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1. Introduction. 

Let i:V - pn be a closed embedding of a smooth complex 

algebraic variety into the projective space, ~ c ~ the dual 

variety of i(V). Its points parametrlze hyperplanes which are 

tangent to i(V), or equivalently, singular hyperplane sections of 

i(V). In this paper we discuss the group ,i(~-~) and compute it 

in some special cases. 

If L ~ pn is a general 2-plane, then by the Zariski-Lefschetz 
@ v v 

type theorem ([Z3],[LH]) ~l(Pn-v) - ~I(L-LDV). The intersection 

L~ is either empty or a plane irreducible curve with nodes and 

cusps as singularities. Its degree, the number of nodes and cusps 

can be computed by generalized Pl'ucker formulas (see n°2). It should 

be sald that the group ~l(P2-C) for a nodal-cuspidal plane curve 

C is known only in a few cases. We discuss in n°3 the previously 

known examples of Zarlski ([Zl],[Z2]) of such groups. The presence 

of cusps is an essential obstacle, since, as it had been recently 

.i(~2 proven by Fulton-Dellgne (see [D]), -C) is always abellan if 

C has only nodes. 

In the above mentioned examples of Zariskl V = pl 

* The authors were partially supported by the National Science 
Foundation. 



There is a close relation between the braid groups of Riemann 

surfaces and the homotopy groups of the diffeomorphisms groups of 

Riemann surfaces (see [B]). In section 5 we speculate on a possible 

generalization of this relation in the case of an arbitrary embedding 

i:V ~ n  

2. The discriminant variety of a linear system. 

Let V be a nonsingular projective algebraic variety over 

complex numbers, L an invertible sheaf on V, E a linear subspace 

of H0(V,L) , ~(E) the corresponding linear system of divisors on 

V. Define the discriminant variety Disc(E,L) of the linear system 

~(E) as the subset of points x ~ ~(E) such that the corresponding 

divisor D x is not smooth (every positive divisor is considered as 

a closed subscheme of V). This set is always closed in the Zariski 

topology of the projective space ~(E) and hence has a unique 

structure of a reduced algebraic subvariety of ~(E). 

The most interesting case in which we will be involved is the 

case where ~ is a very ample sheaf and E = HO(v,~). In this case 

the complete linear system ~(E) defines a closed embedding 

i:V - ~(E*). The discrlmlnant variety in this case, denoted simply 

by Disc(L), coincides with the dual variety i~V) of i(V). The 

latter is defined as the set of all points x in the dual projective 

space ~(E*~ = ~(E) such that the corresponding hyperplane H x is 

tangent to i(V) somewhere. An equivalent definition of i~V) can 

be given also as follows (see [KL] p. 335). Let Z = ~(E*) x iP(E) 

be the canonical incidence correspondence between points and 

hyperplanes, pl:Z - ~(E*), p2:Z - ~(E) the projections, 



and i:P I - ~ is the Veronese embedding v n. In this case 

- Vn(P ) is canonically isomorphic to the space sn(~ l) of all 

unordered n-tuples of distinct points on ~l The fundamental group 

of this space is known as the n-th braid group of the Riemann sphere. 

It has been recomputed by many authors who apparently were not aware 

of Zariski's papers (see [B]). A general plane section of Vn(~l~ 

is a plane curve of degree 2(n-l) with 3(n-2) cusps and 

2(n-2)(n-3) nodes. For n = 3 (a cuspidal quartlc) the group 

Wl(~2-C) was computed algebraically by S. Abhyankar ([A]). 
v v 

Fixing a point x O e ~ - ~ the fundamental group Wl(~-V;Xo) 

has a natural representation ~ in the diffeotopy group of the 

hyperplane section Hxo of i(V) corresponding to the point x o, 

that is, the group of dlffeomorphisms of H modulo isotopy. The 
x o 

image of this representation can be called the universal monodromy 

group. It has many interesting homomorphisms 

into the automorphlsm group of different objects functorlally 

associated to Hxo ~ e.g cohomology groups. The images of these 

homomorphlsms were studied in many situations (see, for example, 

[HA]). The computation of Wl(~-i(V)~ will be achieved if we know 

the universal monodromy group, the kernel of ~, and the extension 

of the former group by the latter. 

