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$1. INTRODUCTION AND SUMMARY OF RESULTS 

A COMPLETE intersection X,(d) C CP,,, is the transversal intersection of hypersurfaces 
defined by polynomials whose degrees are given by the unordered r-tuple d = 

(d,, . . . , d,). A different set of polynomials, with the same multidegree d, defines a 
diffeomorphic variety; in fact n and d determine the isotopy class of the embedding 

X” C CP”,,. On the other hand, different multi-degrees may correspond to diffeomorphic 
varieties. The simplest examples occur in the case of algebraic curves: X,( 1) = X,(2) = S2 
and X,(2,2) = X,(3) = S’ x S’. For these oriented 2-manifolds the diffeomorphism type is 

determined by the Euler characteristic, e = d(2 - x[=,(dj - l)] where d is the total 

degree, d = l7dj. 

A general problem is: what invariants, computed from n and d, determine the 
diffeomorphism type, or the homotopy type, of X in higher dimensions. In this paper 
we apply the exact sequence of surgery theory to obtain some partial results. One 
consequence is that in any odd dimension there are arbitrarily large sets of multi- 
degrees for which the corresponding complete intersections are all diffeomorphic. 

In 02 we study homotopy classification and show that, if n is odd and d has no 
divisors less than (n + 3)/2, the homotopy type of X.(d) is determined by n, d, and the 
Euler characteristic. 

The surgery theory is presented in 03 with some related computations in KO- 
theory and stable cohomotopy in 94 and 05. The concluding result of 93 is that the 
number of diffeomorphism types of complete intersections of degree d, with d 

satisfying certain conditions and with given Pontryagin classes and Euler charac- 
teristics, is less than a bound depending only on n. In 86 a counting argument shows 
the existence of diffeomorphic complete intersections. 

Some formulas for characteristic classes are given in 07. One consequence is a 
uniqueness result for the multidegree d in low codimension. If the dimension n and 
codimension r satisfy 2r I n and n > 2 then the degree and Pontryagin classes of a 
complete intersection determine the exact codimension and multidegree, see (7.1). 
(Thus codimension r > n/2 is necessary for the examples of 06.) Hartshorne has 
conjectured ([ll], p. 1017) that a smooth subvariety in CP,,, of codimension r 
satisfying 2r C n is a complete intersection. By (7.1) its total degree and Pontryagin 
classes would determine its multidegree. In 08 are two somewhat related uniqueness 
results: if X and Y are complete intersections, which are diffeomorphic, then they are 
ambiently isotopic. If X and Y are analytically equivalent (and if n 2 2 and c,X+ 0), 
then X and Y are equivalent by a projective linear transformation and necessarily 
have the same multidegree. This gives, in (8.3), examples for which the moduli space 
of complex structures on the smooth manifold underlying a complete intersection is 
reducible. 

*Partially supported by the NSF. 
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In $9 there is a survey of classification results applied to 3-folds and a number of 
explicit examples. 

Some results of this paper were announced in [18] with an outline of the proof. 

92. HOMOLOGY PROJECTIVE SPACES 

In this section we describe the homotopy classification of certain homology 
projective spaces which arise from complete intersections. 

Definition: A d-twisted homology CP,, n = 2m + 1, is a simply connected, 2n- 
dimensional CW-space M whose cohomology ring is isomorphic to 

Z[x, y]/{x”+’ = dy, y* = 0). 

where the dimensions of x and y are 2 and n + 1 respectively. 
The usual CP, is l-twisted and conversely any l-twisted homology CP, has the 

homotopy type of CP, (by Whitehead’s theorem). The result we need is: 

THEOREM 2.1. If n = 2m + 1 and if d has no divisors less than m + 2, then any two 
d-twisted homology CP,‘s are homotopy equivalent. 

In the case n = 3 this corresponds with known results on simply connected 
6-manifolds ([29], 01.5) as we explain in detail in 59. 

The connection with complete intersections is provided by the following. 

PROPOSITION 2.2. (i) There is a differentiable connected sum decomposition 

X,(d)=M#S”xS”#.-.#S”xS” 

where M is a smooth d-twisted homology CP, unless the Kervaire invariant of X,(d) is 
defined and nonzero. 

(ii) Otherwise there is a topological connected sum’ 

X,(d)=M#K#S”xS”#-..#S”xS” 

where M is a d-twisted homology CP, and K is the Kervaire manifold obtained by 
plumbing together at one point two copies of the tangent disk bundle to S”. 

