On the fundamental group of the complement to a

discriminant variety

Jgor Dolgachev and Anatoly Libgober

1. Introduction.

Let 1:V = F" be a closed embedding of a smooth complex
algebraic variety into the projective space, % [ ¥h the dual
variety of 1(V). Its points parametrize hyperplanes which are
tangent to 1(V), or equivalently, singular hyperplane sections of
i(V). In this paper we discuss the group ﬂ1(¥n-¥) and compute it
in some special cases.

If L« P’ is a general 2-plane, then by the Zariski-Lefschetz
type theorem ([23],[LH]) ﬂl(;n-g) - ﬂl(L—Lﬁ§). The intersection
Lﬂ¥ is either empty or a plane irreducible curve with nodes and
cusps as singularities. Its degree, the number of nodes and cusps
can be computed by generalized Plucker formulas (see n°2). It should
be sa«id that the group ﬂl(PQ-C) for a nodal-cuspidal plane curve
C 1s known only in a few cases. We discuss in noj the previously
known examples of Zariski ([21]’[22]) of such groups. The presence
of cusps 1is an essential obstacle, since, as it had been recently
proven by Fulton-Deligne (see [D}), nl(PQ—C) is always abelian if
C has only nodes.

In the above mentioned examples of Zariski V = Pl

* The authors were partially supported by the National Science
Foundation.



There is a close relation between the braid groups of Riemann
surfaces and the homotopy groups of the diffeomorphisms groups of
Riemann surfaces (see [B]). In section 5 we speculate on a possible

generalization of this relation in the case of an arbitrary embedding

i:V-‘an.

2. The discriminant variety of a linear system.

Let V be a nonsingular projective algebraic variety over
complex numbers, L an invertible sheaf on V, E a linear subspace
of HO(V,E), P(E) the corresponding linear system of divisors on

V. Define the discriminant variety Disc(E,L) of the linear system

P(E) as the subset of points x ¢ PP(E) such that the corresponding
divisor Dx is not smooth (every positive divisor is considered as
a closed subscheme of V). This set is always closed in the Zariski
topology of the projective space [P(E) and hence has a unique
structure of a reduced algebraic subvariety of IP(E).

The most interesting case in which we will be involved is the
case where L 1is a very ample sheaf and E = HO(V,E). In this case
the complete linear system P(E) defines a closed embedding
1:V =~ P(E*). The discriminant variety in this case, denoted simply
by Disc(L), coincides with the dual variety S{V) of i(V). The
latter is defined as the set of all points x in the dual projective
space W(E*?/ = IP(E) such that the corresponding hyperplane H, is
tangent to 1(V) somewhere. An equivalent definition of ifv) can
be given also as follows (see [KL] p. 335). ILet 2z < P(E*) xiP(E)
be the canonical incidence correspondence between points and

hyperplanes, p,:Z = P(E*), P,:Z = P(E) the projections,
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and i:Pl - Fn is the Veronese embedding A In this case
ﬁh 1Y . n,.1
- vn(P } is canonically isomorphic to the space S (P~) of all
unordered n-tuples of distinet points on Pl. The fundamental group
of this space 1s known as the n-th braid group of the Riemann sphere.
It has been recomputed by many euthors who apparently were not aware
\4
of Zariski's papers (see [B]). A general plane section of vn(Fl)
is a plane curve of degree 2(n-1) with 3(n-2) cusps and
2(n-2){n-3) nodes. For n = 3 (a cuspidal gquartic) the group
nl(Pe-C) was computed algebraically by S. Abhyankar ([A]).
. v V. v
Fixing a point X, € ﬁh - V the fundamental group nl(En-V;xo)
has a natural representation p in the diffeotopy group of the

hyperplane section Hx of 1(V) corresponding to the point Xq
(o)

that is, the group of diffeomorphisms of Hx modulo isotopy. The
fe]

image of this representation can be called the universal monodromy
group. It has many interesting homomorphisms
into the automorphism group of different objects functorially

associated to Hx , .8 cohomology groups. The images of these
o]

homomorphisms were studied in many situations (see, for example,
{HA]). The computation of ﬂl(;n-i(V)Sl will be achieved if we know
the universal monodromy group, the kernel of p, and the extension
of the former group by the latter.