In section 4 we carry out the above program for the cases of the 

Veronese embedding v3:~2 - F 9 and the Segre embedding 

$2,2: ~ x ~i , jp8. The Segre embeddings are natural generalizations 

of Zariski's examples; however, except some trivial cases, the above 

cases are the only ones where we were able to succeed in computations. 

We refer to the paper [L] of the second author in which the case 

v3: ~ , ~19 is discussed. This case was the main stimulus of our 

work. 



= V X~(E.)Z,~ p:~ - ~(E) the composition of the second projection 

- Z and the projection P2" The variety V is nonsingular (it 

is isomorphic to the projective bundle associated with the tangent 

bu~ndle T (E.) restricted to i(V)). Under the first projection 

- V the fibres of p are isomorphic to hyperplane sections of 

i(V). The set S of all points where p is not smooth is a smooth 

closed subvarlety of ~ of dimension dim ~(E)-l (it is isomorphic 

to the projective bundle associated with the normal bundle to i(V)). 

Its projection into ~(E) is the dual variety of i~V). In the 
v 

majority of cases the dual variety i(V) is a hypersurface in the 

projective space P(E) (see some exceptional examples in [KL] p.360). 

In the sequel we will always assume that i(V) is a hypersurface. 

Its degree d is computed by the formula (see [KL] p. 361 or [K] 5.5.1) 

r 
= E (i+l)deg(Cr_i(~l)cl(L) i) (2.1) 

i=O 

where r = dlm V, other notation is standard. 

The dual variety ~V) is always irreducible. Its nonslngular 

points correspond to those hyperplanes Hx(X ¢ ~(E)) which are 

tangent to i(V) at exactly one point and H x N i(V) has a non- 

degenerate quadratic singularity at this point. Equivalently, the 

set of nonslngular points of i(V) is the largest open set over 

which the projection p:S - i(V) is an isomorphism (see [K], prop. 

3.5). The set of all points s ~ S where p is not an isomorphism 

is the double locus of the induced map p:S - P(E) in sense of [K]. 
V 

Its image D in i(V) is the singular locus of i~). Let D c 

(resp. D n) be the set of points x ¢ i~V) such that ~ N i(V) has 

a unique singular point and the qaadratlc form of the local defining 

equation has rank r-1 (resp. H x N i(V) has two non-degenerate 



quadratic singularities). Then D = ~c U ~n and 

codim(D-Dc-Dn,~V) ) ~ 2. In the case where 5c and ~n have 

codlmenslon 2 in ~(E) (or 1 in i~V)) their degrees are given by 

the following formulas 

r 1 
+ E ( r - i + 2 ) d e g ( r c , ( O v ) +  2 C l ( O 1 ) C i _ l ( O 1 ) ) C l ( L )  r - 1  

i=l ~ 2 . . . .  
(2.2) 

n~2 _ 
1 ( _ l ) r  c = deg + 

l~C -~ l 

n-2 n 2)) 
+ (-i) r Z deg(bi_c+iCl(L)n-2-1(Cl(~xl)+cl(N)))( i - k 

~ c - I  ( 2 . 3 )  

where N is the normal bundle to i(V) in P(E*), n = dim P(E), 

= , = - = ( ) = ~bJt j c codim(i(V) P(E)) n r, c(N) -1 Z ci(N)ti -1 r 
J=0 0 

Formula (2.2) is given in [RI], th.2. Formula (2.3) is based on 

formula (V.9) of [KL] (or cor. 4.2 of [R2] ) and simple computations 

similar to [K], §5. 

Let P be a general 2-plane in P(E), then it intersects D c 

at k points and D n at 5 points. The curve P P 0 ~V) is a 
v 

plane irreducible curve of degree d which has k cusps and 5 

nodes as its singularities. 

Examples. i. Veronese embeddin6s. 

Let V=P r and Vm:Pr~pn(n= (r+mm) i) be the Veronese 

m~p given by the complete linear system p(H0(pr,Opr(m)). In this 

case c(~) = (1-ht) r+l, h = Cl(Opr(1)). Also, 

c(N) = (l+mht)n+l/(l+ht) r+l. Plugging this into formulas (2.1)-(2.3) 



we easily obtain 

V r 
d = E ( _ l ) r _ i ( i + l ) ( ~ + ~ ) m i . ~  1 \  

i=O kr i / 

r ( r + 2 ) m r  r , r - i + 2 \  i "  . r + l ,  . r + l . .  r i 
k = . 2 - + ~ 1  [ 2 ) ( - 1 )  ( r (  i ) + 2 ( r + l ) ( i - 1 ) ) m  - ' 

iVv n r n-2 8 = ~ ( d ( d -  - 1 ) + ( - t )  = a 4 ~ l m n - 2 - i ( m { n + l ) - 2 ( r + l ) )  ( n i 2 )  
i=n-r-i "- . . . . . .  

