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ALEXANDER POLYNOMIAL OF PLANE ALGEBRAIC
CURVES AND CYCLIC MULTIPLE PLANES

A. LIBGOBER

0. Introduction. As part of the study of fundamental groups of the
complement to plane algebraic curves, Zariski had undertaken an investigation
of branched coverings of p2. Zariski had shown that simple homological
invariants of those coverings provide nontrivial invariants of the complement to
the branching set. For example, if the fundamental group of the complement of a
curve is cyclic, then all coverings branched over it have vanishing first Betti
number. The branched coverings of the plane were called multiple planes by
Italian algebraic geometers and rather detailed information was obtained by
them for coverings of small degree ([6], [2]). Zariski devoted to the study of cyclic
multiple planes works [20] and [21]. The main result of the latter can be
formulated as follows"

ZARISKI’S THEOREM. Let C be an irreducible algebraic curve of degree n in p2
given in affine part by equation f(x, y) O. Let

z= f(x, y) (0.1)
be the system of cyclic coverings Fk, branched over C (and possibly over the line L
in infinity). Assume that singularities of C are only nodes and cusps (i.e., locally
given by the equation u- + v- 0 or u + v3 O) and C is transversal to the line L.
Then the first Betti number of the desingularisation ffk of F vanishes unless both
the degree n of the curve C and the degree k of the covering are divisible by 6.

In [21] Zariski also gives a condition for nonvanishing of the first Betti number
in the case when k and n are divisible by 6 in terms of position of cusps, which
enable him to give a condition under which the fundamental group of the
complement will be nonabelian.

Since then cyclic branched coverings showed their usefulness in the study of
the complements to knots and links (see [8] for a survey of this extensive subject).
In particar, there was found a formula connecting the Alexander polynomial of
knots and links with Betti numbers of cyclic coverings.
The purpose of this paper is to apply those methods from knot theory to the

study of branched coverings of P2. We .extend Zariski’s theorem in two
directions. Firstly we consider coverings branching over an irreducible curve C
which might possess any sort of singularities. Secondly the position of the line in
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infinity which is (for generic k) a part of the branching set can be arbitrary with
respect to the curve C.
We define the global Alexander polynomial Ac of the complement to an

irreducible curve C (relative to a line) which has a connection with homologies of
cyclic branched coverings similar to one in classical knot theory. Our main result
is the relationship between global Alexander polynomial and local Alexander
polynomials of singularities of the curve.

TnoEu 1. The global Alexander polynomial Ac divides the product
AA2... As of the local Alexander polynomials for all branches of singularities of
the curve C.

Note that we consider as singular also the points of C which are on L. The
definition of the local Alexander polynomial in this case is given in Section 4.
Furthermore we define the Alexander polynomial A of a line L relative to curve
C, as the Alexander polynomial of the link obtained by intersection of C with the
sphere S 3 which is the boundary of a small tubular neighborhood of the line L.

THEOREM 2. The global Alexander polynomial Ac of curve C relative to the line
L divides the Alexander polynomial At of the line L relative to the curve C.

From Theorems and 2, one can readily deduce a generalization of Zariski’s
theorem. We define an exponent of a singularity as the order of the primitive
root of unity which is a root of its Alexander polynomial. The exponent of a line
is the order of primitive root of unity which is a root of

THEOREM 3. Let I ,..., ... v be exponents of singularities of
oo be exponents of the line in infinity relative to thethe curve C. Let oo, o

curve C. If none of the numbers g.c.d.(k,e) is divisible by one of,..., ,,..., ... ,, then the first Betti number of cyclic k-fold branched
covering Fk defined by (0.1) vanishes.

For a cuspidal curve of degree n which is in general position with respect to
the line in infinity one has coo n and all local exponents are either (for nodes
and points in infinity) or 6 (for cusps). Therefore Theorem 3 implies Zariski’s
heorem mentioned above.
The content of this paper is the following. In Section we describe biregular

projective models with isolated singularities of cyclic multiple planes. In classical
works (including Zariski’s) the properties of those models contain only implicitly.
(Note however [14] where a detailed desingularisation of double plane branched
over curve of degree 8 is given). In Section 2 we discuss various notions
connected with the Alexander polynomial, i.e., infinite cyclic coverings,
homology of finite cyclic coverings, additivity, etc. In Section 3 a lemma on the
relationship between homology of branched and unbranched coverings is proven
which is analogous to the corresponding result in knot theory. Sections 4 and 5
contain the proofs of Theorems and 2 respectively. The main tool in Section 4
is the Fulton-Deligne solution of Zariski’s problem ([7], [3]) which is somewhat a
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reduction of global objects to local ones. In Section 6 we derive Theorem 3 and
in Section 7 we compute the global Alexander polynomial in the case when the
fundamental group of the complement is known.
Note that the topological approach to Zariski’s theorem was suggested earlier

by Artin and Masur [1]. (cf. also Mumford [23], p.231).
Finally, I would like to thank Louis Kauffman, Philip Wagreich and John

