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An obstruction for smoothing of Gorenstein surface singularities 

ANATOLY LIBGOBER AND STEPHEN S.-T. YAU 

w Introduction 

An isolated singularity of a complex analytic space V is called smoothable if 
there is a flat family ~b : ~ ~ D  over the unit disk D such that ~b-1(0) is isomorphic 
to V and the generic fibre of ~b is non-singular. The first example of a non-smooth- 
able singularity was due to R. Thom (cf. is a cone over pl x p2 embedded in ps by 
Segre embedding). The proof uses complex cobordism theory and is based on the 
fact that the link of a smoothable singularity of V having dimension say k (which 
is the intersection of V and the boundary S 2N- i of a small ball about the singular 
point of V embedded in C N) defines the trivial element of 7r2N_ I ( M U ( N -  k)) 
where MU(N - k) is the Thorn space of the universal (N - k)-bundle. Hartshorne 
used the Barth-Ogus type theorem to prove non-smoothability of cones over 
some algebraic varieties (cf. [Ha] which contains good overview of the subject 
around that period). E. Rees and E. Thomas [RT] made detailed calculation 
of the homotopy groups of the Thorn spaces in question and used them to con- 
struct more examples of non-smoothable singularities. J. Wahl [W] constructed 
additional examples based on a new idea. His methods of detecting non-smooth- 
ability of Gorenstein surface singularities used the formula for the length fl of 
Coker (Ov/r | r -~ 6)v ): 

[3 = h'(Oe) + 10pg + 2K 2 

under the hypothesis of the existence of globalizing smoothing of V which was 
proven only recently by Looijenga [Lo]. Here Or, (resp. Ov, resp. Ov/r) denotes the 
tangent sheaf of the desingularization I7 of V, (resp. V, resp. relative derivations), 
pg is the geometric genus h~((gp) and K is the canonical class of 17. The equivalent 
formula was also proved independently by the second author [Y2]. The example of 
Wahl [W] depends on the fact that under further hypothesis (cf. Theorem 4.3 of 
[W]) fl is the dimension of the smoothing component. Hence singularities for which 
the expression is negative automatically cannot be smoothable. Using this, he 
proved that cusp with multiplicity m with r exceptional curves in the minimal 
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resolution and m > r + 9 is non-smoothable. The point is that cusp singularities are 
taut by Laufer [Lal]. Therefore h 1(~9e) can be computed easily for cusp singulari- 
ties. However, in general, it is difficult to compute hl((gp). Recently Wahl and 
Looijenga [LW] pointed out that invariants of the linking pairing on the link of 
singularity can be used to detect non-smoothability although calculations of  these 
invariants are not obvious. 

The purpose of  this work is to show that Rohlin's/~-invariant can be used to 
detect non-smoothability as well. The use is rather similar to the use of  the 
signature defects by A. Durfee [D] to obtain a formula for the signature of  the 
Milnor fibre. Under certain circumstances (cf. Proposition 2 below), the link of 
singularity has the same Z2 homology as S 3 and hence has a unique spin structure. 
It can be calculated from a resolution or from a smoothing. For  example compari- 
son of these two expressions leads to the congruence K 2 + 8pg = 0(mod 16) which 
is a necessary condition for smoothability if K = 0(mod 2). The main purpose of 
this paper is to prove the following theorem: 

THEOR EM 1. Let (V, O) be a 2-dimensional smoothable Gorenstein singularity. 
Let 17 be a resolution, K the canonical class and S be a smooth (real) surface in 17 dual 
to K mod 2. Then there is a Z2-quadratic form on Hi(S, Z2) with Arf invariant A r f S  
such that 

K2 + 8pg = S2 + 8 Arf  S (mod16).  

As the corollary, one obtains the following result which in application is easier 
to use than Theorem 1. 