In section 4 we carry out the above program for the cases of the
Veronese embedding VE!PQ - 99 and the Segre embedding
82’2: Pl X Pl -IPS. The Segre embeddings are natural generalizations
of Zariski's examples; however, except some trivial cases, the above
cases are the only ones where we were able to succeed in computations.
We refer to the paper [L] of the second author in which the case
v3: E5 ~lP19 is discussed. Thils case was the main stimulus of our

work.



V=Vx « Zs P:V =« [P(E) the composition of the second projection
~

P(E")

V - Z and the projection Py- The variety V is nonsingular (it
is isomorphic to the projective bundle assoclated with the tangent
bundle T restricted to 1(V)). Under the first projection

- P(E")

V =» V the fibres of p are isomorphic to hyperplane sections of
i(V). The set S of all points where p 1is not smooth is a smooth
closed subvariety of V of dimension dim P(E)-1 (it is isomorphic
to the projective bundle associated with the normal bundle to i(V)).
Its projection into IP(E) 1is the dual variety of f{v). In the
majority of cases the dual varilety iYV) is a hypersurface in the
projective space P(E) (see some exceptional examples in [KL] p.360).
In the sequel we will always assume that 1(V) 1is a hypersurface.

Its degree d 1s computed by the formuls (see [KL] p. 361 or [K] 5.5.1)

v r
& = (1+1)deg(c,_;(0g)e (1)) (2.1)

where r = dim V, other notation is standard.

The dual variety ifv) is always irreducible. Its nonsingular
points correspond to those hyperplanes Hx(x € P(E))} which are
tangent to 1i(V) at exactly one point and H l 1(V) hes a non-
degenerate quadratic singularity at this point. Equivalently, the
set of nonsingular points of 1(V) 1s the largest open set over
which the projection p:S = i(V) 1is an isomorphism (see [K], prop.
3.5). The set of all points s € S where p 1is not an isomorphism
is the double locus of the induced map p:S = P(E) 'in sense of [K].
Its image D in 1(V) 1is the singular locus of Q?V). Let D,
(resp; Dn) be the set of points x € f(v) such that H, N 1(V) has
a unique singular point and the quadratic form of the local defining

equation has rank r-1 (resp. H N 1(V) has two non-degenerate



quadratic singularities), Then D = ﬁé U ﬁh and
v
codim(D-Dc—Dn,i(V)) > 2. In the case where ﬁé and Dh have
v
codimension 2 in |P(E) (or 1 in 1(V)) their degrees are given by
the following formulas

k = degD, = r<r;2 deg{1(V)) +

r
- ifl(r':+2)deg(rcl(o§) + 2e (0h)e; _(03))ey (DT (2.2)

vy n-2 _ _a_
6= deg D, = 3{a(n-1) + (-D)Te £ (P2)deg(d; gype, (1) 27)-

i=c-2" 1
r B2 n-2-1 1 n-2
(DT 5 den(oycpae (e (e, (L)) -,
where N 1is the normal bundle to 1(V) in P(E'), n = dim P(E),
-1 i -1 r 3
¢ = coaim(1(V), P(E)) =n -, (M) = (ze,(mtt) = roed .

3=0J

Formula (2.2) is given in [Rl], th.2. Formula (2.3) is based on
formula (V.9) of [KL] (or cor. 4.2 of [RE]) and simple computations
similar to (K], ¢5.

let P be & general 2-plane in P(E), then it intersects D,
at k points and Dn at & points. The curve P PN ffv) is a
plane irreducible curve of degree g which has k cusps and b

nodes &s its singularities.