Wood for helpful discussion during my work and reading of the manuscript.
I am mostly indebted to W. Fulton for his very important and stimulating

comments on the earlier version of this work. In particular he pointed out the
gap in the proof of Lemma 3.1.

1. Cyclic multiple planes. We are going to give here a construction of a
projective surface with isolated singularities which contains as an open set the
affine surface (0.1) and a mapping of it onto P2 branched over the curve
f(x, y)= 0 and possibly over the line in infinity.

As in the introduction, let C be an irreducible curve of degree n given by
equation

f(u,x, y) O (1.1)
and L be the line given by u 0.
Note that HI(P2- C,Z)= Z/n and H(p2(c U L,Z)= 7’. In fact, for any

curve with components C,..., Ct of degrees d,..., d respectively

(Indeed one has the following sequence of the pair

z ,,,(, z) 4,,,(,, ( u i ), z)- ,,,( ( u i ), z)- ,,,(,, z) =0

and if T(Ut;= C;) is a regular neighborhood of Ci which has retraction on
Ut;= ci, then by excision and Lefshetz duality

H2 p2, p2 U Ci, Z H2 P:, p2 T Ci Z
i=1 i=1

=Z(9... (gZ

times
Image of j has the components (d dz).
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Let F. denote a k-fold unbranched covering of p2_ (C to L) defined by the
kernel of homomorphism rl(P2 (C to L))----> HI(P2 (C to L)Z) Z --> Z/k,
p2 is a spread of p2_ (C to L) in the terminology of [5], and by [5], F can be
extended to the branched covering Fk of ’2, branched over C to L.
Riemann-Enriques-Grauert-Remmert theorem ([23] app. to Ch VIII) guaran-

tees the unique algebraic structure on F, in which F is normal variety. In more
explicit terms F. can be described as follows.

F." is just affine hypersurface defined by (0.1). Now let us consider the case
k > n. Let F[ denote projective completion in [3 of surface Fff (i.e., defined by
(0.1)). F[ given by

z= f(u,x, y)u-n (1.4)
Projection from the point (u,x, y,z)= (0,0,0, 1) (which does not belong to F[)
defines the regular map F- p2 with branching set C to L. This map is k to
away from the branching set and is to over it. Singularities of F[ are at the
points of the line u z 0 and at the points (u,x, y,O) such that (u,x, y) is a
singular point of C. Let F. denote the normalization of F[ (see e.g. [9] or [11] for
definitions).

LEMMA 1.1. The normalization map F---> F/, is 1-->1 away from the line
u z 0 and has degree g.c.d.(n,k) over it.

Proof. It is sufficient to check that a general plane section transversal to the
singular line u z 0 has g.c.d.(n, k) branches at the intersection point with this
line. Let us consider, for instance, the family of planes x ty. For general, such
plane intersects F[ at a curve which has at u z 0 local equation equivalent to
z u -n. This singularity has g.c.d.(n,k) branches at u z 0. Therefore the
degree of the normalization F. over u z 0 is equal to g.c.d.(n,k). All other
singularities of F[ are normal because they are isolated singularities of a
hypersurface (of. [11], pg. 35). Hence the normalization map is 1-1 away from
u z 0. We obtain therefore, that F,-P2 which is normalization of F
followed by projection provides the model with isolated singularities of a cyclic
multiple plane when k>n. It is k-->l over P-CtoL 1-1 over C and
g..d.(k, n) --> over L (C tO L).
Now let us consider the case k < n. Let F? denote the projective completion of

(0.1) in p2 pi. (It is technically slightly more convenient th,en consider the
blowing-up of (1.4) at the center of the projection.) In bihomogeneous
co-ordinates (Zo" Zl, U" X y) F’ given by equation

z (u" zof(u, x, y (1.5)

The natural projection p2 p2__)p2 defines the map Ff’ - p2. This map is k-fold
and unbranched over p2_ (C to L). It is 11 over C to L- (C O L) and
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collapses lines (z0 z,O,a, fl), where (0,a, fl) C fq L, to the points. Singulari-
ties of F;’ are preimages of singular points of C and the line u z0 0. Let F’
denote the normalization of/’.
LEMMA 1.2. The normalization map F/’-- F/’ is 1-1 away from the line u 0

and has degree g.c.d.(n,k) over it.