THEOR EM 2. Let (V, O) be a 2-dimensional smoothable Gorenstein singularity. 
Let 17 be a resolution of  V and E = LJi Ei be the irreducible decomposition of  the 
exceptional set E in 17. Define S to be such a union of  exceptional curves that 
S  9 Ej -= E~ (mod 2) for all exceptional curves Ej. Assume that 

(a) The first beni number of the exceptional set E of  I7 is zero, i.e. weighted dual 
graph of  17 is a tree and all exceptional curves are rational. 

(b) The determinant of  the intersection form of the exceptional set E is odd. 
Then 

K2 + 8pg = ~ (E 2) (mod l6 ) .  
E,~_S 

We give examples of Gorenstein surface singularities violating the congruence 
and hence non-smoothable. These examples also provide a negative answer to the 
question of Seade ([S1]) on Arf invariant of  quadratic form associated to the 
surface dual to the canonical class of  resolution (cf. Remark 2.5). It seems that 
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non-smoothability of  these singularities cannot be detected by previously used 
means. For example, the Thom obstruction pointed out earlier is in group 
rc2u_ ~ (MU(N - k)) where N is the complex dimension of the ambient space and k 
is the codimension of singular subspace. As pointed out in [RT] n2N_ I (MU(N - k)) 
is isomorphic, for 2k-< N, to f2~k_ 1 which is the unitary cobordism group of 
dimension 2k - 1 and the latter group is trivial (cf. [RT] for the references). The 
inequality 2k < N is satisfied in our examples and hence the Thorn obstruction for 
smoothability is trivial. 

We would like to thank Professor M. Benson for his help on computer 
programs. 

w Rohlin's/l-invariant 

In this section, we shall collect the various definitions needed in this paper. 
Recall first that a Spin structure on a manifold M- is a double cover P of the 
principal SO-bundle P associated with the tangent bundle of  M such that its 
restriction on any fibre of  the canonical projection P ~ M is isomorphic to the 
non-trivial cover Spin ~ SO. Spin manifolds M~ and M2 are Spin cobordant  if there 
exist Spin manifold W such that ~ W = M~ u M2 and Spin structure on W restrict to 
given Spin structures on M1 and M2, Spin structures on a manifold M exist if and 
only if w2(M) = 0 and the set of  Spin structures on M has a structure of  an affine 
space over HI(M, Z~) (cf. [Mi]). This follows from the exact sequence (low degree 
terms of the spectral sequence of fibration P--* M). 

0 ~ H l (M, Z2) --* Hi(P,  Z2) f HI(SO(n), Z2) --* H2(M, Z2). 

The image of the right homomorphism is WR(M). The homomorphism f is onto if 
and only if M admits a Spin structure and the set of  Spin structures is the inverse 
image of the nontrivial element in H~(SO(n), Z2). In particular if M is a 3-dimen- 
sional Z2-homology sphere (H1 (M, Z2) = H2(M, Z2) = 0), then M admits a unique 
Spin structure. Alternatively one can describe a Spin structure on M as a lifting of  
the classifying map M ~ BSO(n) to the map M ~ B Spin (n) 

B Spin (n) 
/ 

M ~ BSO(n) 