Examples. 1. Veronese embeddings.

let V=P and vm:Pr - p° (n = (r;?) - 1) be the Veronese

maep given by the complete linear system P(HO(Pr,g r(m)). In this
P

case c(Q%) = (l-ht)r+l, h = cl(O r(1)). Also,
P

r+1

o+l 1 nt)™) . Plugging this into formulas (2.1)-(2.3)

e(N) = (1+mnht)



we easlily obtain

\V4 r
d = = (-7 Haa) ("t
i=0 r-i

_ r+2\ r r ,r-it+2 i r+l1 r+l roi

ko= r (T e 2 (0 )M ) + ete) ()t
6= 2a@-n-14(-1)* T a 12 (m(ne1) -2(r41)) (°77)
2 ionopo1 1-nrtl i
n-2 n-2
+ (-1)T(n-r) x ( 1 ) ai_n+r+2mn‘i'2) -k (2.4

i=n-r-2

-]

where n = ("“r) -1, ()™ (mt)™ - ¢ aJtJ )
m ; j=0

For example, if r

v
d=2m - 2, k

1 we get

3m - 6, 5= 2(m - 2)(m - 3);

2, V 1is an algebraic curve of genus g, d = deg (L),
n = aim #2(V,L) - 1. 1In this case formulas (2.1) - (2.3)

give
v
d =24 + 2g - 2
k=3(d+2g‘2)

6 = 2(3(8-n-1) + (n-3)(2g-2) + (2n-b)a) - 3(a+2g-2)

If 4 > 2g - 2, then by Riemann-Roch we have n = -g + 4 and

we get



a

I

2d + 2g ~ 2,

P
i

3(d + 2g - 2)

1

8=2(d - 2)(d -3) +2g(ed + g- T)

compare [22] p. 335)

3. V 1is a surface, D a very ample divisor, L = QV(D)’

0 1
n = dim Hl(vsov(D))' Let pa(v) = X(V9Ov(D)) -1, KV = cl(nv)s
n=dim H (D,OD), c, = cg(x) = ~(V,C). '
In thls case, simple computations yield
v
d=c, + bm - 4 4 D2
k = Ek(pa + n) (compare [zu] P.236)
v v
5 = 3(a(d-n-1) + (3n-15) D° + (2n-13)(DK) - 2K + (n-2)c,) - k
(2.5)
Special cases:
a) V= Pz, D a cubic curve
\%
d=12, k=24, 8§ =21
1 1
b) V=P %P, D is a curve of degree (2,2)
v
d =12, k=24, 5= 22
, ¢) V 1is a Del Pezzo surface of degree d (a nonsingular
surface of degree d in P4 with Qv(l) -~ 9(-KV)),
v
D= -K; 3dg9,d=12, k=24 &=30-4d
3. Zariski's examples.

As was mentioned in the introduction they correspond to the
case of a linear system on an algebraic curve.
Let L be an invertible sheaf or degree d on a nonsingular

algebraic curve V of genus g, E < HO(V,E) a linear subspace. Assume



that the linear system E determines a closed embedding

1:V =P = P(E*). Let @ Dbe the map that sends a point x ¢ ; = P(E)
to the corresponding divisor D = H, N i(v), where H  1is the
hyperplane section corresponding to x. In the sequel we will
identify the set of all positive divisors of degree d on V with the
symnetric product V(d) = Vd/sd, where Sd is the symmetric group
on d letters. Thus, we have & map a:E - V(d)‘ Let u:V(d) - Jd(V)
be the map which sends a divisor D to the isomorphism class of
invertible sheaves L = QV(D). The set Jd(V) is a principal

homogeneous space over the Jacobian variety J(V) JO(V). Clearly

< i

the composition W ea is a constant map. thus a(P) 1is a closed

subvariety of the fiber u'l(cl(g)). Let

d. —_—
A= {(vl,...,vd) e Vv, = vy for some 1 # J} / Sq
Then D (x ¢ P) 1s a singular divisor if and only if a(x) ¢ A.

Thus

Disc(E,L) =~ & N a(P) .

Let V(d) = V(d) - A, then we have a close embedding
v ~
a:P - Disc(E,L) ———> V(d)

Choosing & point %X, € P - Disc(E,E) the map a induces the

homomorphism

a*:ﬂl(é - Disc; xo) S nl(;(d); a(xo)) .

v
Since a(P) 1lies in a fiber, the image of o, is contained in the

kernel of the map u*:nl(v(d)sa(xo)) —_ ﬂl(Jd(V); uea(xo)) o 228

In general, one hardly can say anything about the homomorphism



v
a*:ﬂl(P - Disc(E,L)) —> Ker u,

The following cases are the only known cases to us where a, is an

isomorphism.