n-2 
+ (-l)r (n-r) 

i=n-r-2 

n - 2  
( i ) ai-n+r+2mn-i-2) - k (2.4 

= ajtJ where n = ~r - l, (l+t)r+I/(l+mt) n+l = E 
"m ' J=O 

For example, if r = 1 we get 

V 

d = 2m - 2, k = 3m - 6, 6 = 2(m - 2)(m - 3); 

if r = 2, VA= 

V 
d = 3, k = 8 = O; 

if r = 2, m = 3 

d = 12, k = 24, 5 = 21 . 

2. V is an algebraic curve of genus g, d = deg (L), 

n = dim HO(v,~) - 1. In this case formulas (2.1) - (2.3) 

give 

V 

d = 2d + 2g - 2 

k-- 3(d+2g- 2) 

V %/ 
8 = ½(d(d-n-l) + (n-3)(2g-2) + (2n-4)d) - 3(d+2g-2) 

If d > 2g - 2, then by Riemann-Roch we have n = -g + d and 

we get 



M 
d = 2d + 2g - 2, 

k =  3 ( d + 2 g -  2) 

5 = 2(d - 2)(~ - 3) + 2g(2a + g- 7) 

compare [Z2] p. 335) 

3. V is a surface, D a very ample divisor, 

n = dim HO(V,Ov(D)). Let Pa(V) = M(V, Ov(D)) 

= d im H I (D ,0D  ) ,  C 2 = c2 (X )  = M(V ,C) .  

In this case, simple computations yield 

v 
d = c 2 + 4. - 4 + D 2 

k = 2~(p a + .) (compare [Z4] p.236) 

1 v V + (2n-13)(DK) 5 = ~(d(d-n-l) + (3n-15) D 2 

L = _Ov(D) ,  

1,  K v -- c l ( n v l ) ,  

_ 2K 2 + ( n - 2 ) c  2) k 

(2.5) 

Special cases: 

a) V = ~2, D a cubic curve 

v 
d = 12, k = 24, 5 = 21 

b) V = p1 x IP l, D is a curve of degree (2,2) 

d = 12, k = 2~, 5 = 22 

c) V is a Del Pezzo surface of degree d (a nonsingular 

surface of degree d in ~d with Ov(1) ~ O(-~)), 

v 
D = - K V, 3 < d K 9, d = 12, k = 24, 5 = 30 - d 

3. Zarlski's examples. 

As was mentioned in the introduction they correspond to the 

case of a linear system on an algebraic curve. 

Let L be an invertlble sheaf or degree d on a nonsingular 

algebraic curve V of genus g, E c H0(V,L) a linear subspace. Assume 



that the linear system E determines a closed embedding 
V 

i:V - P = ~(E*). Let a be the map that sends a point x ¢ P = P(E) 

to the corresponding divisor D x = H x 0 i(V), where H x is the 

hyperplane section corresponding to x. In the sequel we will 

identify the set of all positive divisors of degree d on V with the 

symmetric product V (d) = vd/Sd , where S d is the symmetric group 

on d letters. Thus, we have a map ~:~ - V (d) Let ~:V (d) - Jd(V) 

be the map which sends a divisor D to the isomorphism class of 

invertible sheaves L -- O_v(D ). The set Jd(V) is a principal 

homogeneous space over the Jacobian variety J(V) = Jo(V). Clearly 
v 

the composition ~ 0 a is a constant map~ thus G(P) is a closed 

subvariety of the fiber ~-l(cl(L)). Let 

A = {(V 1 ..... Vd) ¢ vd: v I : vj for some i ~ J} / S d 

Then D x (x ~ P) is a singular divisor if and only if a(x) ¢ A. 

Thus 

Disc(E,L) " A n a(P) 

Let ~(d) = V (d) - A, then we have a close embedding 

e:P - DiSC(E,L) > ;(d) 

Choosing a point x o ¢ P - DIsc(E,L) the map a induces the 

homomorphlsm 

V 

a.:~l(P - Disc; Xo) > =(Xo)) 

Since a(P) lles in a fiber, the image of a. is contained in the 

kernel of the map ~.:.l(V(d);m(Xo )) > Wl(Jd(V); ~a(Xo)) -- Z 2g. 