(iii) For d odd (and nf 1, 3 or 7) the first case holds if and only if d = _‘l mod 8. 
It holds always for n = 1, 3, or 7. 

The case d odd is given in [27] and the complete result in [51. 

COROLLARY 2.3. If n = 2m + 1, and if d has no divisors fess than m + 2, then the 
homotopy type of X,(d) is determined by n, d, and the Euler characteristic or 
equivalently by its integral cohomology ring. 

An example in (9.2) below shows some condition on d is necessary. 

Proof. For n = 1 the Euler characteristic suffices. For n 2 3, the homotopy type of 
M is determined by n and d according to Theorem 2.1, d is odd so whether a K 
summand is present is determined by d mod 8, and the number of summands is 
determined by the Euler characteristic. 
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Twisted homology CP,‘s also arise from certain free S’-actions. Let M be a 
2m-connected (4m + 3)-manifold with Hz,+, (M) = Z/d. If S’ acts freely on M the 

Gysin sequence shows M/S’ is a d-twisted homology CP2,,,+,. If d has no divisors less 
than m + 2, then such an action is unique up to equivariant homotopy. There is a 
natural example of this: let M be the intersection in CZm+’ of the unit sphere with the 
hypersurface defined by 

The quotient M/S’ is a d-twisted CP 2m+l, see[l7]. Here M and the action are PI, but 
not smooth in the structure induced from Czm+‘. 

Proof of Theorem (2.1). Consider the map CP, + K(Z/d, n + 1) defined by the 

generator of H”+‘(CP, ;Z/d) and let E be the total space of the induced fibration 

K(Zld, n) --, E --) CP,. 

We show that up to dimension 2n the integral cohomology of E is that of a d-twisted 
homology CP,. Recall 

’ Z j=O 

H’(K(Z/d,n);Z)=*Z/d j=n+l 

_ 0 lcj<n or n+2cjc2n+l 

since d has no divisors less than m + 1. 

Spectral sequence arguments show that 

H’(CP,;Z)-+H’(E;Z) 

is an isomorphism for j I n; 

is exact for j even, n+l(j12n; and H’(E;Z)=O for j odd, lsjs2n+l. 
Moreover, arguments using the spectral sequence with Z/p coefficients for p dividing 
d show that H’(E ; Z/p) is cyclic for 0 I j 5 2n so the sequence above does not split, 
that is H’(E ;Z) = Z for j even, 0 5 j 5 2n. Further if x generates H2(E ;Z) = 
H’(CP, ; Z), then H “+‘(E ; Z) is generated by an element y such that x m+’ = dy and x’y 
generates H’j+“+’ (E;Z)forO5j5m. 

Now let M be a d-twisted homology CP,. The map M 4 CP,, classifying the 
generator in dimension 2 lifts to a map M +E whch induces an isomorphism in 
integral cohomology up through dimension 2n + 1. For any other such space the map 
M’+ CP, lifts first to E and then to M; hence it follows from the Whitehead theorem 
([2X p. 405) that two d-twisted homology CP,‘s are homotopy equivalent. 

03. DIFFERENTIABLESTRUCTURES 

In this section we use the surgery exact sequence to obtain a bound on the number 
of smooth structures with given Pontryagin classes that a 2n-dimensional twisted 
projective space M admits. Assume M has a given smooth structure: the surgery 



472 ANATOLYS.LIBGOBERANDJOHNW.WOOD 

exact sequence ([4], II 4.10) is 

O-, hS(M)+ [M, G/O1 A z/2. 

Following Brumfiel ([7], §4), to study [M, G/O] we use the exact sequence 

G-‘(M) + s:(M) + [M, G/O] --, &O(M) + j(M) 

induced from fibrations 

SO_,SG+G/O+BSO+BSG. 

Here 6>(M) = lim[Sq A M, Sq] = [M, SG] is reduced stable cohomotopy. 
Since n is odd the surgery obstruction is a homomorphism, cr: [M, G/O] -+ Z/2, ([22], 

p. 407). The following two lemmas will be proved in the next section. 

LEMMA 3.1. If M is a d-twisted homology CP, and d is odd, then G-‘(M) = 0. 

LEMMA 3.2. If d is odd the image of [M, G/O] in KO’(M) is free- 

It follows that ii,o(M) is the torsion subgroup of [M, G/O]. If the homotopy 
equivalence f : M, + M represents an element of hS(M), its image in KO’(M) is given 
by ~-‘*TM, - TM. By (3.2) this image is determined by the Pontryagin classes of MI, see 
([3], Lemma 2.25). In fact, the Pontryagin character ph = ch 0 c, c is injective except 
for 2-torsion, and ch is injective since H*(M ;Z) is torsion free ([2], p. 19). 