Case I. V=P, E=8(V,L), L= 0,(d). In this case J (V) 1is a
single point, a defines an isomorphism [P(E) =~ V(d) which induces

an isomorphism

nl(g - Disc(L)) => ﬂl(;(d)) = Ker u,

Case II. g > 1, deg(L) > 2g - 2, |E| a complete linear system,

ILet L bYe a universal invertible sheaf of degree d on V x Jd
(i.e. & |V x {x} = L, and cl(Lx) =x), E= p2*(m). Since d > 2¢
d > 2g - 2 the sheaf E 1is locally free of rank -g + d + 1 and
V(d) =~ P(E), +the projective bundle over Iy (see details in ).
Also, we have a universal embedding of the Jd—schemes

¥*
VJd =VxJ;—> P(E )

whose fiber over a point x ¢ Iq is the embedding V = P(HO(V,LX)).
Repeating the definition of the dual variety in this relative
situation we easily get that it colncides with A and 1t is locally
trivial over Jd. This shows that V(d) - A~ Jd is a Serre
fibration. hence, the exact homotopy sequence gives the needed
isomorphism.
F(a)
To compute Ker p, we first compute the group Bd(V) = ﬂl(V ),

called the d-th braid group of V. Then knowing its generators and

defining relations we can determine those for Ker u,  using the
standard process of Schreier ([MKS]).

To compute Bd(V) we represent it as the extension of the
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symmetric group Sd’ corresponding to the natural non-ramified
~
covering p:Vd - V(d) = Vd/Sd restricted over V(d). The kernel
of the homomorphism Bd(V) =S4 (= ﬂl(Vd-p'l(A)) is called the pure

d-th braid group and is denoted by Fd(V). The structural analysis

of this group is based on the homotopy exact sequence associated

with the fibration
A), (vl,...,vd) - (Vl""’vd-l)

with the typical fiber isomorphic to V - (d-1) points. The analysis
of this sequence gives a set of generators and defining relations

for Fd(V) (see [B], [S]). In the case g = 0 we get for Bd(V):

Generators: gl""’gd—l
Relations: gigJ = gjgi it [i-jl >2, 1 ¢ i, §j d-1
8183181 = &;_ 184857 2<1<ad-l
g, 8- .8 g, =1 (3.1)
By---83.083_ 18308 :

Here the group Fd(V) is the normal subgroup generated by the
squares of the gi's, the cosets of the gi's correspond to the
standard generators of Sd, considered as a Cogeter group.

Summing up we conclude that the group nl(P - Disc(L)) 1s
computable for any curve V of genus g and an invertible very ample
sheaf of degree d > 2g-2. Taking a general plane section we get
the fundamental group of the complement to a certain plane curve of
degree 2(d - g - 1) with 3(d - 2g - 2) cusps and
2(d - 2)(d - 3)-2g{2d + g - 7) nodes (see example 2 in n°2). 1In the
simplest nontrivial case where g = 0, d =3 one can make all
calculations as an exerclse and get the fundamental group of the

complement to & cuspidal quartic. It turns out to be a metacyclic



1"

group of order 12. Notice that the family of plane curves above can

be also characterized as dual curves to singular plane curves of

genus g with maximal number of nodes.

The braid groups of Riemann surfaces Bd(V) have a close
relation to the mapping class groups which play an important role in
the uniformization theory (see [MA]).

Let Difft(M) be the group of orientation preserving diffeomor-
phisms of a smooth manifold M endowed with the Whitney C'-topology.
Then the group pirft(V) acts transitively on the set of d distin-
guished points on a Riemann surface V. Thus, fixing a point
X, € ;(d) we can identify the space ;(d) with the coset space
pift*(v)/Difft(V,x ), where piff*(V,x ) denotes the subgroup of
diffeomorphisms which leave Xo invariant. Applying the exact

homotopy sequence we get the exact sequence of groups
m, (Dirg*(v);1a) LN ﬂl(V(d);xo) > (Diegt(V,x );31d)

—— n (DiefT(V)31d) - (1) (3.2)

The group ﬂo(Diff+(M);id) is the group of isotopy classes of
orientation-preserving diffeomorphisms. In the case of Riemann
surfaces it 1s called the mapping class group and is denoted by M(g).
Its subgroup no(Diff(V,xo);id) is denoted by M(g,d). In this case
one can change diffeomorphisms by homeomorphisms without changing

the groups.

