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ON THE TOPOLOGICAL STRUCTURE OF EVEN-DIMENSIONAL

COMPLETE INTERSECTIONS

BY

A. S. LIBGOBER AND J. W. WOOD1

Abstract. A topological connected sum decomposition into indecomposable

pieces is given for complete intersections, and these pieces are described by

plumbing constructions.

The principal technical results are structure theorems for the intersection form

on the middle dimensional homology and the submodule of spherical classes.

1. Introduction. In this paper we describe certain algebraic manifolds up to

diffeomorphism in terms of two standard constructions of differential topology,

plumbing and gluing by a diffeomorphism between boundaries. As a consequence

we also obtain a decomposition up to homeomorphism as a connected sum. The

algebraic manifolds considered are complete intersections, that is, submanifolds of

complex projective space of complex codimension r which are defined by the

simultaneous vanishing of r homogeneous polynomials with linearly independent

gradients. The condition on the gradients insures that each polynomial defines a

nonsingular hypersurface and that their intersection is transversal.

If Xn c CPn+r is defined by polynomials of degrees dx, . . ., dr, the multidegree

is the unordered r-tuple d = (dx, . . . , dj, the degree of X is the product d =

dx ■ • • dr. The invariants n and d determine X up to diffeomorphism; we write

X = XJd). It is a consequence of the Lefschetz theorem on hyperplane sections

that the homology module of X is the same as that of the complex projective space,

CPn, of the same dimension except in the middle dimension where H„X = Z

© • • • ©Z. It is natural to ask to what extent direct sum decompositions of

H = HnX reflect connected sum decompositions of X.

When n is even intersection pairing equips H with a symmetric, unimodular

bilinear form; we say, following [19, p. 1], that H is an inner product space over Z.

Also the inclusion /: H —» CPn+r provides H with a distinguished element, h =

i*xn/2 n rA-j) where x E H2(CPn+r) is dual to CP„+r_x, such that the orthogonal

complement hx is equal to im{wnÀ' —»HnX), the set of spherical classes. Moti-

vated by the properties of the homology of a complete intersection we define a

based inner product space to be a pair (//, h) where H is an inner product space and

h is an element of H such that

(a) h is indivisible,

(b) hx has even type (u E hx implies u • u is even).
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638 A. S. LIBGOBER AND J. W. WOOD

We call d = h- h the degree of (H, h). The pair (H, h) and the integer n

determine completely the cohomology ring of Xn and, if n > 2, (H, h) is de-

termined by the cohomology ring.

Theorem A. Let (H, h) be a based inner product space with |Sign H\ < rank H —

4. Then there is a unimodular summand A of H with h E A such that rank A < 5.

The condition that H be sufficiently indefinite arises because in that case the

pair (H, h) is determined up to an isometry preserving the base element by the

invariants rank, signature, type, and degree; see Lemma 3.7 below.

In the proof of Theorem A in §3 we will determine the minimal possible rank for

A which depends on d (mainly on d mod 8) and on the type of H. In each case it is

possible to choose a pair (A, h) which we can describe up to isomorphism in terms

of a given basis, intersection matrix, and representation of A in terms of the basis.

All this information is described by a "plumbing diagram", see §4. The pair (H, h)

is determined by its rank, signature, and the pair (A, h).

For a complete intersection XJd), the invariants rank and signature are compu-

table either in terms of generating functions [8, §22.1.1] or recursion relations [8,

§11.3.1]. Explicit numbers become more difficult to obtain as d and n grow. The

type (even or odd) is the type of the binomial coefficient C"/1), where j is the

number of defining equations of even degree and m is half the dimension.

Cases where h x is definite so that H is definite or nearly definite (these are the

cases to which Theorem A does not apply) occur only for d = (1), (2), or (2,2) or

for n = 2 and d = (3). In these cases we give explicit diagrams for H in §6. In

particular for the intersection of two quadrics, XJ2, 2), we show (6.3) that H =

T„+4, the definite inner product space of rank n + 4 defined in [19, p. 27] or [22,

V. 1.4.3]. In this case there is no proper, unimodular submodule containing h.

To state our main result let V denote the 2«-mamfold with boundary obtained

by plumbing eight copies of the tangent disk bundle of S" according to the

diagram Es. We assume a general familiarity with this construction (see, for

example [2, Chapter V] or [9, §8]). Let ^ denote boundary connected sum.

Theorem B. If X is a complete intersection of complex dimension n = 2m > 2,

then :

X = Wx U^IFj where <p: dWx -+ dW2 is a diffeomorphism;

Wx is a disk bundle over complex projective space; and

W2 = W\\a(Sn X S" - D2n)\\ßV where W is obtained by plumbing a bundle

over CPm with bundles over S". Moreover if X ¥= XJ2, 2) we may take

rank H„ W < 5.

Explicit plumbing instructions are available. Here and below aN denotes the

(boundary) connected sum of \a\ copies of the oriented manifold (with boundary)

N with opposite orientation if a < 0. Bundles are all disk bundles associated to

vector bundles with the orthogonal group as structure group. The bundles over

complex projective space which occur in the construction are determined by n and

d. The bundles over S" are stably trivial. The normal Euler classes and the mutual
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COMPLETE INTERSECTIONS 639

intersections which determine the plumbing are given by the intersection matrix for

the inner product space A of Theorem A.

Let = denote diffeomorphism and » denote homeomorphism. Then

d(S" X S" - D2n) = S2""1    and   dV = S2"-1 « S2"'1

where 22"-1 is a homotopy sphere. F u D2" is a closed, topological, (« — 1)-

connected 2n-manifold with rank H„ = 8 and signature 8. From Theorem B we

have

3H/ = dW2 = ^^F#a,S2',-1#022',-1 = 31F#2' « 9IF.

Denote the composite homeomorphism by xp.

Corollary C If X is a complete intersection of even complex dimension n > 2

andX^XJ2, 2), thenX^M#a(Sn X S")#ß(V u D2n) where M^WX xJ^W

and rank //„Af < 5.

The proof is evident, as indicated by the picture

In general complete intersections with different multidegrees can nevertheless be

diffeomorphic. This is classical for curves, for example, Xx(3) = Xx(2, 2). Using

Wall's classification of simply connected 6-manifolds and a counting argument we

can show the existence of many such examples in case n = 3. More recently [28],

[29] we have shown that there are such examples in all odd complex dimensions.

For two complete intersections to be diffeomorphic they must have the same (H, h)

and the same Pontryagin classes (given by certain symmetric functions in d). The

open problem is to find additional invariants (if needed) to obtain a complete set of

invariants of the diffeomorphism type or the topological type. One approach to this

classification problem is through further study of the diffeomorphism <p. The one

known thing along this line is that a complete intersection of low codimension, that

is, satisfying 2r < n and n > 2, cannot be diffeomorphic to any other complete

intersection; in fact in this case the degree and Pontryagin classes are a complete

set of invariants [29, §7].

In §§2 and 5 we obtain some facts about the homology of X and in §§3, 4 and 6

give some structure theorems for based inner product spaces proving Theorem A.

In §7 we reduce the proof of Theorem B to the construction in A' of two

subcomplexes with certain homological properties. In §8 we complete the proof in

the case where H has even type. In that case rank A = 2 and Wx and W are both

explicitly determined bundles over CPm. The case of odd type is completed in §9, a

proof that W depends only on the pair (A, h) and an alternate description of W is

given. In §10 a number of explicit examples of plumbing diagrams are given.
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Throughout we must assume the complex dimension n of X is > 2 because of

the failure of the Whitney embedding trick in real dimension 4. For n = 1 the

result X = a(Slx 5l) is very familiar. For n = 2 decomposition results up to

homotopy are given by Milnor [16]. Recently Mandelbaum and Moishezon [14],

[21] have obtained a diffeomorphism result, X#CP2= aCP2#ßCP2, using tech-

niques of algebraic geometry. For n > 2 the decomposition X = N#a(S" X S")

is given in [10] for hypersurfaces and in [26] for complete intersections. Some cases

of our results for hypersurfaces appeared in [12].

