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Abstract. The notion of Smale’s topological comlplezity is reviewed. Topological and
algebro-geometrical problems arising from finding topological complezity for solving polyno-
mial equations with several vanishing coefficients formulated. Partial results toward their
solutions are stated with an outline of proofs.

In [S] S.Smale introduced the notion of topological complexity of an algorithm which
provides an information on the structure of possible algorithms for solving a given problem
rather then on their implementation time. Roughly speaking one assumes that the compu-
tation tree consists of nodes and connecting edges and that the nodes are either input nodes
(having no incoming edges), or computation nodes (having one incoming and one outcoming
edge), or branching nodes(having one incoming and two outcoming edges) or leaves (halts
with no outcoming edges). The topological complexity of an algorithm is the number of
branching nodes in its computation tree (or the number of leaves minus one).

In the same work S.Smale shows how the low bound for the topological complexity can
be reduced to purely topological problems. For an algorithm for finding with accuracy ¢
the roots of a polynomial from a family of polynomials F' one can state that the topological
complexity is greater or equal than the Schwartz genus of the covering map which relates to
an ordered collection of roots of a polynomial from F without multiple roots the collection
of its coefficients. Here by the Schwartz genus of a map f : X — Y one means the minimal
number k such that Y affords a cover with k open sets Uy,...U;, (Y = Uf=1U¢. such that
f has a section over each U;, i.e. for each ¢ there exist a continuous map g; : U; — X such
that f c g; = id).

The Schwartz genus can be estimated from below as the maximal length of a non zero cup
product of elements in Ker(H(Y, Z2)) — H'(X, Z2)). One can use here twisted coefficients
instead Zz (cf.[Sch]). Using this method S. Smale ([S]) obtained (logzn)?/* as the lower
bound for the topological complexity for finding with accuracy ¢ the roots of the polynomial
equation with one unknown. On the other hand in the case when Y is a quotient of X by
a free action of a discrete group G one can use the homological genus of any G-module A
as a lower bound for the Schwartz genus of the quotient map. The A-homological genus
of a principal G-bundle f : X — Y with the fibre a discrete group G with corresponding
classifying map ¢: ¥ — K(G,1)(K(G,1) is the Eilenberg MacLane space of the group G)
1s the minimal integer ¢ such that the canonical map H7(K(G,1),4)) — HI(Y,c*(A)) is
trivial for j > ¢ ([Sch]). Using this V.Vasiljev [V] obtained as a lower bound for the Smale’s
problem n — mingy(Dy,)) where Dy(n) is the sum of the digits in p-adic expansion of n and
the minimum is taken over all primes p. He used as A the group of integers Z with the
action of the symmetric group corresponding to the sign representation.
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It seems it would be interesting to estimate the topological complexity of the solving
some special classes of polynomial equations, for example polynomial equations with several
vanishing coefficients, or answer similar questions for systems of polynomial equations (the
latter was addressed in [L]). The application of the Smale’s theory requires rather detailed
information on the topology of the. complements to discriminants in the space of special
types of polynomials which seems is not available at the moment. This is the problem which
we begin to address here. Specifically the following should be answered. .

Problem 1. What is the fundamental group of the space of polynomials with several
vanishing coefficients? Do the cohomology of this space depend only on this fundamental
group? i.e. is the space of polynomials with vanishing coefficients is the Eilenberg MacLane
space.

Problem 2. What are the cohomology with various (twisted) coefficients of the space of
polynomials with several vanishing coefficients? What is their relationship with the coho-
mology of symmetric group?

If one considers the space of all monic polynomials then the answer to problem 1 goes
back to E.Artin ([A]) and Fadell and Neuwirth [FIN]: the fundamental group of the space of
monic polynomials without multiple roots is the braid group By on n strings and this space
is the Eilenberg MacLane space of B,. The cohomology of the symmetric group surjects on
the cohomology of the braid group in the case of cohomology with Z; coefficients ([S]) or
coefficients in sign representation of symmetric group ([V]).