Using the sequence (3.2) one can prove that
()
B(m, (Diff(V);id) = Center ﬂl(V 3x,) (3.3)

Except the trivial cases g=1, d=1 and g=0, d 2
we have (see [B], 4.1):
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1 > Z2/3

> 5L, () > PSL,(a) > 1

In order to describe those groups more explicitly we first

consider the extension K

1 > 2/3 > K >8/302/3 —>1 (4.3)
of the group Z/3 @ Z/3 of translations by the points of order 3.
For the curves given in the canonical Hesse form:
x3 + y3 + 23 - 34 xyz = O

the group of translations consists of the matrices ([M], [E])

1 0 0 0 o i o o
0 1 o 0 w 0 0 w 0
2
(0] 0 1 N 0 0] w R 0] 0 W
(0 = 1)

1 o 0 1 0 1 o0

o o 1 0 0 w o o0 @ (h.%)
2

1 o o/ , w> 0 o , 0 o

Q
(o)
et

o

5 0 T 5 0 1

1 0 o w 1 @ 0 1
2

o 1 o/ , No w o 0 ® 0

All those matrices are of order 3 (as elements of SLB(E) and
not Jjust PSLB(E)!), Therefore K 1s the group of exponent 3 and
order 27 (o©obviously non-abelian), There is only one such group (H])
and 1t is isomorphic to the Helsenberg group of unipotent 3 x 3

matrices over 2/3:



.
(1} if g>2

Center(By(V)) =4 7 if g=1,4d 2

2/2 if g

0, d>3

\

In the case g = 0, m(Diff(V);id) = "1(Diff(sg);id) =~ Z/2 according
to Smale [9].

In the case g > 1, m (Diff V, 1d) = m (Aut_(V),1d) = 7 (g =1)
or (0} (g > 1), where Auto(V) is the connected group of auto-
morphisms of this complex manifold V ({EE]).

Thus we get

Center By(V) = m (Diff(V);ia) (3.%)

In the case g = 0 the group M(0) is trivial and
M(0,4) =~ Bd(Pl)/Center can be computed using presentation (3.1)
of Bd(Pl). In this presentation the center is generated by the
element (gl...gd_l)d. In the case g > 2 only generators of
M(g,d) are known (the so called Dehn twists).

4. Fundamental groups arising from some

systems of elliptic curves

In this section we compute the fundamental group of the com-
plement to the plane curves of €xamples 3a,b of §2. First we

consider the case V = lP2

and L =0 ,(3). We start by defining
some groups assoclated with elliptic iurves in terms of which the
answer will be glven.

The group of biregular authomorphism of a cubie curve is the
semli-direct product of the group of translations and the group of

automorphism of the abelian variety assoclated to the cubic curve

by fixing a point as its zero point. The latter group for different



values of the Jj-invarinat is given in [C].

;

7/ §=0
At c, = J Z/6 =1 (%.2)

2/2 i+ 0,1

\.
Any automorphism of Cj is determined by its action on the points

of order 3. This identifies each Aut Cj with the subgroup of
SIQ(Z/B). Any element of Aut Cj is represented by a projective
transformation of Pg. The translations which are projective trans-
formations are translations by points of order 3. Indeed, a
translation by point x does not change the class of linear equi-
valence of an effective divisor of degree 3 which provides the
embedding if and only if x has order 3. We denote the group of

projective automorphisms of a cubic curve by GO, G G according

17 T2

to the values j = 0, 1, or j # O, 1 of the j-invariant of the
corresponding elliptic curve. Those groups are the extensions of
subgroups of SLZ(Z/B) defined by the representation of the affine

linear group SA(Z/3) as an extension

1—> 7/30 2/3

> SA,(2/3) > 8Ly (2/3) —> 1

In other words, G_,G;,G, &are the subgroups of 813(2/3) of matrices

of the form

oy (4.2)

0 1

where x ¢ Aut C;l c SLQ(Z/B) and y e Z2/3 @ 7/3.
] ~

Let Go’ Gl’ G2 be the central extensions of the groups Go’Gl’GE

respectively, induced by the extension



0 1 ¢ a,b,c € Z/% (4.5)