We have proved the first part of the following: 

THEOREM 3.3. Let M be a d-twisted homology CP, with d odd. 
(i) The smooth structures on M with fixed Pontryagin classes, if any, are in l-1 

correspondence with the elements of ker{a : ii,‘(M) -P Z/2}. 

(ii) The order of ii:(M) is bounded by the product of the orders of the even stable 
homotopy groups of spheres in dimensions 52n. 

Part (ii) follows immediately by using the spectral sequence converging to 
+f+‘(M) with 

Et9 = HP(M ; ii,4(point)). 

The coefficient groups are the reduced stable homotopy groups of spheres: 0, Z/2, Z/2, 
Z/24, . . . for q = 0, -1, -2, -3, . . . respectively. 

Remark 3.4. If d is even (3.1) is false in some dimensions and the proof of (3.2) 
breaks down. Still one can show that the torsion subgroup of [M, G/O] has order 
bounded independent of d and hence there is a bound on the number of smooth 
structures with fixed Pontryagin classes. In 95 a more precise bound will be obtained 
under additional assumptions on d. 

It follows from (2.2) that for d = + 1 mod 8 the diff eomorphism type of a complete 
intersection X,(d) is determined by the diffeomorphism type of M (the corresponding 
d-twisted homology CP,) and the Euler characteristic. If also d has no divisors less 
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than m + 2 the homotopy type of M is determined. Also the connected sum decom- 
position shows there is a map g : X,(d)+ M collapsing the handles such that 
~*(TM 0~‘) = 7X 0~‘. In cohomology g* is an isomorphism onto H**(X ;Z). There- 
fore the Pontryagin classes of M are determined by those of X. (One can also argue 
that M and X are cobordant and for these manifolds the Pontryagin numbers 
determine the classes.) Thus we have: 

THEOREM 3.5. The number of distinct difleomorphism classes of complete inter- 
sections of dimension 2m + 1 with given Euler characteristic, Pontryagin classes, and 
total degree d such that d = +l mod 8 and d has no divisors less than m + 2 is 
bounded by I*:(M)\ which in turn is less than a bound depending only on n. 

84. KO THEORY 

Consider first the Atiyah-Hirzebruch spectral sequence with EFq = 
W(it4; KOq(xO)) converging to E 2’ = KOfFq(M)/KO~~~(M) where the filtration on 
KO”(M) is induced by the skeletal filtration of M: 

KOp”(M) = ker{KO”(M)+ KO”(M’P-‘))}. 

Since H*(M ;Z> is free and concentrated in even dimensions, the spectral sequence 
shows KO(M) has no odd torsion. 

Replacing the map f : M + CP, up to homotopy by an inclusion, the cohomology of 
the pair (CP,, M) is given by 

Z/d q=n+2,n+4,...,2n+l 
Hq(CP”,M;Z)=(O 

otherwise. 
(4.1) 

If we assume d is odd, all differentials in the spectral sequence for the pair are zero 

and we find KO’(CP,, M) = 0 and KO’(CP,,, M) is a finite group of odd order, 
J(m + 1)/2], when n = 2m + 1. The exact sequence of the pair and the known results for 
CP,([23], (3.9)) then show 

rank E’(M) = rank G’(CP,) = m (4.2) 

torsion KO’(M) = torsion KO”(CP,) = 
Z/2 m even 
o 

m odd. (4.3) 

Let y generate the ring KO’(CP,). Then f!Y”‘+’ generates the Z/2 summand when 171: is 
even, [23, (3.9)1. To prove (3.2) we must show that f!y”‘+’ maps to a nonzero element 
in J(M). 

If d is odd the projection 7r : RP*“+’ -+ CP, can be lifted to E and hence to a map g 
such that 

M g /I f 

RP2”+’ 
-Lb CP, commutes. 

Then g!f!ym’l = x’ym+l which is nonzero in KO(RP*“+‘) and maps to a nonzero 
element of J(RP’““), ([l], p. 169). By naturality f!ym+’ also maps to a nonzero 
element. This proves Lemma (3.2). 
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TO prove (3.1) consider the spectral sequence converging to KO*(M). The term 
EF-P-’ is zero unless p = 8k when it is Z/2. But dl: E~k-‘,-8k+ E!jk.-8k-’ can be 
identified with Sq2 0 p2 : Hake2 (M ;Z)-* HBk (M ;2/2) which is onto for k > 0 and d odd. 
Thus EpeP-’ = 0 for r L 3 and all p > 0. 