Proof is similar to the proof of Lemma 1.1. We consider the family of P’s
defined by x ty. The local equation of the intersection has near u z0 0 an
equation equivalent to u" zg, which has g.c.d.(n,k) branches.

In order to conclude the construction we consider the Stein factorization ([9])
of the composition map ff’ p2.

P- ....../q (1.6)

Here q has connected fibres, and %_ is finite (i.e., all fibres are finite). Therefore
qo collapses to the points the lines which are preimages under q" of the points of
C N L. Hence Fk has isolated singularities and provides the required model for
cyclic multiple planes.
Note that Lemma 1.2 implies that if k divides n then F, is unbranched over

line in infinity.
In the remaining case, k n, F is just projective completion in p3 of the

affine surface (0.1). Fh. has isolated singularities corresponding to the singularities
of C and projection F---) p2 has C as branching set.

2. The Alexander polynomials. In this section we recollect necessary facts on
Alexander polynomials of simplicial complexes. For a detailed survey see [4] or
[8].

Let X be a finite simplicial complex. Let q: r(X)---)Z be a homomorphism of
fundamental group of X onto the group of integers. (We suppress base point
because it does not play any role in the following.) Then ker q defines the infinite
cyclic covering n0" The group. Z acts on the groups Hi(zn0,() by deck
transformations. Therefore Hi(X, G) are in a natural way modules over the
group ring of Z, i.e., over the ring of Laurent polynomials A G[t,t-].
Hi(X, G) are finitely generated over A because they are generated over A by
preimages of cells of dimension i. The ring C[t, t-] is a principal ideals domain.
In particularly any torsion module M can be represented as

The ’s will be called Alexander factors and the polynomial A ? X, which
is the "order" of A-module M is the Alexander polynomial of M. A is defined up
to unite of the ring A i.e., up to at . If A(1) 4:0 then we shall normalize it in such
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a way that

k(1) (2.2)

If M has free summand then it is convenient to put A 0. In this paper we are
concerned only with HI(ATw, G) and we shall refer to the order of HI(X, G) as to
the Alexander polynomial of X relative to .
Note that if HI(X,Z)= Z then H(A,(3) is a torsion module. Recall briefly

the argument ([13]). The exact sequence of chain complexes

c,(%) -’ )C,(Xp)- )C,(X)---O (2.3)

(t is the deck transformation) implies

H,(X,, C)
,-I ;l_l,(L,c) )’H, (X, C) >Ho(X, C)

t-I , Ho(X C) ,Ho(X, C) (2.4)

(t- 1) is the zero map on H0(AT,, G). Therefore~ this exact se.quence implies that
(t- 1) on H,(AT, (3)is a map onto H(X, C). Hence H(X, G) does not have
free component and the claim follows. In particular, in this case A is well defined
by (2.1) and can be normalized as in (2.2).
The Alexander polynomial of X can be derived directly from the fundamental

group given by generators and relators using the Fox calculus ([4], [8]).
Let r(X)--{x x, lr r,,,} be a presentation of the funadmental

group with n generators and m-relators. Let F be free group on n generators. Let
O/OX denote the Fox derivative, i.e., the endomorphism of the group ring over (3
of free group F, into itself, such that this is the linear map G[F] C[F,] defined
by the following properties

0(uv) 0u + u 0__
0x, ox,

Then the Alexander polynomial of r(X) relative to lq9:q’/’l(X)---)7 is the
greatest common divisor of the minors of the order (n- 1) in the matrix
(Jacobian matrix)

P Mat"m(C[t’t-’])
notations we denote by q alsowhere by abuse of the homomorphism
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C[ Fn] ___) O[ t, t- I] of group ring of Fn onto group ring of Z induced by the map
FrZ.
A corollary of this procedure is that the Alexander polynomial of X depends

only on r(X) and on . Therefore the notation A(G) for Alexander polynomial
of a complex with fundamental group G relative to is well defined.

PROPOSITION 2.1. Suppose we are given the following diagram

G2

Suppose that 99 is onto. Then zw.,(G2)divides A,(GI).

(2.6)

Proof. The groups G and G2 can be represented by the same set of
generators and G2 can be obtained from Gi by addition of new relators.
Therefore the Jacobian matrix of G2 is just an extension of Jacobian matrix of
G. The description of Alexander polynomial via Jacobian matrices implies the
proposition.