In general, one hardly can say anything about the homomorphlsm 



a.:~l(P - Disc(E,L)) > Ker ~. 

The following cases are the only known cases to us where a. is an 

isomorphism. 

Case I. V = p1, E = H0(V,L), L = 2v(d). In this case Jd(V) is a 

single point, a defines an isomorphism ~(E) -- V (d) which induces 

an isomorphism 

V 

~l(P - Disc(L)) " > ~l(~ (d)) = Ker ~.. 

Case II. g ~ i, deg(L) > 2g - 2, IEI a complete linear system. 

Let L be a universal invertlble sheaf of degree d on V x Jd 

(i.e. ~ !V x (x} = L x and cl(Lx) = x), E = p2.(~). Since d > 2g 

d > 2g - 2 the sheaf E is locally free of rank -g + d + 1 and 

V (d) -- P(E), the projective bundle over Jd (see details in ). 

Also, we have a universal embedding of the Jd-Schemes 

VJd = V x Jd 

whose fiber over a point x ~ Jd 

> P(E*) 

is the embedding V - p(HO(V, Lx)). 

Repeating the definition of the dual variety in this relative 

situation we easily get that it coincides with A and it is locally 

trivial over Jd" This shows that V (d) - A - Jd is a Serre 

fibration, hence, the exact homotopy sequence gives the needed 

isomorphism. 

To compute Ker ~. we first compute the group Bd(V) = )), 

called the d-th braid group of V. Then knowing its generators and 

defining relations we can determine those for Ker ~. using the 

standard process of Schreier ([MEB]). 

To compute Bd(V) we represent it as the extension of the 



10 

symmetric group S d, corresponding to the natural non-ramified 

covering p : V  d - V (d)  = v d / S d  r e s t r i c t e d  o v e r  ~ ( d )  The k e r n e l  

of the homomorphism Bd(V) - S d (= ~l(Vd-p-l(A)) is called the pure 

d-th braid group and is denoted by Fd(V) o The structural analysis 

of this group is based on the homotopy exact sequence associated 

with the fibration 

v d _ p-l(a) . vd-1 _ p-l(a), (v I ..... Vd ) . (v I ..... Vd-1 ) 

with the typical fiber isomorphic to V - (d-l) points. The analysis 

of this sequence gives a set of generators and defining relations 

for Fd(V) (see [B], [S]). In the case g = 0 we get for Bd(V): 

Generators: gl,...,gd_l 

Relations: gigJ = gJgl if li-Jl ~ 2, 1 K i, J < d-1 

glgi_lgi = gi_lglgi_ 1 2 ~ i ~ d-i 

2 
gl...gd_2gd_igd_2...gl = 1 (3. i)  

Here the group Fd(V ) is the normal subgroup generated by the 

squares of the gi's, the cosets of the gi's correspond to the 

standard generators of S d, considered as a Coxeter group. 
V 

Summing up we conclude that the group ~l(P - Disc(L)) is 

computable for any curve V of genus g and an invertible very ample 

sheaf of degree d > 2g-2. Taking a general plane section we get 

the fundamental group of the complement to a certain plane curve of 

degree 2(d - g - l) with 3(d - 2g - 2) cusps and 

2(d - 2)(d - 3)-2g(2d + g - 7) nodes (see example 2 in n°2). In the 

simplest nontrlvial case where g = 0, d = 3 one can make all 

calculations as an exercise and get the fundamental group of the 

complement to a cuspldal quartic. It turns out to be a metacycllc 
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group of order 12. Notice that the family of plane curves above can 

be also characterized as dual curves to singular plane curves of 

genus g with maximal number of nodes. 

The braid groups of Riemann surfaces Bd(V) have a close 

relation to the mapping class groups which play an important role in 

the uniformlzation theory (see [MA]). 

Let Diff+(M) be the group of orientation preserving diffeomor- 

phlsms of a smooth manifold M endowed with the Whitney C -topology. 