85. STABLE COHOMOTOPY 

In this section we compare the surgery sequence for a d-twisted homology 
projective space M with the surgery sequence for CP,. Since n is odd the surgery 
obstruction u : [M, G/O] + Z/2 is a homomorphism, ([22], p. 407). 

LEMMA 5.1. If d is odd the diagram 

commutf?s. 

Proof. We must show a(u of) = u(u) for u E [CP,, G/O]. Since d is odd f induces 
an isomorphism in cohomology with Z/2 coefficients. It follows from the naturality of 
the Steenrod square that if o E H*(CP,,; Z/2) is the Wu class of CP, then f*u is the 
Wu class of M. The surgery obstruction can be computed by the formula ([7], (2.5)) 

a(u) = (u’(M) - U*(k), [M12) where K = kz + k6 + - - E H*(G/O; Z/2). A simple com- 

putation gives aCf*u) = u(u). 

LEMMA 5.2. If d has no divisors less than n + 3, then f * : +?(CP,) + ii,“(M) is an 
isomorphism. 

Proof. Consider the spectral sequence for the pair with EFq = 
Hp(CP,, M ; iisq(point)). From the cohomology with Z coefficients given in (4.1) we 
deduce E4.’ = 0 for p + q r0 since, by results of Serre ([25], 9.7.13), the coefficient 
groups are relatively prime to d for -q<2n+3, while for pr2n+2 the Z- 
cohomology is zero. Therefore T,‘(CP,, M) = 0 = T~‘(CP,, M) and the lemma follows. 

COROLLARY 5.3. If d has no divisors less than n + 3, then ker{o: [M, G/O] + Z/2} is 
isomorphic to ker{ u : [ CP,,, G/O] + Z/2}. 

Some computations of the groups ii:(CP,) and of u have been made by 
Brumfiel[6,7]. For n = 3, i;z(CP,) = Z/2 and u is an isomorphism. For n = 5, 
7;,‘( CP,) = Z/2 @ Z/2 @ Z/3 and u = 0. In this case fixing a homotopy type M with d 

satisfying the hypothesis of (5.2), for each pair of Pontryagin classes admitting a 
smooth structure there are 12 distinct smoothings. In general for m even, n = 2m + 1, 
u is zero ([16], Proposition 3.8). 

66. COUNTING ARGUMENT 

From (3.5) there is a bound, say N, on the number of distinct complete inter- 
sections in dimension n = 2m + 1 with given total degree, d, Euler characteristic, e, 
and Pontryagin classes provided d = ?lmod 8 and d has no divisors less than m + 2. 
The characteristic classes of X,(d) are given by polynomials in the symmetric 

i db In the next section we will show functions of dl, . . ., d, Let Sk = j=, , . 
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LEMMA 6.1. The characteristic classes of X,(d) depend only on n, r, d, and 
SI,. . . , s,. 

Our main result is a consequence of the following counting argument. 

THEOREM 6.2. Given integers n and N there are integers r and d, with d satisfying 
the conditions above, such that the number of distinct r-tuples (d,, . . . , d,) with 
product d and the same first n symmetric functions is greater than N. 

COROLLARY 6.3. In any odd dimension and for any integer k, there are k distinct 
multidegrees for which the corresponding complete intersections are all diffeomorphic. 

The Corollary follows from (6.2) and (3.5). 
The proof of (6.2) was suggested to us by A.O.L. Atkin. Consider 2r different primes 

PI..... p:, and set d = ZZp,. Let A be the set of unordered r-tuples (d,, . . . , d,) such that 

d = IIdj and each dj is the product of exactly two of the primes. Then IAl = $$. Let 

m = max p,. Then sk < rm ‘li. Consider the map A-2” defined by 

(d,, . . , d,)e(s,, . , s,). The image lies in the box B = n;=,[l, rmZk] which contains 
(B( = ,.nrnn(n41) elements. To prove the theorem we show we can choose the 2r primes less 
than m so that d satisfies the conditions and so that IAl > NIBI. 