In the case of odd n the result is X = M #a(S" X S") where rank HJVÍ = 0 or

2 depending on the Kervaire invariant; for hypersurfaces see [20], [25], or [11] and

for complete intersections [27] or [3].

Finally the first author is grateful for the hospitality of the Institute for Ad-

vanced Study.

2. Homology of X. In this section we collect some facts about the intersection

pairing on the homology of a complete intersection X. It follows from the Lefschetz

theorem on hyperplane sections [17] that the inclusion i: Xn-+ CPn+r is an «-equiv-

alence. In fact, there is a sequence X„ c Xn+X c • • • C CPn+r where Xj is the

transversal intersection of Xj+X with some hypersurface Y in CP„+r. Let xp:

CP„+r -+ CPN be the Veronese embedding [23, p. 40] so that Y = xp~l(CPN_x) for

some hyperplane in CPN. Then Xj is a hyperplane section of XJ+l and the Lefschetz

theorem implies the inclusion XJ-*Xj+1 is ay-equivalence. The result for Xn -»

CPn+r follows. Moreover it follows from Poincaré duality and the universal

coefficient theorem that the homology of X is torsion free. So H = HnX is a free

abelain group. Its rank can be computed from the Euler characteristic of Xn which

is given in terms of n and d by a generating function due to Hirzebruch [8, p. 160].

We shall return to this question in §5.

Theorem 2.1. Let H be the n-dimensional homology of the complete intersection

XJd) of even complex dimension n = 2m. Then there are elements h,y E H such

that:

(1) h- h — d, h-y = 1, and y -y = C"*1) mod 2 where s is the number of even

entries in d.

(2) h ^ has even type (u- h = 0 implies u- u is even).

(3) For u E H, u ■ h = 0 implies u is represented by an embedded S" c Xn.

(4) For u E H, u- h = 1 implies u is represented by an embedded CPn c X„.

Corollary 2.2. H has even type if and only if (m*s) is even.

Proof of 2.1. Let x E H2(CP„+r) be dual to CP„+r_x, so x n [CPn+r] =

[CPn+r_ J. Let h = (i*xm) n [X] where i: X ^ CPn+r. If d is the degree of X, then

ijx] = dxr n [CPn+r], so h ■ h = (i*xn) n [X] = xa n iJX] = d.

Since /" is an «-equivalence by Lefschetz, the map i#: [CPm, X] -*[CPm, CPn+r]

is onto. Therefore there is a mapy: CPm -* X so that i » j is homotopic to a linear

embedding. Further by replacing j by a homotopic map we may assume y is an

embedding by a result of Haefhger [6]. Let>> = jJCPm].
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Let D: H„X -h> H"X denote Poincaré duality, so (Dv) n [X] = v. Then

h-y = (i*xm u Djm[CPm]) n[X] = Fxm njm[CPm]

= jjj*i*xmn[cpm]) = i.

A short argument [26, Lemma 2] using the Hurewicz ladder shows

im{ttnX -h> HnX) = hx = {uE H:uh=0}.

By [6] it follows that any u E h ± is represented by an embedded sphere S" c Xn.

Let v = y + u Ey + hx. Since y is represented by y: CPm^>Xn and u is

represented by some map of S" to X, v is represented by a map of CPm =

CPm#S" -> X, which, by [6], we may take to be an embedding.

Given S"'^>X'^> CPn+r, since the normal bundle v(i) is the restriction of a

bundle over CP„+r and i ° e is null-homo topic, v(e) is stably trivial. It follows that

if u = eJSn], uu = xv(e) — w„v(e) — 0 m°d 2,sohJL has even type.

Finally the embeddings CPm tL-* X^> CPn+r give the bundle equation:

Lemma 2.3. rCPm © v(j) ®j*v(i) =j*i*rCPn+r and v(i) = i*(yd> © • • • ©y*),

where yk is the k-fold tensor power of the Hopf bundle.

If dx, . . . , ds are even and ds+x, . . . , dr are odd, working in H*(CPm; Z/2) we

have

(1 + x)m+lW(v(j))(\ + x)'-' = (1 + x)n+r~\

hence W(v(j)) = (1 + x)m+i, so

H'2>0))n[CPm] = (w + i)    mod 2.

It follows that

yy = Xv(j)^{m^S)    mod 2.

This completes the proof of 2.1.

The normal bundles of these embedded spheres and complex projective spaces

will be the bundles specified in our plumbing constructions in proving Theorem B.

We conclude this section by showing they are determined by m, d, and by the

self-intersection of the homology class represented.

In the case S" *-> Xn representing a class u, the normal bundle is stably trivial

and so is determined by its Euler class which is dual to u ■ u.

If j: CPm °* Xn with i °j: CPm <L* CPn+r homotopic to the linear embedding,

then v(j) is determined by m and d as a stable bundle according to the bundle

equation (Lemma 2.3). Its normal Euler class is given by y • y where y —jJCPm].

In general there is the following.

Lemma 2.4. Two oriented, 2m-dimensional vector bundles over a 2m-dimensional

complex are equivalent if and only if they are stably equivalent and have the same

Euler class.
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Proof. Let E be the fibered product of the maps p2 and wn in the diagram

(n = 2m):

BSO(n)     2*^ E -»       K(Z,n)

1 ith

BSO(n +1)       ^     K(Z/2, n)

We claim BSO(n) -> £ is an n + 1 equivalence. Then [*, ÄS0(.x)] ^ [Z, £] for

dim X < n; hence an oriented «-dimensional bundle over X is equivalent to a

stable bundle £ and a choice of x compatible with wj%).

Now E is the total space of the fibration induced by wn from

K(Z, n) X K(Z, n) % K(Z/2, «) so we have

S" -» K(Z,n)        ^       K(Z,n)

¿sex«)      -> £ ->     a:(z, «)
1 I 4*2

Ä50(« +1)     ^     5S0(« + 1)     5     K(Z/2, n)

The exact homotopy ladder shows BSO(n) -* £ is an « + 1 equivalence.

3. Based inner product spaces. In this section we give a direct sum decomposition

of the middle dimensional homology H of X2Jd). We will find a summand A of H

which is unimodular and contains « and which has minimal rank subject to these

two conditions. It follows that there is an orthogonal splitting, H = A © B, which

will give rise to our geometric splitting of X.

By (2.1) the homology of a complete intersection satisfies the following.

Definition 3.1. A based inner product space is a pair (H, h) where H is an inner

product space and h is an element of H such that

(a) « is indivisible,

(b) the inner product restricted to «x has even type.

The norm of h, h ■ h, is called the degree of (H, h).

We fix a notation for two particular inner product spaces. Let U be the

hyperbolic plane which is free of rank 2 with intersection matrix (^ ¿); in the

notation of [19, p. 3], U = <(? ¿)>. Let Tg be the inner product space defined as a

subspace of Q8 in [19, p. 27] or [22, V.l.4.3] or as <M0> where M0 is the 8 X 8

matrix defined in [2, p. 120]. Thus Tg has rank 8, signature 8, and even type. (These

properties characterize Tg.)