PROPOSITION 2.2. Let X, XI,X be simplicial complexes such that X X CJ
X2. Let Xo X N X2 and 99 is a homomorphism 99"r(X)- Z. Assume that the
compositions of inclusions with 99

o"
991 qTl(/I) qTl(X) Z
2" z

(2.7)

are onto. Suppose that Alexander polynomials of Xo, Xl,X2,X are well defined.
Then A(r(X))divides A,(rI(X))A,(r1(X2)).

Proof. Let us consider the following Mayer-Vietoris sequence for infinite
abelian coverings defined by 990,991,992,99.

H, (A70.o) --) H (A7,. ,) HI()_.,)H,())O (2.8)

This sequence ends in 0 because for the covering p" X X defined by ker 99 we
have (by surjectivity of 990, 991 and 992) that p-l(Xo), p-(XI), p-l(X2) are
connected. Therefore in the~ beginning.of the Maye.r-Vietoris sequence we have
the monomorphism Ho(Xo.o)Ho(XI.,)D Ho(X2.2). The proposition now
follows from the standard property of orders of modules in exact sequences.
We conclude this section with the description of the relationship between the

Alexander polynomial of simplicial complexes and finite cyclic coverings. Let 99.
denote the composition

% rl(X Z ---) Z/k
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We denote by X" the (unbranched) covering defined by ker ., and suppress
g when it is clear which p is used. Let

A/X;

by representation of homology group of infinite cyclic covering as a sum o
cyclic modules. Let ; be the number of common roots of X; and (t 1). Then

rkH,(X,, C)= a/’+l (2.9)
i=1

The arguments in the proof of (2.9) use the sequences similar to (2.3) and (2.4) in
which instead (t- 1) one takes - 1. For details we refer to Sumner’s paper
[17].

3. The first Betti number of the cyclic multiple planes. In this section we
derive the relationship between the first Betti number of a desingularization of
the branched covering Fk constructed in Section and the complement in Fk to
the branching locus.

Let, as in Section 1, Ft. denote the k-fold cyclic covering of p2_ (C k/L),/t.
be a desingularization of F.. Let E denote the exceptional set, i.e., the subvariety
of Ft. which maps to the singular points of Ft. under the desingularization map.
Let N denote a regular neighborhood of E and Ft. be Ft. E.

LEMMA 3.1. Let t t be the intersection indices of C and L. Assume for
simplicity that g.c.d.(t tc,k 1.

Then the following relation holds

rkn,(F],’, G) rktt,(f, G) + 1.

We shall prove this lemma in several steps.

Step 1. The map

H,(ON, C)---) H,(N,C)
induced by inclusion is an isomorphism.

This is quite standard fact (cf. e.g., W. Hammond. The Hilbert modular
surface of a real quadratic field. Math. Ann. 200 (25-45) 1971). Firstly we have
H(N, 3N) H3(N)= 0. Secondly, from exact sequence of the pair (N, )N)

Ker( H,(3 N, C) --) H,( N, C,)) Coker(H2(N, C)--) H2( N, ) N, C))
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The group H2(N, ON, G) can be identified with Hom(H2(N, C), (3) and the map
H2(N,G)oH_(N, ON, G can be identified with the map g:H2(N,G)
o Hom(H2(N,C),C) associated with the intersection form on H2(N,C). By
Mumford’s theorem (Publication Mathematiques, 1961, N. 9) the map g is an
isomorphism and therefore both terms in (**) are zeroes and (.) follows from
exact sequence of the pair (N, 0N).

Step 2. We have an isomorphism

Hl(k, C) Hl(Pk, C)
This follows from the Mayer-Vietories sequence

H2(/k )-+ H,(3N)--) H,(N) + Hl(k )’-’= HI(Pk )---)0.

(3.1)

Step 3. Let B (p-l(c U L- Sing(C U L)) where q0"ffk--YP2 is the stan-
dard projection. Let T(B) denote the tubular neighborhood of B in ff, and
T(B) be the part of the boundary of T(B) which is outside of F. Let c be the

number of connected components of B. If t are the intersection indices of
L and C then a + g.c.d.(tl.., tc,k and

i= (3.2)2

Indeed by excision theorem and Thom isomorphism, we have

y,, ), c) ), o ), c) =/-/,_ c) (3.3)

and (3.2) follows. To establish the formula for c we shall note that L- (C N L)
represents a sphere punctured in c points. If ’l % is a system of generators of
r(L C N L, P0) consisting of loops which circle exactly one .point from C t L
then r; acts on the set q0-’(p0)= (P... Pg..d.<n.)) by. the formula PsOPs+t,
where w identify P. and P.+g..d.(n.) for any s. Because the connected
components of -t(L-C tO L) correspond to the orbits of this action of
r(L- C Lpo) on -(P0) the result follows.

Step 4. By our assumption a 2, i.e., q0-(B) is irreducible. The cyclic group
Z/kZ acts trivially on H2(ff,ff T(B), (3). This implies that if H2(ff, C)= 9
T,o./ is the decomposition of H2(F.,C into eigenspaces of the generator of
Z/kZ then the image of To.; in H2(ff, (3) is zero if j v 0. The eigenspace corre-
sponding to j 0 is the invariant subgroup of H2(ff,, (3) and can be identified
with H2(./Z/k,C)= H2(p2,C)= (3. Clearly this invariant part survives in
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H2(F/,., Fk T(B), C). Therefore from exact sequence

n2( B, C)

and from formula (3.2) and the Step 2 the lemma follows in this case.
For the complement p2_ (C tJ L) we can define the Alexander polynomial

relative to the natural homomorphism r(P-- C U L)H(Pz-(c tJ L),Z)
Z (cf. (1.3)). Combining this lemma with the results mentioned in the end of

the previous section we obtain the following.

COROLLARY 3.2. Under the assumptions of the Lemma 3.1, the first Betti
number of a cyclic multiple plane is equal to ,’= ai where ai is the number of
common roots of and ith Alexander factor of p2_ (C L L) defined relative
to the homomorphism rr(P (C U L))--) H(P2 (C tJ L),Z) Z. In particular,
lar, if (t is relatively prime to the Alexander polynomial of p2 (C L) then
the first Betti number of the kth cyclic multiple plane is vanishing.

4. Proof of Theorem 1. We start by introducing some notation. Let n C--> C
denote the normalization of the curve C. By slight abuse of language we also
denote by n, the composition of n with the natural inclusion C c. p2. Let Sing C
be the set of singular points of C in which we also include the intersection points
of C with the line L in infinity. Let Sing C c ( be n-(Sing C) and let C* denote

C with small open disks about points from Sing C removed.
We apply now Fulton’s connectedness theorem [7] to the map

(p2_ (C U L)) pZ p2 (4.1)

defined as restriction of the map " pz (__)pZ pZ, (cf. [3]) which is the
identity on the first component and which is the normalization map defined
above on the second component. Let V, denote the -neighborhood of the
diagonal A in pz pz then by Theorem 1.6 from [3] (a strengthened version of it
appearing as Conjecture 1.3 in [3] is proven now by Goresky and McPherson) we
have

r,(6-’(V,))-r,((P2- (C L L)) )-r,(p2- (C U L)) (4.2)

We denote by S the image of (C t_J L) in pZ ( and by a the mapping
t pZ ( defined by
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Clearly a(C)= -(A). Therefore 6-(V.c) can be identified with the comple-
ment to S in tubular neighborhood T(a(C)) of the curve a() in P :, -( V, ) T(a(" )) S (4.3)

The tubular neighborhood T(o(C)) has a natural decomposition

Uo u U, u u (4.4)

where U0 is D4-disk bundle over C* and U;’s are the 6-balls in p2 ( about
intersection points of c(C) and the singular set of S =(SingC) C. Ui’s
correspond to the branches Bi of singularities of the curve C.

Firstly we claim that U0 S is equivalent to S l-fibration over C*. Indeed one
can choose the local coordinates (ZIZ2Z3) near points a(x) for x C* in such a
way that S (which is non-singular at a(X)) is defined by the equation Z 0,
and c(C) by the equations Z1 Z_ 0. Hence the fibre of T(a(C))- S over x
is equivalent to disk in C;2 with a deleted coordinate line which is homotopy
equivalent to S .

Secondly U;- S has the homotopy type of the complement to the link of
singularity of the branch B; of C to which corresponds the ball U;. Indeed we can
choose the local coordinates near c(b;) (where b; denotes the singular point of
branch B)in such a way that U; is given by Iz,12+ IZ212+ IZ312 < and

n(b) given by Z: Z 0. Then the projection on (Z_, Z3)-plane restricted
on U;- S is D --fibration over the complement D4- C where D 4 is a small ball
on p2 about the point n(b). O 4 C has the homotopy type of the complement of
the link of the singularity of Bi. At the singular points which are in the
intersection will the line in infinity one obtains that Ui- S has the homotopy
type of the complement of the link of the singularity of C U L.