so that the diagram commutes. 
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Recall the definition of Rohlin's invariant. Let M be a closed oriented Spin 3- 
manifold. The group of  Spin cobordism in dimension 3 is trivial. Hence there 
is a Spin 4-manifold W such that 3W = M and such that the Spin structure 
of  W restricts to the given Spin structure on M. The Rohlin invariant # is 
(a(W)/16) mod Z (cf. [HNK] w Now let W be a 4-manifold which bounds 
a manifold 0W which has a fixed Spin structure a. The obstruction to extending 
a to a Spin structure on W is an obstruction to extending to W given 
lifting 3W--* B Spin (n - l)-* B Spin (n). This obstruction is an element of  
H2(W, OW, Z2), (a relative Steifel Whitney class w2(W, a)). Note that if S is a 
closed nonsingular surface in W then W - S admits a Spin structure extending a 
given Spin structure a on the boundary OW if and only if S is dual to w2(W, a) i.e. 
under Poinc~ire duality homomorphism H2(W, OW, Z2) ~ , H2(W, Z2) the image 
of  w2(W) is the image of the fundamental class of  S in H2(W, Z2). Indeed the 
obstruction for existence of a Spin structure on W - S extending the given one on 
0W is an element of H2(W - S, 3W, Z2) which is the image of w2(W, or) under the 
inclusion map i* 'H2(W,  3 W ) - - * H 2 ( W - S ,  OW). Under Poinc$re duality homo- 
morphism i* corresponds to the restriction map H 2 ( W ) ~ H z ( W , S )  where 
H 2 ( W - S ,  aW) is identified with H 2 ( W - S )  via isomorphisms H 2 ( W - S ,  
OW) ~ ,  H2(W - T(S), OW) ~ H 2 ( W -  T(S), OT(S)) ~ ,  H2(W, S). (T(S)) is a 
tubular neighborhood of  S.) The kernel of  H2(W) ~ H2(W, S) is generated by the 
fundamental class of  S and our claim follows. Recall that for S c W which is dual 
to wz(W) corresponds to Z2-quadratic form on H~(S, Z2) defined as follows. 
Perform, if necessary, surgery on W to assure that every element ~ e H~ (S, Z2) can 
be represented by a closed curve for which there exists a surface D,  c W such that 
OD, =  9 and D, is transversal to S along ~. Then q(~) is the sum mod 2 of the 
obstruction to extending the normal vector field to ~ in S to a normal in W vector 
field to D,  and the number of  intersections of  D, and S. q(~) is independent of  the 
choice of  the surgery on W, ~ mod 2 and D,  ([FK] Cor. 1) and is quadratic in ~. 
The Arf  invariant of  S is defined to be the Arf  invariant of  q. 

LEMMA. I f  S is dual to w 2 ( W  ) mod 2 and the Spin structure on OW is the 
restriction of Spin structure on W -  S, then 

or(W) - S 2 
# ( & W ) -  = A r f S  rood2  

8 

where ~r(W) denotes the signature of W. 

Proof" Let if" be a 4-manifold with a Spin structure such that d W = ~ if" and 
such that the restriction of the Spin structure from if" on aft" is the same as the 
restriction of the Spin structure from W - S on a W. Then (W - S) w ( i f ' )  inherits 
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a Spin structure and hence S is dual to w2(Ww IV). By Rohlin's theorem and the 
additivity of  the signature 

a ( w )  - a ( f f ' )  - s 2 
= A r f S  mod2 .  

Hence 

o r ( i f ' )  _ ~ ( W )  - S ~ 
m 

8 8 
+ A r f S  mod 2 

and the left side of  this congruence is the #-invariant. Q.E.D. 

Finally recall the analytic method to compute Arf  S from [L] assuming that W 
is a complex manifold with boundary d W and S is a complex curve. Let K be the 
canonical divisor. Let S = K mod 2 and D be such divisor that K + S = 2D. Then 
Arf  S = dim H~ t~s(D)) mod 2. For example if W is resolution of  the singularity 
z~+z32+z]=O which is a bundle over torus S, then K = - S ,  D = 0  and 
A r f S  = dim H~ Os) = 1 (cf. [$2] example 4.4). 

w A congruence for invariants of smoothable Gorenstein singularities with link 
a Z2-sphere 

In this section we prove Theorem 1 and derive the corollaries on which the 
examples of  non-smoothable singularities are based. 