A more detailed statement of Theorem A in case d > 0 is given by

Theorem 3.2. Let (H, h) be a based inner product space with d = h- h > 0 and

| Sign H\ < rank H — 4. 77ie« there is a unimodular summand A c H with « E A

and integers a and ß such that H = A © all © ßV% is an orthogonal direct sum and

such that:

(a) if H has even type, rank A = 2;

(b) if H has odd type and
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d = 1, rank/1 = 1;

d = 0 mod 8, rank A = 2;

d = 2 mod 8 a«í/ a// odd prime

divisors of d are = 1 mod 4, rank yl = 2;

a* = 1, 3, or 7 mod 8, rank A = 3;

a" = 2, 4, or 6 mod 8, rank A = 4;

a" = 5 mod 8, rank /I = 5.

Conversely these ranks are minimal.

For example if rank A = 2, then either // has even type, o" = 0 mod 8, or

d = 2 mod 8 and a* is a sum of two squares.

To prove 3.2 we will construct particular mimmal models for the space A and

then use a result of C. T. C. Wall on the group of isometries of an inner product

space to embed A in a given H (see 3.7).

In each case except d = 5 the inner product space A is determined up to

isomorphism by its rank, type, and by d mod 8. In case d = 5 there are two

possibilities of rank 5, either signature 5 or signature -3.

The pair (A, h) however is not unique up to isomorphism. For an easy example

in A = J) (B J} both 1 lex + 3e2 and 9e, + 7e2 are possible base elements of the

same norm but no automorphism of A takes one to the other. For an indefinite

example in <1> © <-l> take 5ex — e2 and lex — 5e2. The homology of XJ2, 2)

provides an example of large rank for « = 2 mod 4 (see §6). The fact that

|Sign| > rank — 4 is an essential feature of these examples (see 3.7).

Lemma 3.3. Let H be an inner product space of odd type and let h E H be

indivisible. Then hx has even type if and only if h is characteristic.

Proof. That « is characteristic means for any x E H, x- x =x- h mod 2, so

x E h -1 implies x ■ x is even. Conversely, since h is indivisible and H is unimodular

there is ay E H with^ • h = 1. Then for any x E H, x — (x • h)y E Ax. If H has

odd type and h x has even type, y ■ y must be odd. Therefore x • x = (x • Kfy • y =

x • « mod 2, so h is characteristic.

If H has even type, 0 is characteristic, but an indivisible class « cannot be

characteristic.

Corollary 3.4. If H has odd type, Sign H =hh mod 8. If H has even type,

Sign H = 0 mod 8 and h • h is even.

This follows from the lemma of van der Blij [19, p. 24]. Note this corollary relates

the degree and signature of a complete intersection.

Lemma 3.5. If (Hx, «,) and (H2, h^ are pairs with hx and h2 characteristic, then so

is (Hx © H2, hx + hj

Proof. Let x = u + v E Hx ffi H2; then

xx = uu + vv = uhx + v «2(mod 2) = (u + v) ■ (hx + h2).
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The lemmas permit us to assert that the direct sum (//,, «,) © (H2, h¿ = (Hx ©

H2, «, + «2) is a based inner product space in many cases. This is true if (i) both

pairs are based inner product spaces of the same type or (ii) if (Hx, «,) is a based

inner product space, H2 has even type, and «2 = 0. But note that if (//,, «,) is a

based inner product space of odd type and (H2, «2) is one of even type with «2 ̂  0>

then («, + h^ will not have even type.

Lemma 3.6. If (H, h) is a based inner product space, («x)#/«x = Z/d where

h • h = d and # denotes Hom( , Z).

We shall need this only incidentally; a proof is given in [10, Proposition 9.5].

The following classification of sufficiently indefinite based inner product spaces

is our main tool.

Lemma 3.7. Two based inner product spaces with the same rank, signature, type,

and degree and which satisfy |Sign| < rank — 4 are isometric by an isometry which

preserves the base element.

Proof. Indefinite inner product spaces of the same rank, signature, and type are

isometric [19, p. 25]. Under the hypothesis that |Sign| < rank — 4, a result of Wall

[24] shows the group of isometries of a space of even type acts transitively on

indivisible vectors of a given norm and the group of isometries of a space of odd

type acts transitively on indivisible, characteristic vectors of a given norm. The

lemma follows.

We are now ready for the proof of Theorem 3.2.

Proof of 3.2(a). Since H has even type, h- his even, say h- h = 2a. Let U be the

hyperbolic plane with basis e,/and intersection matrix (¡ ¿). Let «, = ae + f. Then

A, is indivisible with norm 2a. Then there are integers a and ß such that the based

inner product space (U, «,) © a(U, 0) © ß(Ts, 0) has the same rank, signature,

type, and degree as (H, h). By 3.7 they are isometric and hence « E H is contained

in a unimodular summand of rank 2. This of course is minimal.

Next we consider based inner product spaces of odd type and give examples of

minimal rank for each degree mod 8. In each case the proof of 3.2(b) will be

completed by a similar application of 3.7.

Case d = 8a. Let A0 = <1> © <-l> with basis u, v. Let h0 = (2a + \)u +

(2a — l)u. Then h0 is indivisible of norm 8a. If x = ru + sv, then x • x = r2 — s2

= r + s mod 2 and x ■ h0=r + s mod 2 so «0 is characteristic. Rank 2 is minimal

since rank H = sign H mod 2. It follows there is an isometry of (Aq, h0) into

(H, h).
Case d = 8a + 1. For d = 1, take <1> with h as basis. In general take (A0, h0) ©

«1>, xx); here xx ■ xx = 1. By 3.5 this is a based inner product space of odd type

and degree 8a + 1. Since Sign// = 1 mod 8 and H is unimodular, rank 3 is

minimal for a ¥= 0.

Case d = 8a + 2. For d = 2 take «1>, xx) © «1>, xj In general we may take

(A0, h0) © «1>, xx) © «1)> x2). A rank 2 example must be positive definite (since

of signature 2), hence of the form <1> © <1> with basis u, v. Then if « = ru + su,

h • h = d = r2 + s2. Since h is indivisible, r and s must relatively prime. This is
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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possible if and only if 4 \ d and all odd prime divisors of d are = 1 mod 4 (see

remark below). Since d = 2 mod 8, both r and s are odd which implies h = ru +

sv is characteristic.

Case d = Sa + 3. The rank of any example must be at least 3 and a rank 3

example must be positive definite and hence of the form A3 = <1> © <1) © 0)

[19, p. 19]. By a result of Lagrange [5, p. 261], and see remark below, any number d

neither = 7 mod 8 nor divisible by 4 can be written as the sum of three squares

with no common factor. Then h3 = axex + a2e2 + a3e3 is indivisible and has the

correct norm h3-h3 = 'S, a2 = d. The possible squares mod 8 are 0, 1, and 4, hence

each a, must be odd so h3 is characteristic.

Remark 3.8. The characterization of those integers expressible as the sum of two

relatively prime squares is fairly well known and easy to explain, for example using

prime factorization in the Gaussian integers Z[i]. Alternatively, the equation

x2 = -1 mod d is solvable if and only if 4\ d and all odd prime divisors of d are

= 1 mod 4. Say cd = x2 + 1. In that case the matrix (dx *) defines a unimodular,

positive definite bilinear form space and d is represented by an indivisible element.

But this form is equivalent to <(¿ ,)> so d = r2 + s2 with (r, s) = 1. Conversely an

indivisible element rex + se2 can be completed to a basis whose intersection matrix

(dx *) has determinant +1.