Now we are not free to take arbitrarily many primes less than m; the prime number 
theorem states that the number of such primes is asymptotically m/log m. We meet the 
divisibility condition on d by excluding some small primes and the congruence condition 
by taking an even number of primes = 23 mod 8. These conditions can be met if we take 
3r = m/log m for m sufficiently large. Using Stirling’s formula, r! - V%r’+“2e-‘, the 
inequality becomes 

2 "1/2r'e-' > Nrflmn(fl+l,, 

or 

2’r’e-’ , N,t/j. 
r”m”‘“+” 

In fact as m tends to infinity with 3r = m/log m, the left hand side tends to infinity. (We 
leave this as a calculus exercise.) 

97. UNIQUENESS IN LOW CODIMENSION 

The results of this section hold for both even and odd dimensional complete 
intersections. We give formulas for the characteristic classes of a complete inter- 
section and show that the degree and Pontryagin classes uniquely determine the 
multidegree in low codimension. 

We can identify a complete intersection X = X,(d) C CP,,, with the same variety 
in a larger projective space: X C CP,,,,, where its multidegree is (d,, . . . , d,, 1,. . ~ , 1). 

THEOREM 7.1. (i) Let X,(d)C CP,,, be a complete intersection with 2r I n, n > 2, 
and with each di > 1. Then any complete intersection with the same total degree and 
Pontryagin classes as X,(d) has the same multidegree where we identify d with 
(d ,...., d,. 1, . . , , 1). (ii) In particular any complete intersection difleomorphic 
to X, (or even diffeomorphic to X,#S” x S”#+ . . #S”xS”), with 2rIn and n>2, 
has the same multidegrees as X, (so the parenthetical case cannot arise). 
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The surfaces X,(4), X,(3, 2), and X,(2, 2, 2) are diffeomorphic since they are K-3 
surfaces so the restriction n > 2 is necessary, see ([9], pp. 591-592). 

To fix notation let H denote the line bundle on CP,,, dual to the universal bundle. 
Then c,(H) is Poincare dual to the homology class carried by CP,+,_,. The embedding 

i: X” 4 CP,,, has normal bundle u(i) = ydQ - . * @ydr where y = i*H and yd = 
y@.*. @ y (d-times). The characteristic classes of X.(d) can be computed from the 
bundle equation TX,@ v(i) = i*~cP,+,. Setting x = i*c,(H) the Chern classes are 
given by 

{1+ c1+ c*+ * * *}l-I(l + djx) = (1 +x)“+‘+’ 

and the Pontryagin classes by 

(1 + p1+ p*+ * * .}l-I(l+ d/x*) = (1 + X*)“+r+l 

The elementary symmetric functions a, are defined by i a,x” = II,l,,(l + d+) and 
n=O 

the a, can be expressed in terms of the power sums Sk = Z d: for k I n. Thus 
j=l 

Lemma 6.1 is clear. At the end of this section we will give explicit formulas for the 
characteristic ChSSeS in terms of the Sk. 

To prove 7.1 we need the following: 

LEMMA 7.2. Let bi = dt and set a - 1 = (a, - 1,. . . , a, - 1). Then gk(a - 1) is given 
by a polynomial in pl, . . . , pk independent of r. 

1+ax2 
Proof. Using 1 + xz = 1 + 

(a - 1)x2 
1 + x2 the Pontryagin class formula above can be 

rewritten as 

u+Pl+Pz+. - $-I( 1 + (H x’) = (1 + x2)“+’ 

and hence 

{1+p,+pz+*** }io ok((l - 1) (1 $)c = (1 +x2)“+‘. 

The lemma follows. 

Proof of Theorem (7.1). Since kiOok(a - 1) = IIi=,(l + Uj - 1) = d2 we have 

d2-1 - rr,(a - 1) - * . ’ - (Tk((l - 1) = uk+,(a - 1) + uk+z(a - 1) + * * * 

Since each ai 2 1, the right hand side is r0 for any a and is =: 0 if and only if at most k 
of the oi are >l. Let X. be a complete intersection. For each k 5 n/2 the left hand 
side is determined by d and the Pontryagin classes of X.. It follows that if X,(d) has 
the same total degree and Pontryagin classes as some complete intersection of 
codimension r 5 n/2, then X, can have at most r of the di > 1. Further 1 - al,. . . , 1 - a, 
are the roots of the equation 

t’ + u,(a - l)t’-’ + * 9 * + u,(a - 1) = 0 
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and hence the Pontryagin classes of X, determine the multidegree. For (ii) when 
n > 2, the homotopy type of X, determines the total degree. 

PROPOSITION 7.3. Let X, C CP,,, be a complete intersection of given codimension r 

with n > 2 and 2r 5 n + 2. Then the total degree and Pontryagin classes of X, 
determine the multidegree. 

Proof. We need only extend the arguments above to cover the case r = [I t +l.In 

that case ~(a - 1) is determined by Pontryagin classes for k 5 r - 1 and, since 
uk(a - 1) = 0 for k > r, 

r-l 

(T,(Q-l)=d’-l- 
c 

Vk(Q - I). 
=I 

Hence as above (d,, . . . , d,) is determined. 

We conclude this section with some simple explicit formulas needed for the 
computation described in 09. The power sums sk are much easier to calculate than the 
ok. We have 

nl=,(l+ djx) = I + g,(sl)x + $ gz(sl, s~)x' + . . . 

1 
where the gl, are polynomials and (Tk = i;? gk(s,, . . . , Sk). The first three are g,(s,) = 

s,, g2(s,, s2) = s,‘- s2, and g, = s,~ - 3s,s2 + 2~~. They can be computed from the Newton 
formulae [13, p. 321 

Sk - g,sk-, + * * *+(-i)k&k=o, krl. 

Now let tk = i e:. It iS easy t0 see that 
j=l 

1 1 
>I 

1 
l+gl(s,)+~g,(s,,s2)+.** l‘Cg,(t,)+2!gz(t,,tz)+... 

I 

This identity holds also if the s’s and t’s are regarded as independent transcendental 
8. Therefore variables 

l+g,(trs,)+~gZ(t,-S,.f?-S?)+... l+g,(s,)+~g.(s,.s:)+...] 
11 

1 
= 1 + gdt,) + y gz(t,, t2> + . . . . 

Hence ‘(’ + eix) = 1 + g,(t, - 
1 

Kl(l + d;x) 
SI>X + F gz(t, - sl, t2 - sz)x2 + . . . . To apply this formula 

to compute the Chern classes of a complete intersection we take e, = . . e = en_,+, = 1. 
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Cl =(n + 1+ r- SJX 

ck=j$&(n+l+r-sl,..., fl + 1 + r - &)x ‘. 

The Euler characteristic 

e(X)=c.(X)n[X]=d-$g,(n+l+r-s,,..., n+l+r-ss,) 

since x” fl [Xl = d. 
Similarly 

p,=(n+l+r-sz)x2 

1 
p2=j 

( 
(n+l+r-s2)*-(n+l+r-sq) x4,etc. 

I 

58. AMBIENT ISOTOPY AND PROJECTIVE LINEAR EQUIVALENCE 

This section contains two results complementing the fact that complete inter- 
sections of the same multidegree are ambiently isotopic. First it turns out that for 
ambient isotopy of two complete intersections it is enough to assume they are 
diffeomorphic (and n > 2). Second if the complete intersections are equivalent as 
analytic manifolds they are isotopic in a very strong sense: through projective linear 
transformations. The projective linear transformations of CP,,, (maps induced by a 
linear map of C “+‘+I) form a connected group PGL(n + r + 1, C). Furthermore such 
manifolds have the same multidegree so the diffeomorphic complete intersections of 
(6.3) are not analytically equivalent. 

THEOREM 8.1. If X, and Y,, are complete intersections of dimension n > 2 in CP,,, 
and if X, is difleomorphic to Y,, then there is a diffeomorphism of CP,,, isotopic to the 
identity carrying X, to Y,. 

Proof. Case 2r 5 n + 2. By (7.3) X, and Y, have the same multidegree so they are 

ambiently isotopic see ([16], $4). Case 2r 2 n + 2. If i: X, + CP,,, and j: Y, + CP,,, 
are the embeddings and h :X,, + Y, is the diffeomorphism then i and j 0 h are 
homotopic for n > 2 since they induce the same map, a canonical isomorphism, on 
H*( ;Z) and this classifies maps to CP,,,. The embeddings are then isotopic by 
Haefliger’s theorem ([lo], p. 47) whose hypotheses follow from the inequality 2r 5 n + 2. 

For n 5 2 these maps may not be homotopic, the degree of X, is an invariant of 
the homotopy class of the inclusion map but for n = 1 or 2 the degree is not 
determined by X,, as a differentiable manifold. For example, the curves of degrees 1 
and 2 in CP2 are both diffeomorphic to S* but they represent different elements of 
7r2(CP2)_ Also they have different complements, see ([16], Theorem 1.2). In n = 2 the 
K-3 surfaces X2(4), X2(3, 2), and X2(2, 2,2) are diffeomorphic but have degrees 4, 6 
and 8 respectively ([9], pp. 591-592). 

THEOREM 8.2. If X,, and Y. are complete intersections of dimension n -> 2 in CP,,,, 
with c, # 0 in case n = 2, and if X. and Y, are equivalent as analytic manifolds, then 
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there is a projective linear transformation of CP,,, restricting to an equivalence of X, 

with Y,. Furthermore X, and Y,, have the same multidegree. 

Proof. There is a correspondence between analytic maps of a complex manifold X 
to CPN and analytic line bundles L over X with N + 1 global sections which do not 
vanish simultaneously at any point of X, see ([8], ~$2) for a description of this. Our 
proof extends to complete intersections the example on p. 177 of the book of Griffiths 
and Harris ([9], pp. 176-178) and removes a restriction on degree imposed there. We 
use their notation. The sections so,. . . , sN correspond to the map defined by f(x) = 

[so(x), . . . > sN(x)] E CPN. The bundle L = f*H, where c,(H) is Poincart dual to a 
hyperplane. The sections so,. . . , sN span a subspace EC H”(X, 6(L)) and other 

sections spanning the same space E correspond to maps which differ by a projective 
transformation of CPN. In general E = f*HO(CPN, 6(H)). If X, is embedded as a 
complete intersection then E = H’(X, O(L)), see ([12], III ex. 5.5). Hence two 
embeddings will differ by a projective linear transformation if they pull back analy- 
tically equivalent line bundles. The line bundles form a group Pit X = H’(X, Ox*). For 
a complete intersection of dimension 12 the first term of the exact sequence 

vanishes ([9], p. 156) so a line bundle is uniquely determined by its first Chern class. 
Therefore homotopic embeddings correspond to equivalent line bundles. For n > 2 
any two such maps are homotopic as seen in the proof of 8.1. Fbr n = 2 we make use 
of the fact that c,(X) is a multiple of c,(L) in H2(X ;Z) given by the formula at the 
end of 07. If f and f are analytic embeddings and if c,(X) # 0 then f*c,(H) and 
f*c,(H) are proportional. But both are indivisible cohomology classes ([19], Theorem 
(2.1)). Since both the corresponding line bundles admit global sections, the two Chern 
classes are both positive, so f*c,(H) = f*c,(H) and hence f and f are homotopic. This 
completes the proof of projective linear equivalence. 

The coordinate ring of X, C CP,,, is given in terms of the defining polynomials 

P,, * * . , P, by R = C[Zo, . . . , Z,+,l/{P,, . . . , P,}. The ring R is graded by degree (since 

the Pi are homogeneous) and the associated Poincare series 5 dim Rktk can be 
k=O 

computed to be (1 - t)+‘-‘IIl,,(l - t4) where deg Pi = di, see ([21], p. 131). From this 
rational function the multidegree d can be recovered, up to the equivalence of 
Theorem 7.1. 

Since there is a linear transformation carrying X,, onto Y. their coordinate rings 
are isomorphic as graded rings. In fact, for a complete intersection the coordinate ring 
can be defined in terms of the line bundle L by Rk = H’(X,, O(LBk)). Hence X,, and Y, 
have the same multidegree. 

An interesting consequence of this and a result of E. Sernesi was pointed out to us 
by B. Moishezon. 

COROLLARY 8.3. Let X, be a smooth manifold which underlies a set of k complete 
intersections with different multidegrees. Then the moduli space of complex structures 
on X, has at least k irreducible components provided n > 2 or n = 2 and X, is not K3. 

Proof. If two complete intersections, X, and Y,,, lie in the same irreducible 
component of the moduli space, they would be connected by a sequence of small 
deformations. Then by Sernesi[24], X, would be analytically equivalent to a complete 
intersection of the same multidegree as Y.. But by the theorem X,, and Y, must then have 
the same multidegree. Hence by (6.3) we have 
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COROLLARY 8.4. In any odd dimension n greater than 1 and for any integer k, there 
is a smooth manifold X. for which rhe moduli space of complex structures on X. has 

at least k irreducible components. 

An example in dimension two of moduli spaces with several components has been 
given by Horikawa [14]. 