Thirdly the intersection of U;- S and U0- S has the homotopy type of
S S where one generator of this torus corresponds to the loop 3’; in C* which
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is the boundary of the disk in C about the po.int b and the second generator i
corresponds to the fibre of fibration T(a(C))- S--)C*. The image of 7 in
r(Ui S) is zero and fli linked with S with linking coefficient 1.

Let q0 denote the ho.momorphism q" r(T(c(())- S) Z which relates to
any loop in r(T(a(C))-S) the linking number of it with S. Then the
composition maps

pi r,(Ug S)r,(T(a(C)) S)Z
qg0i" ,/’/’l(Uo (") U S)----> ,/’/’,(T(o/(()) S)---> Z

(4.5)

are onto. Therefore we can apply N times the Proposition 2.2 and obtain that
A(r(T(t(C))- S) divides

N

0(,(u0- s)) 1-I ;(,(u,- s))
i=1

Note that Ao.,(r(U0 U;-S)) is well defined. In fact, U0 Ui-S is

homotopy equivalent to S with trivial action of on H(U0 Ui S, (). Hence
Alexander polynomial of r(Uo (3 U S) relative to %.i is 1.
Now A,(r(Ui- S)) for i= 1... N, can be identified with the Alexander

polynomial of the singularity of the branch Bi. For singular points which are
intersection points of C and L, the local Alexander polynomial should be
understood in the following sense.

Definition. The local Alexander polynomial of branch B of a singular point
on the line L is the characteristic polynomial of monodromy, operator of
singularity C t2 L to which B belongs.

The A-module H( U0- S, t3) is isomorphic to

A/(t-1) ... )A/(t-1)
(46).

2g + N- times

where g is genus of C because U0- S has homology of surface of genus g with
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N-holes and action of on homologies is trivial. Therefore A(r(T(a(C))- S))
divides

IIAi(t- 1)2g*v-I (4.7)
where A; runs through all local Alexander polynomials.
Now because of (4.2) the Proposition 2.1 implies that the Alexander

polynomial of rl(P2- (C tO L)) divides the polynomial (4.7). By (1.2), H(P--(C tO L)Z)= Z hence as noted in the Section 2, A(rl(P- (C tO L)) can be
normalized so that it will satisfy (2.2). Therefore A(rr(P- (C tO L))) in fact
divides I’I/N__ m Theorem is proven.

Remark. The Alexander polynomial can be defined in a similar way for
immersions of surfaces in (3P2. However, Theorem is not valid any more for
non-algebraic immersions. In fact, the Alexander polynomial fails to be even
cyclotomic. For given any immersion, say an algebraic one, by taking a knotted
S-- S4 with non-cyclotomic Alexander polynomial (by [10] any polynomial f
with f(1)= can be used) and forming the connected sum (P-, C) ($4, S) one
obtains a new immersion of C with Alexander polynomial hcAs2. In fact any
polynomial f with f(1)= can be the Alexander polynomial of an embedded
surface. It is easy to see that the Alexander polynomial of C P coincides with
the Alexander polynomial of a certain immersion C -+ S 4.

5. Alexander polynomial relative to the line at infinity. Now we turn to the
proof of Theorem 2. Let A2 denote the complement of a small tubular
neighborhood of the line L at infinity. Note that rl(P2 (C to L)) r(A2 C).
We are going to prove that the Alexander polynomial of ’Z/’l(/2- C) divides the
Alexander polynomial of rl(0A2- C).
LEMMA 5.1. There exists a differentiable function f on A2 which has only one

minimum, such that the restriction f to C does not have maxima inside A2 and all
critical values of it are distinct.

Note that by critical values we also mean the values at singular points of C.
Without loss of generality we may assume that (0, 0) C.

Proof. Let F(zl,z2)= max(Izl, Iz2[). Clearly F has a unique minimum on A2.
F does not have maxima inside A2. Indeed neither of the functions Iz,I or Iz=l has
maxima on C by the maximum modulus theorem. F coincides with [zl or [z21 at
the points where Iz,I [z2[, But the maximum of two functions, neither of which
has a maximum, can not have a maximum.
Now a small perturbation of F makes it differentiable and satisfies all

conditions of the lemma.
It follows from the lemma that all level varieties of f, i.e., {(2122) A2 [f(z,z2)
a are spheres which we denote by Sa3. Let GA denote the fundamental group

of the link S C in Sa3. We may assume that )A S for large A.
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LEMMA 5.2. Iff[ C does not have critical value bigger than A, then