Dirichlet's proof [5, pp. 263, 264] of Lagrange's result on three squares uses the

same approach. We present the case for d = 8a + 3. The matrix

d    0     1
0 b    x
1 x     c

will define a unimodular, positive definite form (and hence d is equal to a sum of

three squares with no common factor) if d > 0, b > 0, and the determinant = +1.

Setting A = be — x2, the condition on the determinant is dA — b = 1. We wish to

find A and b so that x2 = -A mod b has a solution. Let A = 8r + 1 and choose t so

that \b =j(dA — 1) = Adt + Jd — 1) is a primep > 0 by Dirichlet's theorem on
primes in arithmetic progressions [22, pp. 103ff.]. Then b =2p and since -2 =

4p mod A, 1 = (-2/A) = (p/A) = (A/p) = (-A/p) so -A is a quadratic residue

mod b. Then be = x2 + A and dA — b = I by definition of p. This completes the

proof.

Case d = 8a + 4. Sign // = 4 mod 8, so the rank must be at least 4, therefore

(A3, h3) © «1>, xx) is an example of minimal rank.

Case d = 8a + 5. A rank 3 example would need to be negative definite but that

is impossible with « • « > 0; hence H must have rank at least 5. We may take

(A, h) = (A3, h3) © «1>, xx) © «1>, x^. In this case however we may also take

A = <1> ©4<-l>. To prove this we must produce an indivisible, characteristic

« e A with h ■ h = d. Let ax = \(d + 1) and a2 = \(d - 3). Then a2 - a\ = 4a" -

4 so we must find a3, a4, a5 such that a2 + a2 + a2 = 3 d — 4. Since this number is

= 3 mod 8 we may choose relatively prime values for a3, a4, a5 satisfying the

condition. As in the case d = 3 these a's must be odd as are a, and a2 (since

d = 5 mod 8). Hence h = axex + • • • + ase5 is characteristic and indivisible as

required.
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Case d = 8a — 2. Take (A0, h0) © (<-l>, xx) © (<-l>, x^. This gives an exam-

ple of rank 4. Rank 2 is impossible since the space may not be negative definite.

Case d = 8a — 1. Take L40, h0) © «-1 >, xx). This has rank 3 which is minimal.

This completes the proof of (3.2).

To complete the proof of Theorem A it is easy to check that if H has odd type

and d < 0 the corresponding table is

d = -1, rank A = 1,

d =   0 mod 8, rank A = 2,

d =   6 mod 8 and all odd prime

divisors of -d are s 1 mod 4, rank A = 2,

a" =    1, 5, or 7 mod 8, rank A = 3,

a* =   2, 4, or 6 mod 8, rank A = 4,

a" =   3 mod 8, rank .4=5.

We conclude this section by describing the results in the context of Witt groups

(see [19, pp. 12ff.]). We define a split based inner product space (S, s) to be an

inner product space S with a direct summand N such that N = N x together with

an element s E S of norm 0. Two based inner product spaces of the same type

(//j, «,) and (H2, h^ are Witt equivalent if there are split spaces of that type such

that (//,, «,) © (Si, sx) = (H2, h2) ffi (S2, s2). The equivalence classes then form the

two Witt groups H/7/even and WHodd. Each of these groups is isomorphic to

Z ® Z. The isomorphism is given by (H, h) v-* (d/2, a/8) in the even case and by

(H, h) h» (d, (a — d)/S) in the odd case where a denotes the signature of H.

According to 3.7, two based inner product spaces with r — \o\ > 4 are isomorphic

if and only if they have the same rank, type, and Witt class. Theorem 3.2 gives

elements of minimal rank in each Witt class (after some obvious remarks are added

to cover negative degrees).

4. Simply connected intersection diagrams. In this section we give another direct

sum decomposition H = A ffi B in the case where H has odd type. This will lead to

a geometric decomposition of X as in Theorem B in which the rank of A will be

somewhat larger than the minimal examples of §3 but for which we shall be able to

describe the plumbing construction of the manifold W completely.

To a basis ex, . . . , en of a bilinear form space A we associate a diagram D (cf. [9,

p. 58]). D will be a graph consisting of vertices and edges each with integer labels.

The vertices correspond to the basis elements ex, . . ., e„. The label for the vertex y

is the integer e, • e,. To each pair, (i,j) with e¡ • e¡ ¥* 0 there corresponds an edge

connecting / and j with label e¡ • e¡. Also we adopt the convention that an edge

labelled +1 can be written with no label and an edge labelled -1 can be written

• — . For example, • — is the diagram of the hyperbolic plane <(? ¿)>. The

intersection matrix is completely determined by the diagram.

For a based inner product space (//, «) we will take basis elements only from the

subspace «x or from the coset {y E H: y ■ h = I}. We use a dot • for a vertex

corresponding to an element in h x and a cross X for a vertex corresponding to an

element .y with ^ • h = 1. The pair (//, h) is completely determined by its diagram.
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Thus for a complete intersection the • 's can be represented by embedded spheres

and the X 's by embedded CPJs.

With this notation the rank 2 space of 3.2(a) is given by

0 -2a
x-•

We will construct based inner product spaces denoted (Ab, hb) for b > 0 and

(A_b, h_b) for b > 0 of rank 6 + b and with a basis corresponding to the diagrams

11             2             2                 _2             0          -2         -2a
Ab:     x       x-•-•-• • • -•-•-•-•

-2

1      -1        -2        -2 -2 0 0 -2      -2a

Let o+ and a~ be the number of positive and negative squares in a diagonaliza-

tion of H over the rational numbers. Thus rank H = a+ + a~ and the signature

a = a+ — o~.

Theorem 4.1. Let (H, h) be a based inner product space of odd type and of degree

d. If d = 8a + b, b > 0, and a+ > 3 + b, a~ > 3, then Ab C H with hb = h. If

d = 8a - b, b > 0, and o+ > 3, a" > 3 + b, then A_b Q H with h_b = h.

Proof. The proof follows the pattern of §3. We construct a model pair (A0, h0)

and then embed it in (H, h) using 3.7. Let A0 be free of rank 6 on the generators

y\,y2,ex, e2, e3, e4 with unimodular intersection matrix

10 0 0 0 0
0 110 0 0
0 10 1 0 1
0 0 1-21 0 '
0 0 0 1 -2a 0
0    0     10       0-2

Thus denoting them's by X and the e's by -, A0 has the prescribed diagram. Let

h0=yl + (8a - \)y2 - 2(4a - \)ex - Aae - 2e3 - (4a - l)e>

Then «0 is indivisible and it is easy to compute h0-y¡ = 1 for i = 1, 2 and

«0 • <?, = 0 for 1 < i < 4. Also h0- h0 = 8a.

Finally a straightforward computation shows that «0 is characteristic. Indeed if

x = bxyx + b2y2 + cxex + ■ ■ ■ +c4e4, then x ■ x = bx + b2 mod 2, and h0- x s

bx + b2 mod 2.
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It follows from 3.3 that (A0, h0) is a based inner product space of odd type and

degree 8a. Diagonalizing we compute Sign A0 = 0, so a+(A0) = 3 and o~(Aq) = 3.

Given (H, h) as in 4.1, there are integers a and ß such that the based inner

product space (A0, h0) ffi a(U, 0) ffi /?(Tg, 0) has the same rank, signature, type,

and degree as (H, h). By 3.7 it is isometric with (H, h) and hence h is contained in

a unimodular summand isometric to A0.

If, for b > 0, we set (Ab, hb) = «1>, xx) ffi • • • ffi«l>, xb) ffi (Aq, h0), then

(Ab, hb) has odd type, degree 8a + b, rank 6 + 6, and signature b. Recall hb — xx

+ • • • + xb + ho, so hb • x,: = 1. The corresponding diagram is

11 1110-2       -2a
X X ••• X X X-•-•-•

b

-2

With   respect   to   the  new  basis yx, xx, x2 — xx, x3 — x2, . . ., xb — xb_x, y2 —

xb, ex, . . ., e4, the diagram is as promised above.

Finally we set (A_b, hb) = (<-l>, xx) ffi • • • ffi«-l>, xb) ffi (A0, h0) to obtain a

space of odd type, degree 8a — b, rank 6 + 6, and signature -6. Here h_¡, = xx

+ • • • +xb + «0 and h_b • (-*,) = + 1. Taking the basis -xx, . . . , -xb,

y\,y2> €\> • ■ ■ > e4 the diagram is

-1-1 -1 1 1 0 -2 -2a
X X X X x-•--•-•

b

-2

With   respect   to   the  new  basis yx, -xx, -x2 + xx, . . . , -xb + xb_x,y2 + xb,

ex, ... , eA the diagram is as promised above.

Example 4.2. Another quite simple plumbing diagram

corresponds to a based inner product space (A, h) which has odd type, rank d, and

degree d, and is positive definite, in fact equivalent to a"<l). Given (H, h) of odd

type and degree d, if a+(H) > d and rank H - |Sign H\ > 4, then (A, h) embeds

in (H, h).

5. The signature and rank of H. In this section we show that the decomposition

results of §3 can be applied to the homology of any complete intersection of even

complex dimension « > 4 except projective space, the quadric, and the complete

intersection of two quadrics. In fact we will show in §6 that these exceptional

varieties admit no connected sum decomposition. We also show that the results of

4.1 apply with the additional exception of ^(3).
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Let ajd) and 6„(d) denote the signature and «th Betti number of ^„(d).

Theorem 5.1. For n > 2, \ajd)\ < 6„(d) — 4 unless d = (1), (2), or (2, 2) or unless

« = 2 and d = (3).

Corollary 5.2. If 2m > 4 and d ^ (2, 2), then there is a unimodular submodule A

of H2JX) with h E A and rank A < 5.

This follows from §3.

Recall a„+(d) and o~(d) are the number of positive and negative squares,

respectively, in a representation of the intersection form as a sum of squares. For

§4 we need

Theorem 5.3. For « > 4 and d =£ (1), (2), or (2, 2) we have o*(d) > 7 except for

n=4andd = (3) or (2, 2, 2). For d = (2, 2, 2), a4+ = 38 and o4  = 6.

To prove these results we use the Hirzebruch recursion relation for the Ty-genus

to study the behavior of a^(d) (cf. [13]).

Lemma 5.4. The functions a„+(d) and o~(d) are monotonically increasing functions

of each variable dj.

Proof. It suffices to show o-,f(d, u + 1) > o*(A, u) where (d, u) =

(a7,, ... ,dr, u).

Let ejd) denote the Euler characteristic and 6„(d) the middle Betti number of

A^(d) for « > 0 and 0 for « < 0. Then

(1) e„ = « + 6„   and   e„_x = « — bn_x   for even« > 0.

By [8, Theorem 11.3.1] we have

(2) ajd, u+\) = ajd, u) + ajd) - a„_2(d, u, u + 1),

(3) ejd, u+l) = ejd, u) + ejd) - 2e„_1(d, u) + e„_2(d, u, u + 1).

Combining (1) and (3) we obtain for « > 1,

(4) 6„(d, u + 1) = 6„(d, u) + 6„(d) + 26„_1(d, u) + 6„_2(d, u, u + I) - 2.

Note that (4) holds for both odd and even values of «.

Using the relations 6„ = a„+ + a~ and a„ = a„+ — a~ we find, for « > 2,

(5) o„+(d, u + 1) = a„+(d, u) + o-„+(d) + 6„_,(d, t/) + a„-_2(d, u, u + 1) - 1,

(6) 0„-(d, « + 1) = a„-(d, «) + 0„-(d) + 6„_,(d, u) + a„+_2(d, u, u + 1) - 1.

For « = 0, 60(d) = a0+(d) = d = Udj and a0_(d) = 0. In general o-„+(d) > 1 since

the homology class h has positive norm. Thus (5) and (6) imply Lemma 5.4.

For the quadric, d = (2), and the intersection of two quadrics, d = (2, 2), (5) and

(6) allow us to compute:

« = 0 mod 4 « = 2 mod 4

°:v) 2 i
V(2) 0 1
o„+(2,2) « + 4 1

°„~(2} 2) 0 n + 3
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In these cases the intersection form is definite on the subspace Ax of spherical

classes. The values of an and 6„ are easily determined.

To prove 5.1 we must show both 0* > 2 and for 5.3 both a± > 1. We check

some initial cases and then apply Lemma 5.4.

Using 6„_,(2, 2) = « for « even (and a0+(2, 2, 2) = 8) we have

a*(2, 2, 2) = 2o = (2, 2) + b„_x(2, 2) + aj2(2, 2, 2) - 1 > « + 1

for « > 2.

Next

<V(2, 3) = a*(2, 2) + a±(2) + 6„_,(2, 2) + a*_2(2, 2, 3) - 1

> b„_x(2, 2) + aj2(2, 2, 2) - 1    by (5.4)

> 2« > 8   for « > 4,

and a2+(2, 3) = 3, a2_(2, 3) = 19.

For the hypersurface of degree 3 we have

<V(3) = «V(2) + a*(l) + 6„_,(2) + a^(2, 3) - 1 > 7   for « > 6,

by the result for (2, 3), and 02+(3) = 1, 02_(3) = 6; 04+(3) = 21, o4_(3) = 2. Finally

one can check o2+(4) = 3, 04~(4) = 42, and 02"(2, 2, 2, 2) = 15. These facts together

with Lemma 5.4 complete the proofs of Theorems 5.1 and 5.3.

6. Cases where h x is definite. As a consequence of §5 we have

Corollary 6.1. The only complete intersections of dimension > 2 for which the

intersection form on the subgroup «x of vanishing cycles is definite are CP„, XJ2),

XJ2, 2), and X2(3).

Deligne has given a precise description of the intersection form on «x in these

cases [4, p. 339]. The elements of «x of norm 2(-l)"/2, that is the algebraic

vanishing cycles, form a system of roots, R. The Weyl group, which can be

identified with a monodromy group, acts transitively on R. It follows that R is of

type A, D, or E.

The quotient group (hx)*/w ± 's cyclic of order h • h (3.6). Finally the rank of «x

was computed in §5. These facts suffice to determine R (see [1, Chapitre 6]).

Proposition 6.2 (Deligne). For XJ2), X2(3), and XJ2, 2), the intersection form

on «x is associated with the Dynkin diagram of type Ax, E6, and Dn+3, respectively.

It follows that h x has no unimodular summand. For if h x were written as a (not

necessarily orthogonal) direct sum, since each root has norm 2(-l)"/2 and «x is

definite of even type, each root must he in one of the summands. But the Weyl

group acts irreducibly, hence one of the summands is zero [1, V. 1.2.5]. (Hence the

hypothesis on the signature in Theorem A is necessary.) Consequently these spaces

have no connected sum decomposition.

Also we have an interesting example of the necessity of the condition rank H —

4 > |sign H\ in Wall's theorem [24, p. 337]. For « = 2 mod 4, H = HJXJ2, 2)) is

indefinite. It has odd type if « = 2 mod 8 and even type if « = 6 mod 8. In either

case consider the based inner product space (//', h') of §3 which has the same rank,
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signature, type, and degree as (H, h). Since H is indefinite H and H' are

isomorphic but since «x = Dn+3 is irreducible while «'x is reducible there is no

isomorphism of H to //' carrying h to «'.

The information in 6.2 and in §5 suffices to determine the homology of these

varieties as a based inner product space. Consider the intersection of two quadrics.

Let (H, h) be any based inner product space with « • h = 4 and H definite or

nearly definite (rank H — |Sign H\ = 0 or 2). By 3.4, if

rank H = 0 mod 8, then H is definite of even type

2 indefinite     even

4 definite     odd

6 indefinite     odd

We will determine the structure of (H, h) with the additional hypothesis that h x

is given by the Dynkin diagram of type D. We first collect some properties of a

particular example.

Let ex,..., e„ be the standard orthonormal basis of Q", let n = 0 mod 4, and let

T„ be the unimodular sublattice of Q" generated by e, + ey. and

i(e, + • • • +e„) (see [19, p. 27] or [22, p. 87]).

Then 2 a¡e¡ E T„ iff 2a, E Z, ax = a2 = • • • = a„ mod 1, and 2 a, E 2Z. Let

h = 2ex andy =\(ex + • • • + ej Then h,y ETn and h ■ h = 4, h -y = l,y -y =

n/4. The elements y, e2 + e3, -e2 + e3, e3 — e4, -e4 + e5, . . ., en_x — en form a

basis for T„. It is fairly easy to check that the generators e¡ + e, are in the span of

this set of elements so they generate T„, but there are exactly « of them so they give

a basis. The last « — 1 elements lie in «x and, since h -y = 1, it follows they give a

basis for «x. The corresponding diagram is

2
n/4    x-•

\2 2 2

^-
2

Hence «x = Dn_x, the bilinear form corresponding to the Dynkin diagram Dn_x.

Let x0 = 4y — h = 2e2 + • • • + 2e„ E D„_x. Note

(i) x0 is not divisible by 2 (since « — 1 is odd) and

(ii) x0 • D„_, = 0 mod 4.

Now the bilinear form space <4> ffi Dn_x is a sublattice of Q ffi Q"'1 = Q". Let

« denote the generator of <4> and let x0 E Dn_x be the element specified above.

Then the sublattice of Q" generated by <4> ffi Dn_x and the element '(« + Xq) is

isomorphic to Tn with h corresponding to 2ex E T„. Also reflection in the e,-axis of

Q" induces an isometry of the based inner product space (Tn, h) sending x0 to -x0.

Proposition 6.3. Let H be a positive definite inner product space of rank « =

0 mod 4 with an element h such that «x = Dn_x. Then (H, h) = (Tn, 2ex).
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We thank Gunter Harder for conversations providing the proof. The orghogonal

sum hZ ffi Dn _, is contained in H as a sublattice of index 4. In fact

0->AZ ffi/)„_,^//-*Z/4Z-*0

is exact where u E H is mapped to u ■ h mod 4. Since H is unimodular there is a

class y EH with y ■ h = 1. Then x = 4j> - A E Ax = Dn_, and // = ±(A + x)Z

+ (AZ ffi -£>„_]). Since y • x = I mod 2, (i) x is not divisible by 2. Also since the

form on H is integer-valued, \(h + x) • Dn_ x E Z, so (ii) x ■ Dn_, =0 mod 4.

If x0 E D„_x is another element satisfying (i) and (ii) then \x and \x0 both

generate D*_x/Dn_x = Z/4. Hence \x = ± |x0 mod £>„_, so x = ± x0 + 4m for

some u E Dn_x. But then

\(h + x)Z + (AZ ffi Dn_x) = i(A ± x0)Z + (AZ ffi D„_x).

In either case from the properties of (T„, 2e,) above we have (H, A) = (Tn, 2e,).

Let // be indefinite with an element A such that Ax = —Dn_1. Then as above

AZ ©(-/)„_,) is a sublattice of //, which together with an element \(h + x)

generates H. The element x E -Dn_x satisfies (i) x is not divisible by 2 and (ii)

x ■ (-/)„_,) = 0 mod 4 and x is characterized up to sign modulo -Dn_x by these

properties. Let x = 2e2 + • • ■ +2en as above so x-x = -4(« — 1). Let .y =

i(A + x). Then y • (e2 + e3) = -1 and y y =¿(4 - 4(« - 1)) = (2 - «)/4.

Hence, using the same basis for Dn_, as above, the intersection diagram for (H, A)

is

2-« _   ~2-»^
-2       -2 -24 \N

-•

-2

Since the rank of HJXJ2, 2)) is « + 4, we replace n by « + 4 and restate our

results.

Proposition  6.4.   Let   H = HJXJ2, 2)).   Then   rank // = « + 4.   For   « =

0 mod 4, (//, A) = (T„+4, 2e,). The intersection diagram is

2

1 +«/4
2

2

H has odd type if n = 0 mod 8 and even type if n = 4 mod 8. For « = 2 mod 4, the

intersection diagram is
-2

-2-n
-:- x—

y/-2     -2

-2
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In this case sign // = -« — 2 and H has odd type if n = 2 mod 8 and even type if

« = 6 mod 8.

Remark 6.5. Although ^(3) is of too low dimension for our geometric construc-

tions, for completeness we consider its homology. Recall the intersection form on

H2(X2(3)) is isometric to <1> ©6<-l>. It follows from the classification of Del

Pezzo surfaces [15, p. 119] that X2(3) = CP2#6CP2 and, identifying the hyperplane

section, that A = (3, 1, 1, 1, 1, 1, 1).

In fact for this A in <1> © 6<-l> it is easy to identify Ax with E6; the basis

y = (0, . . .,0, 1), ex = (0, 1, -1, 0, 0, 0, 0), e2 = (0, 0, 1, -1, 0, 0, 0), e3 =
(0, 0, 0, 1, -1, 0, 0), e4 = (0, 0, 0, 0, 1, -1, 0), e5 = (0, 0, 0, 0, 0, 1, -1), e6 =

(1, 1, 1, 1, 0, 0, 0) has intersection diagram

-1          -2        -2        -2        -2        -2
x-•-•-♦-•-•

m
-2

The method of 6.3 then implies that any pair (H, A) with A x = E6 is isomorphic to

this example.

7. Gluing. The manifolds described by plumbing in §1 are embedded in X as

neighborhoods which retract by deformation onto certain «-dimensional com-

plexes. In this section we give homological conditions on a pair of subcomplexes of

an ambient manifold X which will yield the decomposition of A' as in Theorem B.

Proposition 7.1. Let Kx and K2 be CW-complexes of dimension < « disjointly

embedded in X2" such that:

(i) HJKj) -» HJX) is iso for q < n and mono for q = n.

(ii) HJKX) is a summand of HJX).

(iii) HJK¿ = HJKXJ in HJX),
(iv) H"(KX) = Kom(HJKx), Z).

Then HJK2) -» HJX — Kx) is an isomorphism.

We postpone the proof to the end of this section. Now let Wx and W2 be closed

manifolds which are neighborhoods of Kx and K2 such that Kj <^> Wj is a homotopy

equivalence. Then

HJ[X - Wx u W2, dW2) = HJ[X - Wx, W2)   by excision

= HJX - Kx, K2)   by homotopy

= 0   by exactness.

If X is simply connected, so is X - Wx u W2 ̂  X — Kx u K2 (^ denotes homo-

topy equivalence) since a 2-disk with boundary in X — Kx u K2 can be pushed off

Kx u K2 by general position (« is > 2). If we also assume that 3 IF, and dW2 are
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simply connected, then by the A-cobordism theorem [18, p. 107], X — Wx u W2 =

dW2x I ( = denotes diffeomorphism). Since W2 = W2 u (3IF2 X /) we have

proved

Corollary 7.2. Under these hypotheses X = Wx L)v W2 where <p: dWx —* dW2 is

a diffeomorphism.

To produce Kx and K2 we study HnX and construct a basis whose intersection

matrix corresponds to the plumbing diagram for Wx and W2.

Proof of 7.1. Since Kx is «-dimensional and by (ii) and (iv) H"(X) -» H"(KX) is

onto, the horizontal maps

H2n-q(X, Kx)     -»    H2n-*(X)

1= 1 =
HJX - Kx)      ->        HJX)

are isomorphisms for a < «.

Also by (i) HJX - Kx) = H2n~q(X, Kx) = 0 for a > « and HJX - Kx) -»

HJX) is injective. It remains to show HJK2) -> HJX — Kx), which follows from

Lemma 7.3. im{HJX - AT,) -» HJX)} = HJKXJ in HJX).

Proof. Let i: Kx ̂  X. Then u E im{HJX - Kx) -* HJX)} iff i*Du = 0 where

Du E H"(X) is Poincaré dual to u.

HJX - Kx)     ^     HJX)

H"(X,KX)      -*     H"(X)     X     Hn(Kx)

But i*Du = 0 iff i*Du n p = 0 for all p e HJKX), by (iv), iff 0 = iJi*Du n p) =

£>« n i*p = « • «»p. So

im{//n(A- - /(T,) ̂  //n(^)} = {« E //„A-: m • /> = 0 for all p E //„(^T,)}

= (i.HjKjy c //n(^r).

This proves 7.3 and completes the proof of 7.1.

8. Even type. In this section we prove Theorem B in the case where H has even

type. Recall 5 is the number of even entries in the multidegree d.

Theorem 8.1. If n = 2m > 2, (m^f) is even and d ^ (2, 2), then XJd) =

Wx U9 W2 where m: dWx —» 9JF2 is a diffeomorphism,

W2 = W^a(S" X S" - D2n)i\ßV,

and where W and Wx are two copies of the n-disk bundle over CPm with Euler class

zero and stable class given by 2.3.

Proof. XJ2, 2) does not admit such a decomposition by §6. In all other cases

where H has even type, by 5.1 and 3.2(a) we have H = A ffi B where rank A = 2
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and B = all ffi ßTs. A basis for B with the given intersection matrices can be

represented by embedded copies of S", by 2.1, and by the Whitney process we may

suppose the geometric intersections of these spheres are exactly the algebraic

intersections. Thus each U summand is represented by two copies of S" embedded

with exactly one point of transverse intersection. The normal bundles are trivial

since they are stably trivial and have Euler class zero. Therefore a neighborhood is

diffeomorphic to the manifold S" X S" — D2" obtained by plumbing according to

the diagram

o     o

In the same way the Tg summands are represented by disjointly embedded copies

of the manifold V obtained by plumbing according to the diagram Es. (It follows

that X = M#a(S" X S")#ß(V u D2n) which gives Corollary C except for the

decomposition result for M.)

Now referring to the proof of 3.2(a) there is a class e £ A with e • A = 1 and

e ■ e = 0. The case of the quadric X2J2), which has even type when m is odd, is

not covered by 3.2(a) because rank H = 2. But then H = U with basis e,f. Since

A • A = 2 we must have A = e + / (or -e — /, but in that case change the basis).

Then the class e E H has the desired properties. Such a class does not exist in

HJXJ2, 2)) since then A, e would have intersection matrix (f ¿) which is unimodu-

lar, contradiciting the remarks following 6.2.

By 2.1 e is represented by an embedded CPm in X. Denote the image of CPm by

K and let W be the normal disk bundle. Since the Euler class of this normal bundle

is zero, there is a homologous, disjoint copy which we denote by Kx with normal

bundle Wx. Finally let W2 = W\^a(Sn X S" - D2n)i\ßV where the boundary

connected sum is formed inside X by sending out thin pseudopods. W2 retracts by

deformation onto an «-complex K2 obtained by connecting by arcs the complexes

V, the a copies of S" V S", and the \ß\ copies of the core of V. These spaces

satisfy the hypotheses of 7.1 and 7.2 and this proves 8.1.

We refer to the construction used here as plumbing inside a manifold.

9. Plumbing. In this section we complete the proof of Theorem B. We also prove

that the manifold W in the decomposition is independent of various choices made

in its construction and give another description of W based on Haefliger's work on

differentiable links.

Theorem 9.1. // n = 2m > 2, then XJd) = Wx u9 W2 where Wx is an (n + 2)-

disk bundle over CPm_x and W2 = W\\a(Sn X S" - D2")t\ßV is obtained by

plumbing inside X.Ifd¥= (2, 2), rank HJV < 5.

Remark. With this construction all of H is carried by W2.

Proof. By 3.2 and 5.1 we have H = A® B with hEA and with rank A < 5

unless d = (2, 2). In those other cases where 3.1 does not apply we may take

A = H. Since A is indivisible and A is unimodular there is a class y E A with

y ■ h = 1. Then for any x E A, x — (A • y)y E Ax so A = Zy + Ax. Choose a basis

y,ex, . . . , ek for A with e¡ E Ax. Then by 2.1 v is represented by an embedded
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CPm c X and each e¡ by an embedded S" c X. By the Whitney process we may

suppose the geometric intersection of these manifolds is given by the inner product

on A.

Then inside X we have a 2n-manifold with boundary P obtained by plumbing a

bundle over CPm with bundles over S". However P will not necessarily be simply

connected (cf. [2, p. 119]). Choose loops embedded in dP representing generators of

the free group irx(dP) = irx(P). These bound 2-disks properly embedded in X — P,

so (D2, dD2) c (X - P, dP) since int D2 can be pushed off the core of P by

geneal position. The normal bundle to each D2 in A1 is trivial so we may attach

D2 X D2n~2 to P along S1 X D2n~2 c 3P to obtain a simply connected 2«-mani-

fold with boundary W. Let K be obtained from the union of CPm and the «-spheres

by attaching 2-disks which extend the 2-disks attached above to dP. Then AT is an

«-complex contained in IF as a deformation retract. K carries the summand A of

the homology of X.

As in §8 the summand B is represented by a(S" X S" - D2")^ ßV c X and we

take W2 = W^a(S" X S" - D2")^ ßV and construct an «-complex K2 which is a

deformation retract of W2.

Since /: Xn —> CP„+r is an «-equivalence there is a mapy: CPm_x -> Xn unique

up to homotopy such that /' ° j is the linear inclusion. We may suppose j is an

embedding disjoint from W2. Let Kx be the image of j and Wx be the normal

(« + 2)-disk bundle. This is a stable bundle determined by the equation rCPm_x ffi

v(j) = tX as in 2.3.

Then 7.1 applies to Kx and K2 in X and by 7.21= Wx u,, W2. This completes

the proof of 9.1.

There are some consequences of the proof. If we are given a decomposition

H = A ffi B and a basis y,ex, . . ., ek for A then the intersection diagram corre-

sponding to this basis is the plumbing diagram for W. In particular if the diagram

is simply connected, then we take W = P; the construction is described explicitly

by the diagram without additional handles to make W simply connected.