Proof of Theorem 1. A non-vanishing holomorphic form co on V - {0} defines 
a subbundle in the principle bundle associated to the tangent bundle consisting of  
the frames (vl, %) such that o9(vl, %) = 1, which is a SU(2) subbundle, i.e. a SU 
(2)-structure on V - {0}. Nonvanishing form on V - {0} extends to a non-vanishing 
form on a nearby Milnor fibre (cf. [SI]) and produces a SU (2) structure on it as 
well. The boundary of  the Milnor fibre and the boundary of V -  {0} which is 
identified with the boundary of the resolution have equivalent SU (2) = Spin (3) 
structures. Let S be a smooth surface dual to K. Then according to the lemma from 
the previous section, the #-invariant calculated from the resolution is 

- s  - S 2 
- - + A r f S  m o d 2  

8 

because the signature of  the resolution is - s  where s is the number of  exceptional 
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curves in the resolution. On the other hand the p-invariant calculated from the 
Milnor fibre is 

1 (  _ K 2 _ s - -  8pg) m o d  2 

as follows from the second author's work [Y] because as pointed out earlier the 
Milnor fiber admits a Spin structure. Equating these two expressions leads to 
Theorem 1. 

Proof of Theorem 2. The proof uses the following. 

PROPOSITION 2. Let (V, O) be a normal 2-dimensional singularity with link L. 
Let 17 be a resolution of V. Then L is a Z2 homology sphere if and only i f  the 
following conditions are satisfied: 

(a) The first betti number of the exceptional set E of 17 is zero i.e. weighted dual 
graph of 17 is a tree and all exceptional curves are rational. 

(b) The determinant of  the intersection form of the exceptional set E is odd. 

Proof. (cf. [NR]) Recall that Hj(17, L;Z2)  is isomorphic to the dual of 
H~(17, L; Z2). By Lefschetz duality H~(17, L; Z2) isomorphic to//3(I7; Z2). Since 17 
is homotopy equivalent to E, we have H3(17; Z2) ~ H3(E; Z2) = 0. Hence we have 
H~ (17, L; Z2) = 0. Consider the long homology exact sequence 

H2(L; Z2) --*//2(I7; Z2) -~ H2 (17, L; Z2) ~ H, (L; Z2) 

~ H,(17, Z2) ~ 0 .  

Notice that the matrix of i is the intersection matrix of the exceptional set E. If L 
is a Z2-homology sphere, then H2(L; Z2) = 0 = H1 (L; Z2). It follows from the exact 
sequence that bl (17, Z2) = 0 (hence condition (a) is satisfied) and the matrix of i is 
invertible (hence condition (b) is satisfied). Conversely if conditions (a) and (b) are 
satisfied, then H~ (L; Z2) is zero by the above exact sequence. Poincare duality tells 
us that H2(L; Z2) is also zero. So L is a Z2-homology sphere. Q.E.D. 

Now let us note that if the resolution graph of the singularity is assumed to be 
a tree, then S is a disjoint union of smooth curves. Indeed (S  9 Ei) is equal to the 
sum of E~ and the number of vertices in the graph of resolution which are adjacent 
to Ei and belong to S. Hence the latter number should be even. But the end point 
of subgraph S is adjacent to one point. Hence S does not have end points, i.e. S is 
a disjoint union of points. Therefore S 2 = Z E~ z and Arf S = 0 because all curves are 
rational i.e. Hj (S, Z2) = 0 and Theorem 2 follows. (Q.E.D.) 
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R E M A R K  2.1. S consists of those exceptional curves on which K has odd 
multiplicity. This follows from the facts that w 2 - K ( m o d  2) and Wu formula 
E } -  w2.Ej(mod 2) for all exceptional curves Ej (adjunction formula: K.Ej  = 
2 - 2gj + E~ ). In fact the proof  of  Theorem 2 asserts that under the hypothesis of  
Theorem 2, exceptional curves on which K has odd multiplicity cannot intersect 
each other. 