~

The group GJ now can be determined from the exact sequence

~

1 > K > Gy > Aut C

g >4

which 1s the semidirect product. The homomorphism

Aut CJ ——> Outer Aut K/ Inner Aut K defining this extension is
given by
1 a b 1 wl(a,c) b
® —> 0 1 ¢ —_—_s | 0 1 mz(a,c)
0O 0 1 0 0 1

(4.6)
o

where (a.c) > (wl,(a,c), me(a,c)) is an automorphism of

Z/3 ® 7Z/3 obtained from the identification Aut C, with a subgroup

J

of (SLQ(ZVB) (Indeed Aut C, acts trivially on the center of K

J

L]
because it is also the center of G.).

J
Now we are ready to describe the fundamental group "l(UB) of

the complement to the discriminant variety , where

U3 = P(H°(P2, 0P2(3)) - Disec.

We can identify U3 with the space of non-singular plane cubles.

Let Inf < P(H?(F?,0 ,(3)) x P° be the graph of the incidence
3

correspondence, consisting of the pairs (C,x) where C 1is & cubic

curve and x 1is an inflectilon point of C. As usual P,,P, be the

projections of Inf to the factors. Let ﬁ% = pil(UB). The group

PGL(3,€) acts on the both ﬁ% and 65' We have

Ué/PGL(},m) = UB/PGL(B.E)
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because PGL(3,E) acts transitively on the set of inflection points
of any cubic curve. Indeed inflection points correspond to the
points of order 3 and PGL(3,I) contains all translations by points

of order 3.

On the other hand
53 / PGL(3,T) = €

and isomorphism is given by the j-invariant (see [C]). The action

of PGL(3,&) on U, 1is proper ([M2]) with finite isotropy groups.

3

Therefore ([H]) the orbits 0, and O;, consisting of the curves

with the j-invariant equal to O or 1 respectively, have slice
neighborhoods T(Oo) and T(Ol) each isomorphic to

(B x PGL(B,E))/GJ. Clearly U can be retracted on the union of

3
T(Oo) and T(Ol) and the intersection is homotopy equivalent to
T(0,) (J 4 0,1.) —
J T 0) _—
=t )

By the Van Kampen theorem we deduce

m(Uz) = m(T(0,)) ,,l(Tfog)) 1, (T(07))

g
The groups ﬂl(T(Oo)), nl(T(Ol)), nl(T(OZ)) are isomorphic to G_.

o]
~ ~

Gl’ G2 respectively. This gilves
.d ~
"l(UB) = G : Gy - (4.7)
Ga

Now let us consider the monodromy map
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m: 'rrl(UB,p) —_— Aut(Hl(Cp,Z)) = SL2(Z)

(Here p 1is an arbitrary point in U3 and Cp is the corresponding

cubic curve)

"~
In each group G(j (which is the subgroup of ”1(U3’p)‘
cf [Se]) this map takes subgroup K into the identity. Indeed the

elements of K induce by monodromy the diffeomorphisms on Cp

which corresponds to the translation. But clearly they are homotopy

to the identity map and hence induce the identity on Hl(Cp,Z).

( The homotopy for the translation X = x + a 1is the family of the

translations x = X + a where a is a path in Cp connecting a

t t
with the zero on Cp). All other elements of Ej act nontrivally

on Hl(Cp,Z). Hence m takes Gy % 7/6 = SI?(Z)

G, onto 7/4 x
G zZ
2

/2

and we obtain the exact sequence

(4.8)
This sequence allows in particular to compute the center of
"I(UB’p)‘ The only non-trivial central element of SLQ(Z) is the

image of the element in G, represented in form (%.2) by

2
-1 0 0
0 -1 0
0 0 1

which is not in the center of G2.
Thus we have

Center ("1(U3‘p)) = Center (K) = 2/3 (4.9)
Now we turn to the computation of the fundamental group of the

complement to the discriminant in the second case of example 3



1

i.e. V=P x Pl and L=0 l(2,2). In this case we can identify

U2’2 = P(HO(Pl x P - Disc with the space of non-
singular elliptic curve lying on & quadric V = Fl X Pl in PB. Our
computation in this case is rather similar to the described above.
However, several words should be said about the choice of analogue of
the group PGL(3,E). The natural candidates PGL(4,T) and

