^d) = rkH_* (V_n^d) - 2$ exists in the following cases. Either $d \equiv 0 \pmod{8}$ (and then sign $M_n^d = 0$), or $d \equiv 2 \pmod{8}$ and all prime divisors of d has form $4l + 1$ (and then sign $M_n^d = 2$). Indeed, the existence of such a decomposition will imply that $H_* (F_n^d, \mathbb{Z})$ has a subgroup A of corank 1 on which the intersection form is unimodular. It would then follow that in $H_* (F_n^d, \partial F_n^d, \mathbb{Z})$ there exists an element v for which $v^2 = \pm 1/d$, but that is possible just in the cases listed above.

Note that non-existence of such a decomposition in the cases $d \neq 0, 2 \pmod{8}$ and $n \equiv 0 \pmod{4}$ or d is odd and $n \equiv 2 \pmod{4}$ follows from the fact that the intersection form on $H_* (V_n^d, \mathbb{Z})$ has even type together with the following lemma.

Lemma 4. If $n \equiv 2 \pmod{4}$ and d is even then $\text{sign} V_n^d \equiv 0 \pmod{8}$, otherwise $\text{sign} V_n^d = d \pmod{8}$.

Proof. As above let l denote the homology class of $\mathbb{C}P^{n+2}$ in V_n^d and h denote the class of the intersection of V_n^d with $\mathbb{C}P^{n+2}$. Each element $c \in H_* (V_n^d, \mathbb{Z})$ can be represented as $c = c_0 + \kappa l$ where $c_0 \in H_* (V_n^d, \mathbb{Z})$ and $\kappa = (c, h)$. It follows then that $(h, c) \equiv (c, c) \pmod{2}$ if $n \equiv 0 \pmod{4}$ or $n \equiv 2 \pmod{4}$ and d is odd. Hence from the van der Blij lemma (see [7]) it follows that $d - h^2 = \text{sign} V_n^d \pmod{8}$.

If $n \equiv 2 \pmod{4}$ and d is even then the intersection form on $H_* (V_n^d, \mathbb{Z})$ has even type and the congruence $\text{sign} V_n^d \equiv 0 \pmod{8}$ follows from [7].

Remark 4. Nevertheless if $n = 4$ (resp. $n = 8$) we have the following decomposition

$$V_n^d \neq P = N_n^d \neq M_n^d$$

where P denotes the projective plane over the quaternions (resp. over the Caley numbers), N_n^d is an $(n-1)$-connected manifold and M_n^d is a gluing of two copies of a D^n-disk bundle over $\mathbb{C}P^{n+2}$, and $rkH_* (V_n^d \neq P) = rkH_* (N_n^d) + 2$.

Remark 5. Let n be odd and $V_n = M_n \neq N_n$ where $\text{rk}H_*(N_n) = \text{rk}H_*(V_n)$ and N_n is an $(n - 1)$-connected manifold [5], [9], [10]. Then M_n also can be represented as a gluing of two copies of a D^{n-1}-bundle over $\mathbb{CP}^{n-1/2}$ by means of some homeomorphism of the boundary.

Indeed, let P_1 denote $\mathbb{CP}^{n-1/2}$ embedded in M_n such that the induced map $H_i(\mathbb{CP}^{n-1/2}, \mathbb{Z}) \to H_i(M_n, \mathbb{Z})$ is an isomorphism for $i \leq n - 1$. Let P_2 be obtained by translation of P_1 in such a fashion that it does not intersect P_1. Let T_1 and T_2 be non-intersecting tubular neighbourhoods of P_1 and P_2 respectively. Then by a computation similar to the above of homology groups it can be shown that $M_n - T_1 - T_2$ is an h-cobordism and therefore M_n is equivalent to a gluing of T_1 and T_2 by means of some homeomorphism of the boundaries.

Acknowledgement—The author is very grateful to Prof. B. Moishezon. Without his influence this work would not have been possible.

REFERENCES

Department of Mathematics of Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel