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31. INTRODUCTION

THE TopoLoGiCAL structure of odd-dimensional hypersurfaces was investigated
recently by several authors[5], [9], [10]. These results are the generalization of the
classical handle-decomposition of Riemann surfaces and can be summarized as
follows.

TueoreMm. Let V,! be a non-singular algebraic hypersurface of an odd dimension n
and of degree d in an (n + 1)-dimensional complex projective space. Let T denote the
PL-manifold which is obtained by gluing a cone to the spherical boundary of the
plumbing of two copies of the tangent bundles of the sphere S". Then there are two
cases

(1) If d#+3 (mod8) orn=1,3,7, then

Vnd - k(Sn X Sn) #Mnd
(i) If d==*x3(mod8) and n# 1, 3,7, then
Vi =(k—INS" XS #T #M,*

where k = (1/2)rkH,(V.*, Z) and M,* is a manifold (generally piecewise-linear in case
(i)) which has the same homology as the projective space CP".

Note also that M,? can either be realized as a rational singular projective
hypersurface[5] or as a gluing of two copies of some D"*' disk bundle over CP"™ '
(see Remark 5 below).

The topology of even-dimensional hypersurfaces is considered in {4], where it is
proved that it is possible to split off the maximal number of the handles S" X §". The
manifold which remains after removing these handles is in general decomposable into
a connected sum of more simple manifolds.

In this paper we describe the decomposition of some even-dimensional algebraic
hypersurfaces into the connected sum of indecomposable almost differentiable mani-
folds (PL-manifolds with the differentiable structure on the complement of a point).

Let F3,(E;) be the 2n-dimensional manifold which is the plumbing of the tangent
bundles of the sphere S" according to the graph Eg[3]. The boundary of F;,(Es) is
homeomorphic to a sphere and we denote by F,,(Ejg) the closed PL-manifold which is
obtained by adding the cone over the sphere $*! to the boundary of F,,(Es). Let V,¢
be hypersurface of dimension n and degree d in CP"*'. QOur main result is the
following:

THEOREM. Suppose that n>2, n=2 (mod4) and d is even. Then V, =

a(S" x S") #bF,,(Eg) # M, where = stands for a PL-homeomorphism, a=
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(1/2)(rkH,(V,#) = sign V.| =2) and b =(1/8)|sign V,!|. The manifold M, can be
obtained by gluing two copies of a certain D"-bundle over CP": by means of a
PL-homeomorphism of the boundary.

In conclusion we formulate some results concerning the decomposition of other
classes of even-dimensional hypersurfaces; their proof is based on the same ideas
used in the proof of the main theorem.

§2. PROOF OF THE MAIN THEOREM
Recall that all non-singular hypersurfaces of a given degree and dimension are
diffeomorphic. So it is enough to describe the decomposition for some special model
of a hypersurface V,% Let us consider the hypersurface V,%(c) which is the projective
completion of the affine hypersurface defined by the equation

PH(Z] N Z,,4.|) = Zld + ng_l + ZgZ}d_l +e+ Zn—lan_l + Z,.Z:{:: =C.

The properties of this hypersurface are considered in [5]. For ¢ sufficiently close
to zero we denote by F,? the intersection of V,%(c) with the ball B, of a small radius e
centered at the point with coordinates Z,=2Z,=-.-=27,,,=0. Let

Gl =V, (c)- F2.

ProposiTioN [5) (i). The hypersurface V,/(c) is a non-singular projective variety for
c# 0 and has a single isolated singularity for ¢ =0 at the point Z,=--- Z,., =0.

(ii). F,% is an (n —1)-connected parallellizable 2n-manifold with boundary and its
n-dimensional Betti number b, is given by

1 n+2 n
b, =E[(d— D"+ (= D"(d - D].
(iit). The characteristic polynomial A,(t) of the monodromy of the isolated singularity
of V.2(0) can be computed by the recursive equation
td(d..])nﬂ _ 1

Bnr(t) = A7) S

Sketch of the proof. (i) can be verified by direct computation. (ii) is a
consequence of the fact that the polynomial P, (Z,... Z,,,) is weighted homogeneous
of the weight

dd-1) dd-n"
(4.d- Lo o T A 1)"+(—1)"-'>'
(iii) can be checked by using the Milnor-Orlik [8] algorithm for the computation of a
characteristic polynomial of the weighted homogeneous singularities [5].

From now on we consider the case n is even and n > 2. We denote by H,(V,% Z),
the group of vanishing cycles, i.e. Ker (H,(V,% Z)— H,(CP"*!, Z)). This group can be
also described as the image of the Hurewicz homomorphism m,(V,?) = H.(V,?) or as
the orthogonal complement to the homology class h of the intersection of V,? and
CP***'[4]. Let us denote by ! the projective space defined by Z,=\/cZy, Z>= Zs=
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..-=Z, =0 belonging to V,%(c). Note that the intersection of [ with the small ball B,
centered at the point with coordinates Z,= Z,=:--=Z, = Z,,, =0 is a disk. Denote
this disk by [, and I—1I, denote by [,. By abuse of notation we let [, (resp. l-) also
denote the relative homology class in H,(F.%, 3F,) (resp. in H.(G,%, 3G,%)) defined by
l; (resp. by).