R E M A R K  2.2. On page 483 of [SI], Seade poses the question if 
A r f K  = p g ( m o d  2) where pg = h~(Cp) is the geometric genus and A r f K  is the Arf  
invariant of Rohlin's form associated with a smooth surface dual to the w2(17 ). This 
congruence is equivalent to the congruence from Theorem !. Indeed taking S dual 
to K as an integral class, Theorem 1 reduces to Seade's congruence. Conversely, let 
us apply Theorem 2 of Seade [$2] in the case W = K and W = S. By considering the 
Adam's  invariant we have 

S 2 -  8 A r f S  K 2 -  8 A r f K  
 89 + - ~3(17) + 

16 16 

Hence S 2 - 8 A r f S  --- K 2 - 8 A r f K  (16)  and equivalence of Theorem 1 and Seade 
congruence follows. 

w E x a m p l e s  o f  non-smoothable  s ingularit ies  

In the following examples, we shall construct resolution 17 explicitly. V is 
obtained by blowing down the exceptional set in I7 by Grauet-Mumford criterion 
[Mu]. We shall first write down the weighted dual graph. Then we shall use the 
plumbing construction to write down the complex manifold with the exceptional set 
having the same weighted dual graph as the prescribed one. 

E X A M P L E  1. The weighted dual graph of the exceptional set is given as 
follows: 

E~ ~ 

ET -22 

Ee 

-6  
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We use the convention that the vertex without a specified weight has the self- 
intersection number - 2  and the genera of all vertices are zeros. Notice that this is 
a Gorenstein graph. It is easy to check that the determinant of the intersection 
matrix is odd and the canonical divisor K is given by 

- 2 0  
- 420 

K = - 1 6 4  -328 -492  -656  -820  -564  -308  - 5 2  (3.1) 

The manifold I7 consists of coordinate patches glued as follows: 

T; I 

Et 
,~ VO UI I 

u~ 

! 

t;2 U3 

u2 ;3 

t i  4 

v4 E's 

i 
i 
i 

fill U7 e 

u,  E7 ', 
s  

tall 

~s 

us 

"[7 ""~0" 

I ~ 
IG 

~ 8  

E D  u ~  

The coordinate transformations are given by 

1 
/.410 = - -  V l 0  = U9 U6 

V 9  

1 
U 9 = - -  U 9 = U 8 U  ~ 

V8 

1 
v~ = u s v ~ ( 1  - u~)  

us  - u s ( l  - u s )  

1 
117 ~ - -  127 ~- U6 v22 

136 

1 
u6 - -  V 6 = u s v ~ (  l - -  u s )  

USV5 

1 
U 5 = - -  U 5 = U4 U2 

V4 



1 
U 4 = - -  

V3 

1 
U 3 ~ - -  

V2 

1 
/'12 ~ - -  

UI 

1 
U 1 = - -  

V0 

A function 

X = 

A n  o b s t r u c t i o n  for  s m o o t h i n g  o f  G o r e n s t e i n  su r f ace  s ingu la r i t i e s  

V 4 ~- U3 U2 

1) 3 = U2 U2 

t.) 2 ~ UI [21 

U 1 ~ UO U2 

u'~v~(1 - u~ ) ~ 

u~"- ~v~( l + u~v~) ~ " c 

3 2 b - a - - c  U 3a 2bv2a-b(1 + / , / 9 / 2 9 )  

16 3 ~ b - - a - - c  u l ~ -  "bv3g- 2b(1 + U,oVlo, 

U26 c bvc6( 1 ..~ U 2 v 6 ) b  . . . .  

. 43. 2 x . b - a - - c  u43C -- 2 2 b v 2 c -  b(  l + " 7  u 7 J  

ubv] b ~ c 

u ~  . . . .  v ] ~ -  2o-  2c(u3v ~ _ 1)c 

u 3 b  -- 2a -- 2 c u r b  -- 3a -- 3c 2 3  ( u 3 v z -  1) ~ 

(ulv I - ! )  c 

u5b- -4a - -4CVo6b  5 a - - 5 c  E~uOU04 5 - -  1 ) c  

is holomorphic in 17 if and only if 

a > 0 ,  b > 0 ,  c > 0  

16a - l i b  > 0 
,< 

43c - 2 2 b  > 0 

6 b -  5a  - 5c  > 0 

421 

( 3 . 2 )  
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The divisor of  x is (x) = 

5 b - 4 a - 4 c  4 b - 3 a - 3 c  

2c - b 
c 

3 b - 2 a - 2 c  2 b - a - c  b a 2 a - b  3a - 2b 

(3.3) 