G - r,(P (C U L))

Proof. The idea is similar to one usually used in the theory of knotted
S 2--) S 4 (cf [10]). Let 0 < a < < a < A be real numbers such that flc has
only one critical value on each interval [ai,ai+ l]. First observe that

r,(f-’[a,,a,_,]-C)

Indeed if c is critical value, then in Wirtinger presentation [4], one has

Ga,.=r,(f-’(c)-C)/r r.,.
and

Then standard argument using the van Kampen theorem shows that

r,(f-’[a,,a,_l] C)= ,n’,(f-I(c)- C)lr, rx..,s,, s.,.
This proves (.).
As an example of this step consider the case when f-(c + , c- e) contains

one cuspidal point (i.e., locally defined by x2 =),3) Here the Wirtinger
presentation forf-(c + ) n C has the form

...ai,a2,a3,a4,as,a6 }/R(al,a6,a4)= I,

R(a2,a6,a3) 1, R(a4,a2,as)
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where R is the standard relation corresponding to an overcrossing, for example,
a6aa-a 1.

For S N C there are no relations among a, a2, a3, an, as, a6.
For Sc3_, N C one obtains a presentation

a , a a a4 as, a6 )/a a6, a2 a a4 a

Finally r(f-l(c e, c + e) C) has the presentation

al, a_, a a4 a a6, )/a a6, a2 a3 a4 as,

R(al,a6,a4) R(a2,a6,a3)= R(a4,a2,as)= 1.

Now the lemma can be deduced by repeated use of van Kampen’s theorem. We
have

r,(f-’(A,a,_,)- C)= rl(f-’(A,an)- C)* r,(f-(an ,an_,)- C)
r,(f-’(a,)- C)

Because r(f-(an)-C)-r(f-(an,an_)-C) it follows that r(f-t(A,
an)- C)-r(f-(A,an_) C) and hence rr(f-(A) C)-r(f-(A,
a )- C). Arguing in the same vein we obtain the conclusion of the lemma.
Theorem 2 follows from the Lemma 2 and Proposition 2.1.

6. Exponents and the proof of Theorem 3. In this section we compute the
exponents of singularities and lines in important special cases and deduce
Theorem 3.

Definition. The set of exponents of singularity is the set of highest orders of
primitive roots of unity which are roots of the local Alexander polynomial of
singularity. The set of exponents of the line relative to the curve C is the set of
the orders of primitive roots of unity which are roots of Alexander polynomial of
this line relative to the curve C.

Examples. (1) The exponent of a node is 1. Indeed the Alexander polynomial
ofx2=y2is(t- 1).

(2) The exponent of a cusp is 6. Indeed the Alexander polynomial of
singularity x2= y3 is 2- + ([12]).

(3) Exponent of the line L transversely intersecting curve C of degree n is
equal to n.

Proof. It is easy to see that link OT(c)f3 C is the link of singularity z’ z’.
(Blow down line L using 0-process.) Then the characteristic polynomial of
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monodromy operator is equal to (cf: [12]).

1"I (t 6oi6o) (t 1)-2(t- 1)

ff=l

The highest primitive root of unity has order n.
(4) Let C given by),u x3. Then the Alexander polynomial of the line u 0

relative to C is - + 1. Hence the exponent of line in infinity is 6.
(5) The exponents of unibranched singularity can be effectively found from

the Puiseux expansion.
Indeed there is the classical algorithm for finding the Alexander polynomial
using Puiseux expansion (see [18]). Let

y alxm,/n, + a2xm2/ntn2 + + asXm./n’ ...n (6.1)
where (mini= l, < < s, m > nl, m2 > n2ml, m > nsms_ and let wi,

< < s defined by
W m

(6.2)
W m mi_ IHi -]- Wi_ IHi_ i’li

Then the link L of singularity of this branch is the iterated torus knot of type
(K,..., Ks), where K is torus knot of type (wi,ni). This means that L
constructed as follows. One starts from the knot K1. Then the knot KI, K2) is
the knot on the boundary of a small tubular neighborhood of K and winding
w2-times over meridian of K and n2 times over longitude. Next iterations one
performs similarly. The Alexander polynomial of iterated torus knots can be
found using the following.

LEMMA 6.1. ([16], [18]). Let L and K be knots. Let L’, obtained by iteration
about L via K, and let 3/denote the longitude winding number of K. Then

At.,(t) At(tr)Ar(t)
Because the roots of the Alexander polynomial of torus knot of type (m,n)

(which is the link of singularity z’ z’) are roots of degree mn, one obtains the
following.