Lemma 1. (@) The homomorphism
iF: H,l(Fnd, Z) e Hn( Vnd, Z)

is an imbedding and its image is the subgroup of vanishing cycles, H,(V.%, Z),.

(b) The group H.(G.%, Z) is generated by h and the group H,(G,%, 3G,%,Z) by l.. In
H.(G2, 3G2.,,Z) holds the relation dl, = h.

(c) 3F,% is a Q-homology sphere with H, ,(3F,, Z) = Z/d.

Proof. (a) From (iii) of the proposition we conclude that A,(1)=d for n even.
Hence H,_,(dF,%) is finite of order d[6]. By Poincare duality H,(6F,%)=0. We now
consider the following Mayer-Vietoris sequence

0"") Hn(Fnd)C'BHn(Gnd)—) Hn(vnd)'—) H,,_|(¢9F,,d)—)0. (1)

It follows that ir is an imbedding. The image of ir belongs to the subgroup H,(V,% Z),
because the Hurewicz homomorphism is onto for the (n — 1)-connected 2n-manifolds.
The rank of H,(V,% Z) is equal to (1/d)[(d — 1)"**+(d — )] + 1[4], [9]. Hence

rREL (V. Z)o = 5 (d = 1"+ (d— 1)] = rkH,(F.%. Z)

by (ii) of the proposition. It follows that ic(H,(F,%)) has finite index in H,(V.% Z),.
From the diagram

H.(F)——— H(V.%, Z)

]

Hn(Fndv Z)* — Hn( Vnd» Z)O‘
we obtain that this index equals 1 because
[Hn(Fnd) : Hn(Fnd)#] = [Hn(vnd)o: Hn(vnd)o#] = d

(where for an abelian group E we denote by E* the dual group Hom (E, Z)).

(b) It follows from the sequence (1) that H,(G,% Z) is a free cyclic group. Because
the number of elements in H,_(3G,*) = H,_;(3F,%) is d we obtain that the square of
the generator of H,(G,%, Z) is equal to +=d, i.e. h is a generator of H,(G.%,Z). The
other assertions of (b) follows from this.

(c) The manifold aF,? is (n — 2)-connected [6] and because H,_,(aF.%, Z) is a torsion
group (see (a)) we obtain the first part of the assertion. The second one follows from (b).

Lemma 2. If d is even and n=2 (mod 4), then there exists an element v €
H.(F.2 8F2 Z) such that v’ = —1/d.
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Proof. For any 2n-dimensional manifold X we denote by S(H,(X)) the inter-
section form on H.(X, Q). Since 6F, is a rational homology sphere we have ([3] p.
48).

(= S(H,(F.) @ (S(HLAG)) = S(HL(V,)). (2)

Moreover it is computed in [4] that [ = (1/d)[1 - (1 — d)'"**"]. Since {- = (1/d)h and
h®=d, we have I;*=1/d. Hence ;> = (1/d)[1 —(1—d)"?"'] - (1/d). According to [4],
for d > 2 there exist elements ¢, and e- in H,(V.4, Z), and hence in H,(F,¢, Z) such that
e’=e’=0and eje;=1. Let a =(l;, e,) and b = ({,, e,). Then the element

v=1I1+ (b(a -1 —,)—la-[l -(1- d)“"z’“]>61+(l —a)e,

has square ~ 1/d. Note that under the assumption of the lemma the coefficient of e, is
an integer.

LemMa 3. Let E be a free abelian group endowed with a non-singular integer
symmetric bilinear form B. Let E™/E = Z/d. Then B induces on E* a bilinear form with
values in Z\-subgroup of Q, which consists of the fractions with the divisors of d as
denominator. If there also exists an element v &€ E* such that v*= +1/d then there
exists an orthogonal decomposition E* = A @{v} where A is an inner product space
and {v} is a subgroup generated by v.

Proof. This is a special case of Theorem 3.2 from [7].

Now we are ready to conclude the proof of the main theorem. Note that the class v
which was built during the proof of Lemma 2 can be represented by an immersed disk
whose boundary is the sphere 4/,. According to A. Haefliger's theorem for manifolds with
boundary ([1] Theorem 4.1) we may suppose that v is realizable by an embedded disk
with the same boundary.

Let T denote the tubular neighbourhood of this disk. Let us consider the
manifolds M,* = G,“U T and N,® = F,%— T. The abelian group H,(N.,% Z) endowed
with the intersection form is isomorphic to A from Lemma 3, which built for
E = H,(F,%, Z). It follows that the intersection form on H,(N,% Z) is unimodular, even
and indefinite. Because N,? is parallelizable ((ii) of proposition) it follows that
N.4=a(S5"x S") § bF~(Es) ( & denotes the boundary connected sum.)