With the help of  Max Benson's computer program, we find that the integral 
semi-group of (3.2) has seven generators. Therefore the minimal embedding dimen- 
sion of V (the blown-down of 17) is seven. By abusing the notation, we shall denote 
the divisor (x) of  a holomorphic function x by (a, b, c). The actual formula for (x) 
is given by (3.3). The seven coordinate functions are as follows: 

(x~) = (148,215,110) 

(x2) = (473,688,352) 

(x3) = (55,80,41) 

(x,) = (86,125,64) 

(xs) = (117,170,87) 

(x6) = (176,256,131) 

(xv) = (207,301,154) 

Recall that pg is also equal to dim c H~ 7 - E, ~-22)/H~ Q2) where t22 is the sheaf 
of  germs of holomorphic 2-forms on P by a result of  Laufer [La2]. This means that 
pg is the number of  independent meromorphic 2-forms that cannot be extended 
across the exceptional set. We can construct a meromorphic 2-form co which has no 
zeros on P - E and the divisor (to) is exactly K as shown in (3.1). Notice that any 
meromorphic 2-form t o ' e  H ~  E, f22) can be written as to' =f to  where f is a 
holomorphic function on I7 because any homomorphic  function on 17 - E extends 
across E. Therefore to compute pg, we only need to count how many monomial  
xT,x~ . . . x77  there are such that xT,x'~2...x'~7to has a pole somewhere along E. 
This is equivalent to find how many nonnegative integral vectors (n~ . . . . .  nT) are 
such that nl (xl) + "   9  9 + n7(x7) + (to) is not effective. This can be done using Max 
Benson's computer  program. We find that pg = 307. On the other hand using (3.1) 
we get K 2 = - 6 0 8 .  Hence K 2 + 8pg = 8( - 7 6  + 307) = 8  9 231 ~ 0(mod 16). In view 
of  Theorem 2, the singularity (V, 0) is not smoothable. Notice that the conditions 
of  Laufer 's conjecture (cf. [La3] or Wahl 's  version of laufer's conjecture (cf. [W]) 
on smoothable singularities are not satisfied for this example. 



An obs t ruc t ion  for smooth ing  of  Gorens te in  surface s ingulari t ies  423 

EXAMPLE 2. The weighted dual graph of the exceptional set is given as 
follows: 

E7 - 30 

Ea 

- 6  
_- _,2 ,r_ A 
El E2 Ea E ,  E5 E~ E9 Eio 

This is a Gorenstein graph and the determinant of the intersection matrix is odd. 
The canonical divisor K is given by 

- 4  
- 9 2  

K = - 3 6  - 7 2  - 1 0 8  - 1 4 4  - 1 8 0  - 1 2 4  - 6 8  - 1 2  (3.4) 

The manifold I7 consists of eleven coordinate patches as shown in Example 1 above. 
The coordinate transformations are given also as in Example 1 except 

l 
U 7 ~ - -  I) 7 ~ U6 v 3 0  

U6 

A function x = u ~ v ~ ( 1  - u s )  C is holomorphic on I7 if and only if 

" a > O ,  b > O ,  c > O  

16a - 1 lb > 0 

59c - 30b 2 0 

6b - 5a - 5c 2 0 

(3.5) 

The divisor of x is (x) = 

2c - b 
c 

5 b - 4 a - 4 c  4 b - 3 3 - 3 c  3 b - 2 a - 2 c  2 b - a - c  b a 2 a - b  3a - 2b 

(3.6) 

With the help of  Max Benson's computer program, we find that the integral 
semigroup of (3.5) has seventeen generators. Therefore the minimal embedding 
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dimension of V (the blown-down of I7) is seventeen. By abusing the notation, we 
shall denote the divisor (x) of a holomorphic function x by (a, b, c). The actual 
formula for (x) is given by (3.6). The seventeen coordinate functions are as follows: 

xl = (204, 296, 150) 

x2 = (649, 944, 480) 

x3 = (55, 80, 41) 

x, = (31, 45, 23) 

x5 = (38, 55, 28) 

x6 = (66, 96, 49) 

x7 = (73, 106, 54) 

x8 = (77, 112, 57) 

x9 = (80, 116, 59) 