Corollary 9.2. If H = HnXJd) has odd type and degree d with « > 4, o+(H) >

d, and rank H — |Sign H\ > 4, then there is a decomposition of X as in 9.1 with W

constructed according to the diagram

Applying these techniques to the decomposition of H given in 4.1 we oh ain

Proposition 9.3. If n = 2m > 4 and XJd) has odd type with d ¥= (2) or (2, 2), and

for « = 4, d 7e (3), then X = Wx u,, W2 where Wx is an n-disk bundle over CPm

with Euler class 1 and stable class given by 2.3, and

W2 = W\\a(S" X S" - D2n)^ßV
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where W is constructed by plumbing according to the simply connected diagram

b

for d = Sa + b, 0 < 6 < 4, or

-1       -2        -2

6-1

-2 -2a
-•

-2

-2       -2fl

for d = Sa - b, 0 < 6 < 4.

If we are given an intersection diagram, let the vertices correspond to basis

elements .y, e,, . . . , ek of a free Z-module yl and define a bilinear form in A using

the matrix corresponding to the diagram. If A is unimodular a class A E A is

uniquely determined by the equations A • j> = 1, A • e, = 0. If each e, • e, is even, Ax

has even type and (A, A) is a based inner product space.

ek suchLemma 9.4. Let (A, A) be a based inner product space with basis y, ex, .

that A • y = 1 and A • e, = 0. Let rj be a stable bundle over CPm with w2Jy\) = (type

of A) E Z/2. For n = 2»i > 4, there is a simply connected 2n-manifold with

boundary W constructed by plumbing with HJV = A. If h E HJV corresponds to

A E A, then if u- A = 0, u is represented by an embedded S" C int W and if

u • A = 1, u is represented by an embedded CPm.

Proof. This follows from [2, V.2.1]. Since Ax has even type, there are stably

trivial «-plane bundles over S" with Euler class ej • e,. Since y -y mod 2 is the type

of A, there is an «-plane bundle over CPm representing r¡ with Euler class y -y (cf.

the proof of 2.4). Plumbing these bundles together according to the intersection

diagram of A with respect to the given basis we obtain a manifold with boundary

P. If the diagram is not simply connected we attach handles D2 X D2n~2 to obtain

a simply connected W. Given u with u ■ A = 0, u E span{e„ . . . , ek} c A and

hence u E im{itn W -» Hn W}. By [6] u is represented by an embedded sphere. The

case u- A = 1 follows also as in 2.1.

Corollary 9.5. W is determined up to diffeomorphism by (A, A) and t\.

, e'u for A construct W by plumbing inside

W is an A-cobordism so

Proof. Given another basisy', e\,

W. Then W ->■ W is a homotopy equivalence and W

W is diffeomorphic to W.

We conclude this section with a description of IF in terms of surgery on a link.

Let E be the given «-disk bundle over CPm. Let D" be a small disk in CPm and let
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S2n-i = 3(£|/)»)_ A iink 0f („ _ i)-spheres in S2"-1 is in the stable range [7, §5]

and is determined up to isotopy by the linking elements XJ E Z for / <j. There is a

framed link of spheres S^~l, S,""1, . . ., S£~l in S2"'1 such that

(i)s,r1 = cpm n s2""1 = 3/r,
(ii) Xj = e,. • e, (where e0 = >>)>

(iii) e, ■ e¡ E Z = ker{wn_x(SO(n)) -» w„_,(SO)} determines the normal framing.

Then attach handles D" X D" along S"_1 X D" to the framed spheres

Sx~\ . . . , Sk~l to obtain a 2«-manifold with boundary IF', doing plumbing

inside W as above we conclude that W is diffeomorphic to the manifold IF.

10. Examples. According to Corollary C and the results of §9 the manifold M

which remains after removing a (2»i — l)-connected 4m-manifold with maximal

Betti number from a complete intersection can be represented as the gluing of a

linear disk bundle over CPm_x and a manifold obtained by plumbing bundles over

CPm and copies of S2m. In this section we compute the diagrams describing such

plumbings for complete intersections of low degree. (The results of 3.2(a) and §4

give an explicit diagram for an M in all degrees but not always an M with minimal

Betti number.) The problem is purely algebraic, namely for a based inner product

space (A, A) we seek the intersection matrix for a basis of the special form

y,ex, . . . , ek where y • A = 1 and.y • e} = 0.

Example d = 2. In this case A = H is the minimal space containing A. If m is

even, H has odd type of 2.2 and sign H = 2 (by 3.4). Therefore H is equivalent to

<1> ffi <1>. Since A has norm 2 we may choose the basis so A = (1, 1). Let

.y = (1, 0) and e = (1, -1). Then the intersection matrix corresponds to the diagram

1 2
x-•

When m is odd, H has even type and is equivalent to the hyperbolic plane U.

Choosing the basis so A = (1, 1) and taking y = (1, 0), e = (-1, 1) gives the

diagram

0 -2
x-•

An alternate description of XJ2) in this case, « = 2m, m odd, is given by 3.2(a).

The algebraically embedded CPm c XJ2) has self-intersection zero and so can be

moved to produce a second disjoint copy. Let the normal disk bundle of CPm be E.

ThenXJ2) = E U<p£by§8.

Example d = 10. Whenever d = 2 mod 8, the number s of even entries in d is 1,

so the type is odd if m is even. For d = 10, by 3.2(b) we may take A = <1> ffi <1).

Then A = (3, l), y = (0, 1), e = (1, -3) gives the diagram
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It is easy to show that there is no simply connected diagram of rank 2 for a" = 10

when H has odd type. A simply connected diagram for d = 10 and H of odd type

is

1 2 2 2 0-2-2
x-•-•-•-•-•-•

ii
-2

The hypersurface d = (10) and the complete intersection d = (5, 2) have the same

plumbing diagram. They are distinguished by the stable type of the bundles over

CPm and over CPm_v The bundle v over CPm is determined stably by the equation

v + y10 = (m + l)y in case d = (10) and by v + y5 + y2 = (m + 2)y in case

d = (5, 2).
Example d = 3. The minimal submodule A is equivalent to<l>ffi<l)ffi<l)

with A = (1, 1, 1). If v = (1, 0, 0), ex = (1, -1, 0), and <?2(0, -1, 1), the diagram is

1 2 2
x-•-•

This is a special case of 4.2. Although 4.3 does not apply to X4(3), this simply

connected example does. The case of X2(3) which has irreducible H is given at the

end of §6.

Example d = 4. By 3.2 rank 4 is minimal; Example 4.2 gives a simple connected

diagram of rank 4.

Example d = 5. By 3.2 rank 5 is minimal. In this case there are two possible

signatures. A positive definite example is given by 4.2: A = 5<1)> A =

(1, 1, 1, 1, 1), ex = (1, -1, 0, 0, 0), e2 = (0, 1, -1, 0, 0), . .. ,y = (1, 0, 0, 0, 0). The

diagram is

12 2 2 2
x-•-•-■-•

Another possibility is A = <1> ffi 4<-l>, A = (3, 1, 1, 1), ex = (0, 1, -1, 0, 0), e2 =

(0, 0, 1, -1, 0), e3 = (0, 0, 0, 1, -1), e4 = (1, 1, 1, 1, 0), y = (0, 0, 0, 0, 1). The dia-

gram is

-2       -2          -2         -2

•-•-•-•

Example d = 8. We may take A = <1> ffi <-l>, A = (3, 1), y = (0, 1), and
e = (1, 3). The diagram is
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In any particular case explicit description of the bundles and the plumbing

diagram is straightforward (modulo the sums of squares expressions of the proof of

3.2). For some purposes the explicit, simply connected diagrams of higher rank

may be perferable. The outstanding problem is to describe the diffeomorphism <p.
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