PSO(4,EL) = Aut V are not appropriate here. The former group 1s too
big, because it does not leave stable the set of curves lying on a
quadric. The latter group PSO(4,E) = Aut V = PGL(2,&) x PGL(2,T) is
two small, because it does not act transitively on the set of biregular
equivalent elliptic curves on V. We use the group P instead, which
is the subgroup of PGL(4,&) consisting of transformations which take
a  fixed elliptic curve on V into a curve lying on the same surface
V. P can be described also as a subgroup of PGL(4,&) which in the
natural representation on the space P(Ho(Pz,O 2(2))), takes a fixed
line 4 passing through a fixed point « intg a line through the
same point a. Those two definitlons of P are equivalent, because
quadrics in P° are identified with the elements in P(H(P>,0(2))
and elliptic curves in P3 are represented by lines in this space.
The group P acts transitively on the points of 4 Dby the formula

'l(a). The isotropy group o under this action is PSO(4,T)

PSO(Y4,T
( )> pl 2

-]
> ©
and the fibration P

a

(@) = 8° admits a sectilon, Hence

TTl(P) = nl(Pso(u,u:) ~2/2 © 7/2

The group of translations of an elliptic curve on V which are in
P 1is the group of translations by the points of order 4 {only those
translations are induced by projective transformations). For the

curves written in the canonical form:



2
Xl + X3 = 2\ Xo X2
2 2
Xo + X2 = 2 X, X3

this group generated by the matrices [M1)]

o 1 0 0 1 0 0 O©
0O 01 © 0O i 0 ©
—— - .2—
U = 0 0 0 1 and V = 0 0-1 o (l ___]_)
(4.11)
1 0 0 0O O 0 O -i

The central extension of the translation group is the subgroup Q

G2
of the universal covering P of P, generated by matrices (4.11)

and
-1 0 0 O 10 0 0
01 0 © 0-1 0 0
o 0 0-1 0 and eg=\ 0 0-1 0 (4.12)
0 0 0 1 0 0 0 -1

Therefore Q 1s a non-abelian group of order 64 and exponent I,

which can be represented as an extension of the form

1 —> 2/20 2/2 >Q —> 2/40 2/h —> 1

As it was kindly explained to us by R. Griess and N. Ito these

properties define unigquely the group. We have
Q = zZ/2x H

where
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1 a b
H =
0 1 e € GL{(3,7z/4), a,b,c ¢ Z/4
0o 0 1 1 0 2¢
0O 1 O
0 0 1
Note that
Center(H) = (z/2)°
and hence
Center Q = (2/2))1L (4.13)

Let 66, Gi, Gé denote the groups of automorphisms of an elliptic
curve in P3 induced by projective transformations. They are the
semidirect products of the group of translations Z/4 ® Z/4 and
groups Aut Cj_ defined by (4.1) with the matrix presentation (4.2)
where x ¢ SLQ(Z/A) and vy € z/4® z/4.

[

- '™
let Ga, Gi, Gé be the central extensions of the group G6,G',

Gé induced by the universal extension of P. They admit a

description which is similar to the given above for 53. By
considering the action of P on U2 > and applying again the slice

theorem and Van Kampen theorem, we deduce

_ ) )
m(Up 0oP) = G % 6]
e

Moreover the monodromy map yields the following exact sequence
1—>Q—>m(U; 5p) —> 8L,(2) —> 1 (4.14)

where Q 1s defined above.

Note that the similar arguments as in the case of plane cubics
show that the center of nl(U2,2‘p) 1s the same as the center of Q
i.e. isomorphic to (272)4.

Finally we remark that the groups rrl(U2 ») and ﬂl(UB)
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both have the commutator subgroups with torsion elements. For

example , for nl(Ua’p) we have

my (Ug,0)/ [7y(U5,0), my(Uy,0) ] = 2712 (4.15)

because the degree of the discriminant variety is 12. Therefore the

homomorphism K

> ™ (Uz)/ [Vl(UB),ﬂl(Ul)] is not injective.