Xl0 = (119, 173, 88) 

xll = (121, 175, 89) 

xl2 = (122, 177, 90) 

xl3 = (161,234, 119) 

xl4 = (163, 236, 120) 

xl5 = (203,295, 150) 

x16 = (242, 352, 179) 

x17 = (284, 413, 210) 

As in Example 1, p~ can be computed by Max Benson's computer program. We 
find that p~=31 :  On the other hand, using (3.4), we get K 2 = - 1 6 0 .  Hence 
K 2 +  8pg = 8 ( - 2 0  + 31) = 8 .11  ~ 0 (mod 16). In view of  Theorem 2, the singular- 
ity (V, 0) is not smoothable. Notice that the conditions of Laufer's conjecture 
(cf. (La3) or Wahl's version of Laufer's conjecture (cf. [W]) on non-smoothable 
singularities are not satisfied for this example. 
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EXAMPLE 3. The weighted dual graph of the exceptional set is given as 
follows: 

E? 

Ee 

-10 

-28 

ET E2 E3 E4 Es Ee E9 Eio 

This is a Gorenstein graph and the determinant of  the intersection matrix is odd. 
The canonical divisor K is given by 

- 1 4  

- 132 
K = - 5 0  - 1 0 0  - 1 5 0  - 2 0 0  - 2 5 0  - 1 6 8  - 8 6  - 4  (3.7) 

The manifold t 7 consists of  eleven coordinate patches as shown in Example 1 above. 
The coordinate transformations are given also as in Example 1 except 

1 
ld7 ~ - -  /)7 ~ U6 U 6 l0 

/36 

1 
U l 0  : - -  /310 ~--- / /9 /328  

I)9 

A function x = u'~v~(1 - us)  c is holomorphic on 17 if and only if 

r 
a > 0 ,  b > 0 ,  c > 0  

82a - 55b > 0 

- 5 a  + 6b  - 5c  2 0 

- 10b + 19c 2 0 

The divisor of  x is (x) = 

5 b - 4 a - 4 c  4 b - 3 a - 3 c  3 b - 2 a - 2 c  2 b - a - c  

2c  - b 
r 

b a 2 a - b  

(3.8) 

3a - 2b 

(3.9) 
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With the help of  Max Benson's computer program, we find that the integral 
semigroup of (3.8) has sixten generators. Therefore the minimal embedding dimen- 
sion of V (the blown-down of I7) is sixteen. By abusing the notation, we shall 
denote the divisor (x) of a holomorphic function x by (a, b, c). The actual formula 
for (x) is given by (3.9). The sixteen coordinate functions are as follows: 

xl = (64, 95, 50) 

x2 = (1045, 1558, 820) 

x3 = (275, 410, 217) 

x4 = (37, 55, 29) 

x5 = (47, 70, 37) 

x6 = (51, 76, 40) 

x7 = (104, 155, 82) 

x8 = (108, 161, 85) 

x9 = ( 161,240, 127) 

xlo = (163, 243, 128) 

Xll = (165, 246, 130) 

xl2 = (218, 325, 172) 

xl3 = (220, 328, 173) 

x14 = (275,410, 216) 

x15 = (330, 492, 259) 

xl6 = (548, 817, 430) 

As in Example 1, we find that pg =46.  On the other hand, using (3.7), we 
get K 2 = - 2 1 6 .  Hence K2+8pg=8(-27+46)=8.19~O(mod16). In view of 
Theorem 2, the singularity (1I, O) is not smoothable. Notice that the conditions of 
Laufer's conjecture (cf. [La3]) or Wahl's version of Laufer's conjecture (cf. [W]) on 
nonsmoothable singularities are not satisfied for this example. 