Now we consider M, which is M, with added cone to the boundary. Let P,
denote the union of {, with the disk in F,® which represents V. Obviously P, is
diffeomorphic to the projective space CP¥>. It follows from (2) that the self-inter-
section index of P, is equal to zero. Let P, be obtained by a slight translation of P, in
such a fashion that it does not intersect P,. Let Ty and T, be non-intersecting tubular
neighbourhoods of P, and P, respectively. We prove that M,°— T,— T, is an h-
cobordism between 37T, and 3T.. Indeed from the exact sequence of closed subspace

— H{(P)—> Hixass(M - P)—> Hiyo(M)— Hi_((P) —

it follows that M,* — T, has the same homotopy type as P.. Using the exact sequence
of the pair we obtain that

HMS-T,~T, 4Ty = H{(M,* - T, T,)=0.
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Hence the assertion of the theorem about M,? follows from the theorem about

h-cobordism for PL-manifolds. ,

§3. SOME CONCLUDING REMARKS
Remark 1. The PL-homeomorphism which is mentioned in the main theorem is not
in general smooth, because M,? does not generally admit a differential structure. For
example for M,* we obtain the following values of the Pontrjagin classes p, = —8h*;
p>»= 156h* (h denotes the standard generator of H*(M' Z)= H(V,', Z)). Further-
more, the signature of M,' is zero; thus if we assume that M' is a differentiable
manifold we obtain[2]

L

0 =sign (M) = 943

(62p;— 13pap, + 2p1)

and therefore p; cannot be an integer cohomology class.

Remark 2. The hypersurfaces V,¢ for which n =2 (mod4) and d is even are
exactly the hypersurfaces whose intersection forms on H,(V,% Z) have even type (see

(4]

Remark 3. If n=0 (mod4) or d is odd then a decomposition V,*= N,* # M,*
where N,¢ is (n — 1)-connected and rkH,(N,*) = rkH,(V,?) — 2 exists in the following
cases. Either d =0 (mod 8) (and then sign M,? =0), or d =2 (mod 8) and all prime
divisors of d has form 4/ + 1 (and then sign M,? = 2). Indeed, the existence of such a
decomposition will imply that H,(F,%, Z) has a subgroup A of corank 1 on which the
intersection form is unimodular. It would then follow that in H,(F,% aF,", Z) there
exists an element r for which ¢° =+ /d, but that is possible just in the cases listed
above.

Note that non-existence of such a decomposition in the cases d# 0,2 (mod 8) and
n=0 (mod4) or d is odd and n =2 (mod 4) follows from the fact that the intersection
form on H,.(V.,% Z), has even type together with the following lemma.

LemMma 4. If n=2 (mod4) and d is even then sign V.4=0 (mod8), otherwise
sign V.Y =d (mod 8).

Proof. As above let [ denote the homology class of CP"in V,? and h denote the
class of the intersection of V,* with CPY**'. Each element ¢ € H,(V,%,Z) can be
represented as ¢ = ¢y + «/ where ¢, € H, (V2 Z) and « = (¢, h). It follows then that
(h,c)=(c,c)mod2if n =0(mod4) or n =2 (mod 4) and d is odd. Hence from the ven
der Blij lemma (see [7]) it follows that d = h*>=sign V,¢ (mod 8).

If n=2 (mod 4) and d is even then the intersection form on H,(V,% Z) has even
type and the congruence sign V,? = 0 (mod 8) follows from [7].

Remark 4. Nevertheless if n = 4 (resp. n = 8) we have the following decomposition
VA#P =N #MS
where P denotes the projective plane over the quaternions (resp. over the Caley

numbers), N,? is an (n — )-connected manifold and M,? is a gluing of two copies of a
D"-disk bundle over CP¥, and rkH. (V¢ # P)= rkH,(N,") + 2.
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Remark 5. Letnbe oddand V! = M,? # N,? where rkH,(N,*) = rkH,(V,?)and N,? is
an (n — 1)-connected manifold [5]. [9], [10]. Then M,” also can be represented as a gluing
of two copies of a D""-bundle over CP*""? by means of some homeomorphism of the
boundary.

Indeed, let P, denote CP"'? embedded in M, such that the induced
map H;(CP"™"?, Z)—» H,(M,%, Z) is an isomorphism for i <n — 1. Let P, be obtained by
translation of P, in such a fashion that it does not intersect P,. Let T, and T, be
non-intersecting tubular neighbourhoods of P, and P, respectively. Then by a com-
putation similar to the above of homology groups it can be shown that m isan
h-cobordism and therefore M,? is equivalent to a gluing of T, and T by means of some
homeomorphism of the boundaries.
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