Then the group Diff+(V) acts transitively on the set of d distin,- 

gulshed points on a Riemann surface V. Thus, fixing a point 

XO ~ ~(d) we can identify the space ~(d) with the coset space 

Diff+(V)/Diff+(V,Xo),  where Diff+(V,x o) denotes the subgroup of 

dlffeomorphisms which leave x o Invariant. Applying the exact 

homotopy sequence we get the exact sequence of groups 

~l(Diff+(V);id ) ~ > ~l(~(d);xo ) % > "o(Diff+(V,Xo);id) 

> ~o(Diff+(V);id) - [I] (3.2) 

The group .o(Diff+(M);Id) is the group of isotopy classes of 

orlentation-preservlng diffeomorphisms. In the case of Riemann 

surfaces it is called the mapping class ~roup and is denoted by M(g). 

Its subgroup .o(Diff(V,Xo);id) is denoted by M(g,d). In this case 

one can change dlffeomorphlsms by homeomorphlsms without changing 

the groups. 

Using the sequence (3.2) one can prove that 

G(Wl(Diff(V);id) = Center .l(~(d);xo ) (3.3) 

Except the trivial cases g = l, d = 1 and g = O, d ~ 2 

we have (see [B], ~.l): 
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In order to describe those groups more explicitly we first 

consider the extension K 

1 > ~'/3 ---> K > Z'/3 e Z/3 --.~ 1 (#4.3) 

of the group ~/3 • Z/3 of translations by the points of order 3. 

For the curves given in the canonical Hesse form: 

x 3 + ~ + z 3 - 3~ xyz = 0 

the group of translations consists of the matrices ([M], [E]) 

<i °o !I • • o 
(~3 = i) 

0 , 2 0 , 0 0 

(4.#4) 

I , w 2 W 

All those matrices are of order 3 (as elements of S~(~) and 

not Just PS~(~)!), Therefore K is the group of exponen$ 3 an8 

order 27 (obviously non-abellan). There is only one such group ~HS) 

and it is isomorphic to the Heisenberg group of unipotent 3 x 3 

matrices over ~/3: 



IS 

Center(Bd(V)) : 

l} if g > 2 

~/2 if g = O, d I 3 

In the case g = O, Nl(Diff(V);id) = ~l(Diff(S2);id) ~ ~/2 according 

to Smale [S]. 

In the case g ~ i, ~l(Diff V, id) = Nl(AUto(V),id) - ~ (g = I) 

or [0} (g > I), where Auto(V) is the connected group of auto- 

morphisms of this complex manifold V ([EE]). 

Thus we get 

Center Bd(V) -- ~l(Diff(V);id) (3.4) 

In the case g = 0 the group M(O) is trivial and 

M(O,d) -- Bd(P1)/Center can be computed using presentation (3.1) 

of Bd(P1). In this presentation the center is generated by the 

element (gl...gd_l)d. In the case g > 2 only generators of 

M(g,d) are known (the so called Dehn twists). 

$. Fundamental groups arlsin~fr9 m some 

systems of elllpt!c curves 

In this section we compute the fundamental group of the com- 

plement to the plane curves of examples 3a,b of ~2. First we 

consider the case V = p2 and L = Op2(3). We start by defining 

some groups associated with elliptic curves in terms of which the 

answer will be given. 

The group of blregular authomorphlsm of a cubic curve is the 

seml-dlrect product of the group of translations and the group of 

automorphlsm of the abelian variety associated to the cubic curve 

by fixing a point as its zero point. The latter group for different 
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values of the j-invarinat is given in [C]. 

Aut Cj = 

~ ' /4  j = 0 

~/6 j = 1 

~/2 j =~ o, 1 

(4.1)  

Any automorphism of Cj is determined by its action on the points 

of order 3. This identifies each Aut C. with the subgroup of 
J 

SL2(~/3 ). Any element of Aut Cj is represented by a projective 

transformation of ~2. The translations which are projective trans- 

formations are translations by points of order 3. Indeed, a 

translation by point x does not change the class of linear equi- 

valence of an effective divisor of degree 3 which provides the 

embedding if and only if x has order 3. We denote the group of 

projective automorphisms of a cubic curve by Go, GI, G 2 according 

to the values J = O, i, or j ~ O, i of the j-invariant of the 

corresponding elliptic curve. Those groups are the extensions of 

subgroups of SL2(~/3 ) defined by the representation of the affine 

linear group SA(~/3) as an extension 

i > ~/3 @ ~/3 ---> SA2(~/3) ---> SL2(~/3) > i 

In other words, Go,G!,G 2 

of the form 

are the subgroups of S~(~/3) of matrices 

(4.2)  

where x~ ALt C~ ~ SL 2(~/3) and Y ~ ~/3 @ ~/3 

Let G o , G I, G 2 be the central extensions of the groups Go,GI,G 2 

respectively, induced by the extension 
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I !) o l a,b,c ~ ~/3 (4.5) 