09. SOME EXAMPLES OF 3-FOLDS 

The examples of diffeomorphic complete intersections with different multidegrees 
promised by the counting argument of $6 have very large codimension and degree. It 
does not seem 1ikely.a particular example would be found by that approach. Also the 
problem remains: given two complete intersections X,, and Y. of the same degree 
both corresponding to smooth structures on a given d-twisted homology projective 
space M and with the same Pontryagin classes, how to determine if X, and Y, give 

the same element of r:(M). 
For complete intersections of dimension 3 a sequence of papers by Wall[26], 

Jupp[lS] and iubr[28] gives a complete classification which we summarize. 
(i) X3 = Mf a(S3 x S3) where M is a smooth, d-twisted homology CP3. 
(ii) Two M’s with the same degree d, and classes w2 and p1 are diffeomorphic. 
(iii) These invariants satisfy 

w2 = 0 implies pl = 4d mod 24 

w2 f 0 implies pl = d mod 48 and d is even. 

Here pI denotes (p, U x)fl [Ml; recall the map sending u to (u U x) rl [M] is an 
isomorphism of H4(M ;Z) with Z. 

(iv) Given d, w2, and pl satisfying (iii) there is a smooth d-twisted homology CP, 
with the given invariants. 

(v) The homotopy type of M is determined by d and w2 unless w2 = 0 and d is 
even, in which case there are two homotopy types determined by d and p1 mod 48. 
(By (iii) and the work of iubr[29] the homotopy type of M determines pl mod 48 
unless d is odd, in which case only p, mod 24 is a homotopy invariant-as we saw in 
Theorem 2.1.) 

(vi) For complete intersections the homotopy type of M is always determined by 
w2 and d: if w2 = 0 and d is even, d = 0 mod 8+p, = 4d mod 48, d+ 0 mod 83p, = 4d + 24 
mod 48. 
(This follows from the formula pI = d(4 + r - s2) of 07.) In general w2 = cl mod 2 and for 
complete intersections w2 = p,/d mod 2. 

Example 9.1. If two complete intersections in dimension 3 have the same degree d 
and classes p, and w2, then one is diffeomorphic to the connected sum of the other 
with handles of the form S3 X S3, e.g. 

X3(12,10) = X3(15,4,2) #(13440)(S3 x S3). 

The invariants for this example and a second are: 

d p,ld e/d Cl d 

120 -238 -3494 -16 12 10 

120 -238 -3270 -14 15 4 2 

640 -113 -1353 -13 8 5 4 4 

640 -113 -1189 -11 10 2 2 2 2 2 2 
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By (7.1) it is impossible to have such an example in which one of the varieties is a 
hypersurface or, by (7.3), if both have codimension 2. 

Example 9.2. Homotopy equivalence. The following invariants give two examples 
of pairs of varieties which are homotopy equivalent but not diffeomorphic; the two 
smoothings have distinct p ,‘s. 

d PIId e/d Cl d 

3780 -434 -11792 -28 15 14 3 3 2 
3780 -426 - 11792 -28 18 7 6 5 

13500 -290 - 7012 -24 15 5 5 3 3 2 2 
13500 -258 - 7012 -26 10 9 6 5 5 

Here the same simply-connected homotopy type has two distinct smoothings 
which underlie complex manifolds. 

The examples 

d PIId e/d Cl d 

5184 -151 -2884 -19 6 6 6 6 4 
5184 -164 -2884 -18 9 8 3 3 2 2 2 

show that the homotopy type is not determined by d and e alone (that is not by the 
integral cohomology ring.) They are distinguished by w2. 

Example 9.3. Diffeomorphic complete intersections. The following invariants 
describe two pairs of diffeomorphic varieties: 

d PIId eld Cl d 

62720 -455 - 17040 -35 16 10 7 7 2 2 2 
62720 -455 - 17040 -35 14 14 5 4 4 4 

125440 -458 - 17954 -36 16 10 7 7 2 2 2 2 
125440 -458 - 17954 -36 14 14 5 4 4 4 2 

In this case the first Chern class cl is also the same. This implies that the three 
symmetric functions sl - r, s? - r and s3 - r are the same for the two multidegrees, 
hence appending the same additional term to each multidegree gives two new 
multidegrees with the same invariants. The second example comes from the first in 
this way by appending 2. 

An example of diffeomorphic complete intersections with different first Chern 
classes would give an example of a disconnected moduli space independent of the 
results in 98. We believe such examples can be found. 

These examples are easy to check but hard to happen upon. They were found by 
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computer search. The main idea is that a partition of n, n, +. . . + n, = n, corresponds 
to a multidegree, dj = nj + 1, with first Chern class cl = 4- n. The invariants d, -p,/d, 

-e/d, cl were computed using a subroutine ([20], p. 69) to generate partitions of n. 
These were sorted into order of increasing d, -PI/d, -e/d and then read to find 
duplications. We thank Neil Rickert for instruction and guidance in this project. 
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