Here we shall only indicate a solution for trinomials. First note that in the case of
polynomials with several vanishing coefficients of the form

z" + ail:r:i1 + a,,'z:ci’... + a;, (1)

the discriminant hypersurface is rather different than the discriminant of the space of all
monic polynomials of degree n: in may become reducible and have different than in generic
case degree (when the degree is 2n — 2).

Ezamples of discriminants:

1) For

5 2
r° +az® =br + ¢

the discriminant is
—27a*b? + 2250a%bc? — 1600ab%c + 3125¢* + 2565° + 108ca’

2) For
S +azd +bz+c

the discriminant is

270006%ac? — 13506%ca® + 108a%b® + 31256° + 349924%ct — 87483 + 729¢%a® — 46656¢°

3) For
z6+az3+bz2+c

the discriminant is

c® — 102465 — 13824b%c + 108ab° — 46656¢¢ + 7290 + 34992a%c® — —87484%c? — 8640a2h%¢
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More generally one has the following:

Theorem A. The discriminant of the family of polynomials of the form (1) has at most
two irreducible components. The number of irreducible components is two if and only if
ik-1 # 1 and in this case one of components is the linear subspace a;, = 0. The degree of
the discriminant is n + i) — 14_;.

(The first part of this theorem is obtained in [FS]).In the case of trinomials
z" +az* +b (2)
one can give complete answer to the problem 1 above.

Theorem B. The fundamental group of the space of polynomials of form (2) with no
maultiple roots is the group of an algebraic link of the type ezplicitly determined by n and k. In
particular if k = 1 then the fundamental group of the space of polynomials of form (2) without
maultiple roots is the group of the torus knot of type (r,n—1) i.e. admits a presentation with
two generators gy, g, and one relator g7 = g;'l. This space is the Eilenberg MacLane space
for any n and k.

Remark: For k = 1 by virtue of having so simple presentation for the fundamental
group one can easily describe the homomorphism of it into the braid group induced by
embedding space of polynomials of form (2) into the space of all polynomials of degree
n. If 81,...,8n—1 are the standard generators of By, then this homomorphism is given by
g1 = S$1...5n-1,92 — 81...5n-151. In particular this map is surjective. This in turn implies
that the Galois group of generic trinomial equation in characteristic zero is the full symmetric
group. (cf. [Sm] with much milder restrictions on characteristic of the ground field). This
argument can be carried out in the case k > 1 as well.

Sketch of the proof First motice that the equation of the reduced discriminant of the
polynomial (2) is
H(-1)""* 1k (n — k)"a™  +ntbR)y = g (3)

if £ > 1 (cf. [S]). This follows from the fact that a polynomial has multiple root if and
only if it and its derivative have common root. One can eliminate z from z” +azk + b=
0,nz™ !+ kazF~! = 0 by replacing last equation by z"~* = —ka/n (this is possible assuming
¢ # 0 which is the case provided b # 0. b = 0 clearly belongs to support of discriminant
if and only if £ > 1 which accounts for the first factor in (3)), substituting this in the first
equation and replacing it by expression for z < k in terms of a and b after which elimination
of x gives the second factor in (3). Now the complex curve D defined by (3) is invariant under
C* action on C? which implies that the complement to D in C? is equivalent to complement
in 3-sphere to the link of the only singularity of the curve D namely the singularity at the
origin. The Milnor fibration of the link of singularity of D exhibits the complement to the
link of the singularity of D as a fibration over the circle with the real punctured surface as a
fibre which implies that the complement to the curve D is the Eilenberg-MacLane space. In
the case £ = 1 the equation of the discriminant is given by the vanishing of the second factor
in (3). This equation after change of variables looks like v = v®~!. The link of singularity of
this curve is the torus knot of type (n,n—1) and the description of the fundamental group of
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the torus knot cited above is the well known one. The details of the proof of both theorems
above and the cohomology calculations involved in the problem 2 will appear elsewhere.
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