The group ~j now can be determined from the exact sequence 

1 > K > Gj > Aut Cj > 1 

which is the semldirect product. The homomorphlsm 

Aut Cj ,> Outer Aut K/ Inner Aut K defining this extension is 

given by 

> 1 > 

0 

/1 $1(a,c) b ~~ 
i O 1 ~2~a,c 

0 0 

(4.6) 
where (a.c) ~ (~l,(a,c), ~2(a,c)) is an automorphism of 

~/3 ~ ~/3 obtained from the identification Aut Cj with a subgroup 

of (SL2(~/3) (Indeed Aut Cj acts trivially on the center of K 

because it is also the center of ~j). 

Now we are ready to describe the fundamental group ,l(U3) of 

the complement to the discrlmlnant variety , where 

U 3 = ~(H°(P 2, 0 2(3)) - Disc. 

We can identify U 3 with the space of non-singular plane cubics. 

Let Inf ~ ~(H°(~,Op2(3)) x ~2 be the graph of the incidence 

correspondence, consisting of the pairs (C,x) where C is a cubic 

curve and x is an inflection point of C. As usual pl,P2 be the 

projections of Inf to the factors. Let U3 = pll(U3)" The group 

PGL(3,¢) acts on the both U3 and U3" We have 

~3/PaL(3,~) -- U3/PaL(3.~) 
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because PGL(3,g) acts transitively on the set of inflection points 

of any cubic curve. Indeed inflection points correspond to the 

points of order 3 and PGL(3,g) contains all translations by points 

of order 3. 

On the other hand 

U3 / PGL(3, ~) = 

and isomorphism is given by the J-invariant (see [C]). The action 

of PGL(3,g) on U 3 is proper ([M2]) with finite isotropy groups. 

Therefore ([HI) the orbits 0 o and 0 I, consisting of the curves 

with the J-invariant equal to 0 or 1 respectively, have slice 

neighborhoods T(Oo) and T(OI) each isomorphic to 

(~ x PGL(3,g))/Gj. Clearly U 3 can be retracted on the union of 

T(Oo) and T(OI) and the intersection is homotopy equivalent to 

T(Oj)  (J =~ O,1. )  -F(Oo ) - - .  . 
7 I [0~ I 

By the Van Kampen theorem we deduce 

~I(U3) = nI(T(Oo)) WI(T(02) )~ nl(T(Ol) ) 

The groups ~l(T(Oo)), ~I(T(OI)), ~I(T(02)) are isomorphic to G O . 

G I, G 2 respectively. This gives 

~l(U3 ) = Go * ~i " (4.7) 

Now let us consider the monodromy map 
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m: ~l(U3,p) ---> Aut(Hl(Cp,~)) = SL2(Z ) 

(Here p is an arbitrary point in U 3 and Cp is the corresponding 

cubic curve) 

In each group Gj (which is the subgroup of Nl(U3,P), 

cf [Se]) this map takes subgroup K into the identity. Indeed the 

elements of K induce by monodromy the diffeomorphisms on Cp 

which corresponds to the translation. But clearly they are homotopy 

to the identity map and hence induce the identity on Hl(Cp,~). 

(The homotopy for the translation x - x + a is the family of the 

translations x ~ x + a t where a t is a path in Cp connecting a 

with the zero on Cp). All other elements of Gj act nontrivally 

on HI(Cp, Z ). Hence m takes G O * G I onto Z/4 * Z/6 = SL2(Z ) 
'~ Z/2 
G 2 

and we obtain the exact sequence 

1 - - >  K - - ~  nl(U3,P) --.> SL2(~ ) --~ 1 

(4.s) 

This sequence allows in particular to compute the center of 

~l(U3,P). The only non-trlvlal central element of SL2(~) is the 

image of the element in G 2 represented in form (4.2) by 

0 ° 1 -i 0 

0 1 

which is not in the center of G 2. 