This provides an answer to a guestion in [O].

5. Variations on the theme of the mapping class groups.

Here we speculate on possible relations between computations
of the fundamental group of the complement to a discriminant variety
and the homotopy groups of diffeomorphisms groups. As we saw in
§3 there is such a relation in the cases of curves.

Sequence (3.2) can be easily generalized as follows. Instead
of ;(d) we may consider the space Im{W,V) of all smooth
orientation preserving embeddings of a smooth compact manifold W
into a smooth compact manifold V endowed with the Whitney c®-
topology. Fixing an immersion iO: W = V we consider the connected
component Im(W,V)O of Im(W,V) containing i,- Then the group
pifft(V) = Im(V,V) acts transitively by compositions on Im(W,V)o
({CE], p.116) identifying the latter with the coset space
Diff+(V)/Diff+(V,io(w)), where the second group is the subgroup of
diffeomorphisms which leave io(w) invariant. Now, the exact

homotopy sequence yields
4]
m (Dieef(V)5aa) 2 my (Im(W,V)51) = MV, W) = M(V) = (1} (5.1)
Here M(V,W) = Diff*(v,1_(W)/ isotopy, M(V) = M(V,8) are the

generalized mapping class groups.

Let V be a nonsingular algebraic variety and 1: V = e
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vn V
its closed embedding. Fixing a point x_ e F'-i(V) we have an

o
immersion i,: W =V, where W = D, = Hy N i(v). Varying x in
o o

vn M
PP-i(V) we get an injective map

B-1(v) —— In(w, V),

It is not difficult to prove that this map is continuous with
respect to the usual Hausdorff topology of F? and the Whitney

C“-topology of Im(W,V). Thus, we obtain a homomorphism of groups

Ep ~
v m (E7-1(V)5 x ) > ﬂl(Im(W,V)ioslo)
Question 1. What one can say about this homomorphism?

For example, suppose that we know that the map v 1s surjective.
Consider the universal monodromy map p:nl(gh-ffv); xo) - M(W)., Let
r:M(V,W) = M(W) be the restriction homomorphism. Since it is always
surJective ([CE],p.114), exact sequence (5.1) shows that p will

be surjective as soon as the group M(V) is trivial,

Question 2, Is every orientation-preserving diffeomorphism of the
complex projective space zF”  is isotopical to the identity map
(that is, wo(€F",1d) = (1})?

The positive answer to this question will certainly agree with
computations of section ¥, Returning to sequence (5.1) we may
ask the following question (keeping in mind the analogy with the

case of the braid group (3.4)).

Question 3. Is it true that

a(ﬂl(Diff(V),id) = Center (ﬁl(Im(W,V); 1))¢

Suppose that <« 1s injective. Then a(ﬂl(Diff Vv);ia) N

vV v
nl(Pn - i(v); xo) lies in the kernel of the universal monodromy map
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V; v
p:rrl(Prn - 1(V);1id) « M(W). The positive answer to the question 3
WV, v
would imply that a(nl(Diff Vv);ida) n nl(Pn - 1(V); xo) lies in the
v, v
center of ﬂl(Pn - i(v), xo).

Let Auto(V) be the subgroup of Diff'V consisting of
automorphisms of V as a complex manifold. 1In the case dim V=1,

Aut (V) 1is a retract of Diff(V) ([EE]) and hence the natural map

B :my(Aut (V); id) > nl(Diff*(v); i4)

is an isomorphism. In general the map i 1is not surjective anymore
([ABK]). Composing B with o we get a map (assuming question 3

is solved postively)
. v, v
nl(Auto(V); id) —> Center nl(Pn - 1i(v), xo)

In the examples considered in $4 we have

2/3 (the first example)

frl(Auto(V)) =
z/2 ® Z/2 (the second example)

Z/% (the first example)

V.
Center nl(Pn-1(§);xo) =
(2/2)4 (the second example)

Here there exists a non-trivial homomorphism from one group to another
This gives a certain evidence to question 3. Alsoc 1t poses another

question

Question 4, Is it true that the map
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2);14)

n, (ut_(€%);1a) = 7/3 > m, (Diff TP

is non-trivial.

Notice that the answer is positive if we replace sz by

ept x opt.
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