COROLLARY 6.2. The exponents of the branch given by (6.1) are

(wn n w2rt2.., rl Wstls).

Now we proceed to the proof of the Theorem 3.
If neither of the numbers g.c.d.(k, Sff;) is divisible by one of el...

e’ e eN then neither of the roots of A,..., As can be a root of A
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and k- 1. Hence g.c.d.(Al... AN,Aoo) is relatively prime to k- 1. Therefore
by the Theorems and 2 the global Alexander polynomial of C is relatively
prime to (t k- 1) and Theorem 3 follows from the Corollary 3.2.

COROLLARY 6.3. If neither of e is divisible by one of the local exponents then
Alexander polynomial of the curve is equal to 1.

Proof. The condition of the corollary implies that Aoo and Al... AN are
relatively prime.
Note finally that Zariski’s theorem (from Introduction) follows from Theorem

3 because the exponents of cusps are equal 6 (see example 2) and exponent of
transversal line is equal n (example 3).

7. Examlles. We conclude with several examples of computation of the
Alexander polynomial which are based on the known results of computations of
the fundamental group.

Recall first the connection between ’/7"1([::)2- C) and ,7/’10D2-(C I,.J L)).
According to the van Kampen theorem, q’/’l([DE- C) has the system of generators
g, gn which are the loops on straight line ! in general position with respect
to C surrounding points C N I. The base point of the fundamental group defines
the pencil of lines passing through this point. A complete system of relators can
be obtained by

(a) moving the line in this pencil around the lines tanget to C and passing
through the singular points of C.

(b) Adjoining the relator g... gn-- ([19], [23]). If L and C are in general
position then, the group rl(P2- (C t3 L) is the central extension of rl(P2- C)
by Z and has presentation with generators gl gn, and relators"

(A) Relators (a)
(a) gi=gi (7.1)
(C) g! g2" gnY

(see [21 ]).

Example 1. Let C be a curve of degree 6 with 6 cusps on conic. Such a curve
can be obtained as either branching curve of generic projection of a non-singular
cubic surface in IDa [19], or as dual to rational nodal quartic* ([22].) Then
r(Ia2- C) has the presentation by generators and u gg2g, v gig2, where
gl, g2 are van Kampen generators and relators u2= 1, v3= 1. Therefore the
group rl(P2- (C U L)) can be defined by generators u, v, and relators

1) u2= 1.9 2) ,v3= 3) uy "u 4) "/v vy (7.2)
Clearly this group is isomorpic to the fundamental group of the tref.oil knot

which has the Alexander polynomial
A=t-t+ (7.3)

*In this case C also has as singularities 4 nodes.
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This polynomial is hence the Alexander polynomial of 6-cuspidal sextic with
cusps on quadric. The Corollary 3.2 allows in this case to find the values of the
first Betti number of multiple planes. We obtain

rkH(k 13) { 02 k0k0 (6)(6) (7.4)

This of course agrees with Zariski’s result which gives the first Betti number in
terms of superabundance of the linear system of quadrics passing through the
cusps of the curve.

Example 2. The Alexander polynomial of xEu .),,3 relative to the line in
infinity u 0 is equal to 4- 2 because the complement to this curve is a
retract of the complement of the trefoil knot in S 3. The first Betti number is
given by the formula (7.5). Similarity for the curve xEu ),5 one obtains

A 4- 3 + 2- +

c) I o k =/= o
rkHl(Fk

I 4 k-= 0 (10)

(7.5)

Example 3. M. Oka [15] constructed the curve Cp,q (p,q-relatively prime)
with pq singularities locally defined by

xp + yq 0

such that r(P2- Cp,q) Zp * Zq. In fact this curve is given by equation

4- YP )q 4- rq 4- Uq )p-’- 0 (7.6)
The presentation for r(P2- (Ce,q U L)) can be given with generators u,v, y

and relators

1) up v q 2) "IV q 3) yu u3 4) yv v), (7.7)
Clearly this group is isomorphic to the fundamental group of the torus knot of

the type (p, q). Therefore the Alexander polynomial of Cp,q relative to the line in
infinity which is in general position with respect to Cp,q given by (7.6) equals to

(tpq- 1)(t- 1)Acp.q (tp- 1)(t q 1) (7.8)

Again the Corollary 3.2 yields

{ 0 if
rkH(Fk’C)

(p- l)(q-1) if
kO(pq)
k O(pq)
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