Thus we have 

Center (nl(U3.P)) = Center (K) : ~/3 (4.9) 

Now we turn to the computation of the fundamental group of the 

complement to the discrimlnant in the second case of example 3 
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i.e. V = ~i x pl and L = Oplxpl(2,2 ). In this case we can identify 

= P(H°(P 1 x p1 ~0 lx~l(2,2)) _ Disc with the space of non- U2,2 

singular elliptic curve lying on a quadric V = ~i x F I in ~. Our 

computation in this case is rather similar to the described above. 

However, several words should be said about the choice of analogue of 

the group PGL(3,~). The natural candidates PGL(4,~) and 

PS0(4,~) = Aut V are not appropriate here. The former group is too 

big, because it does not leave stable the set of curves lylng on a 

quadric. The latter group PSO(~,~) = Aut V = PGL(2,~) x PGL(2,~) is 

two small, because it does not act transitively on the set of biregular 

equivalent elliptic curves on V. We use the group P instead, which 

is the subgroup of PGL(4,~) consisting of transformations which take 

a flxed elliptic curve on V into a curve lying on the same surface 

V. P can be described also as a subgroup of PGL(~,~) which in the 

natural representation on the space ~(H°(~2,0 2(2))), takes a fixed 

llne g passing through a fixed point ~ into a line through the 

same point ~. Those two definition~ of P are equivalent, because 

quadrics in ~ are identified with the elements in P(H°(~,0(2)) 

and elliptic curves in ~ are represented by lines in this space. 

The group P acts transitively on the points of g by the formula 

a > ~-l(a). The isotropy group ~ under this action is PS0(~,~) 

Pso(4,~) ~l s 2 
and the fibration P > (~) = admits a section. Hence 

The group of translations of an elliptic curve on V which are in 

P is the group of translations by the points of order 4 (only those 

translations are induced by projective transformations). For the 

curves written in the canonical form: 
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2 2 
X I + X 3 = 2k X o X 2 

2 = 2~ X 1 X 3 X~ + X 2 

this group generated by the matrices [MI] 

U = 

~o 1 o o o o. j 
0 0 0 

1 0 0 0 

and V 

I ooo 
0 -i 

0 0 

(i2:-i) 
(4.11) 

The central extension of the translation group is the subgroup Q 

of the universal covering ~ of P, generated by matrices (4.11) 

-I 0 0 0 

i 0 

¢i 0 -I and ¢2 

0 0 

and .Ioo 
-I 0 

= 0 -i 

0 0 - 

(4.~2) 

Therefore Q is a non-abelian group of order 64 and exponent 4, 

which can be represented as an extension of the form 

1 > ~/2 e Z/2 > Q --> ~/4 e 7/4 --> 1 

As it was kindly explained to us by R. Griess and N. Ito these 

properties define uniquely the group. We have 

Q = ~/2x H 

where 
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I(! a H= ! 

0 

Note that 

GL(3,Z~/4), a,b,c ~ ~/4 o) 2 e  

1 

0 

Center(H) = ( ~ / 2 )  3 

and hence 

Center Q = ( 2 / 2 )  4 (~.13) 

' ' denote the groups of automorphlsms of an elliptic Let G 0, G l, G 2 

curve in ~ induced by projective transformations. They are the 

semldirect products of the group of translations ~/4 • ~/4 and 

groups Aut C. defined by (4.1) with the matrix presenta~tion (4.2) 
J 

where x e SL2(Z/4 L .  and y e ~/4 ® ~/4. 

Let , G[, G 2 be the central extensions of the group G~,G~, 

G~ induced by the universal extension of P. They admit a 

description which is similar to the given above for %. By 

considering the action of P on U2, 2 and applying again the slice 

theorem and Van Kampen theorem, we deduce 

G 2 

Moreover the monodromy map yields the following exact sequence 

l > q > ,,1(u2,2,p) --> s~2(z9 > i (4.14) 

where Q is defined above. 

Note that the similar arguments as in the case of plane cublcs 

show that the center of Wl(U2,2,p) is the same as the center of Q 

i.e. isomorphic to (~/2) ~ 

Finally we remark that the groups ~1(U2,2) and ~l(U3) 
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both have the commutator subgroups with torsion elements. 

example , for Ul(U3,P ) we have 

~l(U3,P) / [~l(U3,P) , ~l(U3,P) ] = ~/12 

For 

(4.15) 

because the degree of the discriminant variety is 12. Therefore the 

K > Nl(U3)/ [NI(U3),NI(U1) I is not injective. homomorphism 

This provides an answer to a question in [0]. 

~. Variations on the theme of the mapping class grouPs. 

Here we speculate on possible relations between computations 

of the fundamental group of the complement to a dlscrlminant variety 

and the homotopy groups of diffeomorphlsms groups. As we saw in 

~3 there is such a relation in the cases of curves. 

Sequence (3.2) can be easily generalized as follows. Instead 

of ~(d) we may consider the space Im(W,V) of all smooth 

orientation preserving embeddlngs of a smooth compact manifold W 

into a smooth compact manifold V endowed with the Whitney C'- 

topology. Fixing an immersion io: W ~ V we consider the connected 

component Im(W,V) 0 of Im(W,V) containing i o. Then the group 

Diff+(V) = Im(V,V) acts transitively by compositions on Im(W,V) 0 

([CE], p.l16) identifying the latter with the coset space 

Diff+(V)/Diff+(V, io(W)), where the second group is the subgroup of 

dlffeomorphlsms which leave io(W) invariant. Now, the exact 

homotopy sequence yields 

~l(Diff+(V);id) ~ ~l(Im(W,V);io) ~ M(V,W) - M(V) ~ {i} (5.1) 

Here M(V,W) = Diff$(V, io(W)/ Isotopy, M(V) = M(V,~) are the 

~enerallzed mapping class ~roups. 

Let V be a nonslngular algebraic variety and i: V - pn 
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its closed embedding. Fixing a point x ° ¢ ~-i~V) we have an 

= N i(V). Varying x in immersion io: W - V, where W = Dxo Hxo 

~-i~V) we get an injective map 

~-~v) ~> Im(W,V) o 

It is not difficult to prove that this map is continuous with 

respect to the usual Hausdorff topology of ~n and the Whitney 

Cm-topology of Im(W,V). Thus, we obtain a homomorphlsm of groups 

~: ~l(~n-i(v); x o) > ~l(m(w,V)io;iO) 

Question 1. What one can say about this homomorphlsm? 

For example, suppose that we know that the map 7 is surjective. 

Consider the universal monodromy map p:Wl(~n-i~V); Xo) - M(W). Let 

r:M(V,W) - M(W) be the restriction homomorphism. Since it is always 

surJective ([CE],p.ll4), exact sequence (5.1) s~ows that p will 

be surjective as soon as the group M(V) is trivial. 

Question 2, Is every orientatlon-preserving diffeomorphism of the 

complex projective space ~pn is isotoplcal to the identity map 

(that is, Wo(~pn,id) = {1})? 

The positive answer to this question will certainly agree with 

computations of section 4. Returning to sequence (5.1) we may 

ask the following question (keeping in mind the analogy with the 

case of the braid group (3.4)). 

Question 3. Is it true that 

~(~l(Diff(V),id) = Center (~l(Im(W,V); i))? 

Suppose that 7 is inJective. Then a(~l(Diff V);id) N 

~l ( - i(V); Xo) lles in the kernel of the universal monodromy map 
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p:.l(~ n - i(~);id) - M(W). The positive answer to the question 3 

would imply that ~(.l(Diff V);id) 0 .l(~ - i(V); x o) lies in the 

center of ~i(~ v - i(v), Xo). 

Let AUto(V ) be the subgroup of Diff~V consisting of 

automorphisms of V as a complex manifold. In the case dim V = i. 

AUto(V) is a retract of Diff(V) ([EE]) and hence the natural map 

:.1(AUto(V); id) --> ~l(Diff~(V); id) 

is an isomorphism. In general the map i is not surJective anymore 

([ABK]). Composing 6 with a we get a map (assuming question 3 

is solved postively) 

.l(AUto(V); id) --~ Center Wl(~ - i(~), x o) 

In the examples considered in ~4 we have 

~/3 (the first example) 

~I(AUto(V)) = 

7/2 ~ ~/2 (the second example) 

and 

v v I ~/3 
Center ~l(~n-i(V);Xo) = 

(the first example) 

(the second example) 

Here there exists a non-trivial homomorphism from one group to another 

This gives a certain evidence to question 3. Also it poses another 

question 

Question 4. Is it true that the map 



~I(AUto(C~2); id) = ~/3 

is non-trivlal. 
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> ~l(Diff ~2)~id) 

Notice that the answer is positive if we replace 

~pl x ~pl. 

~p2 by 
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