An obstruction for smoothing of Gorenstein surface singularities 427 

EXAMPLE 4. The weighted dual graph of the exceptional set is given as 
follows: 

Es - 1 0  

E, 

- 1 2  

E1 E2 E3 E6 E~ Es E ,  Elo 

This is a Gorenstein graph and the determinant of  the intersection matrix is odd. 
The canonical divisor K is given by 

- 1 0  _,' 
--92 

( K ) = - 5 8  - 1 1 6  - 1 7 4  - 1 4 0  - 1 0 6  - 7 2  - 3 8  - 4  (3.10) 

The manifold I7 consists of  eleven coordinate patches as follows: 

e 
e 
! E t  

I uo 

UOI 
I 
I 

U2 

V~ 

UI 

UI 

E2 

E3 

V4 
I 

ES 

i US 

U4 P5 ~l 
Er 

U3 

~e 

E~ 

E~ 
~7 

I 

E9 

E8 
ug 

1o 
t ' |O 

The coordinate transformations are given by 

1 
Ul0 = - -  U10 = U9 U12 

/)9 

1 
/'/9 ~--- - -  /)9 ~ U8 U 8 2 

/)8 

1 
U8 ~ /)8 ~ /'/7 v 2  

U7 
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1 
U 7 : - -  I) 7 = U6 v 2  

V6 

1 
U6 - -  V6 = U 3 U 2 ( I  - -  U 3 )  

v3( 1 --  u3) 

1 
U5 = - -  /')5 = /'/4 v / O  

I )  4 

1 
u ,  = v ,  = u~v~(  l - u~) 

[,/3 U3 

1 
U 3 = - -  V 3 ~ 1.t2 v 2  

V2 

1 
U 2 ~ - -  U 2 = ~tl v 2  

Vl 

1 
~ 1 - - - - - - -  Vl = U o V ~  

VO 

A f u n c t i o n  

x = u ~ v ~ ( l  - u~) ~ 

= u~6"-~v~,(1 + u~v6)  ~ . . . .  

= u 4 ~  ~ v ~  ~  ~ ( l  + ~ l v ~ )  ~ ~  

5 4 b - a - c  = u~" - ' ~ v ~  ~  ~ (  1 + u~v~)  

56a - -  45b 5a - 4b(  I . 56 .  5 xb  a c 
: UlO rIO + /~ I o U I O J  

= IA 2c "- b v ~ (  I + 1,121)4) b -- a c 

. 19. 2 \ b - - a - - c  = u ~  9' '~ +"5 usJ 

= u~v2~ b . . . . .  ( v  z - -  1) '  

= u~" "-"v~,  ~ - ~ ' -  ~"(u,v ~, - l y  

u 3 b - 2 a - 2 c u 4 b - 3 a - 3 ;  2 3 = ( U o V o -  1)' 
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is holomorphic  on 17 if and only if 

a > 0 ,  b > 0 ,  c > O  

56a - 45b 2 0 

- 1 0 b  + 19c 2 0 

- 3 a + 4 b - 3 c 2 0  

The divisor o f  x is (x) = 

3 b - 2 a - 2 c  2 b - a - c  

2c - b 
C 

b a 2a - b 3a - 2b 4a - 3b 

429 

(3.11) 

With the help o f  Max Benson's computer  program, we find that the integral 
semigroup o f  (3.11) has ten generators. Therefore the minimal embedding dimen- 
sion o f  V (the b lowndown o f  I7) is ten. By abusing the notation, we shall denote the 
divisor (x) o f  a holomorphic  function x by (a, b, c). The actual formula for (x) is 
given by (3.13). The ten coordinate functions are as follows: 

xj = (46, 57, 30) 

x2 = (855, 1064, 560) 

x3 = (135, 168, 89) 

x4 = (29, 36, 19) 

x5 = (41, 51, 27) 

x6 = (90, 112, 59) 

x7 = (107, 133, 70) 

x8 = (168, 209, 110) 

x9 = (397, 494, 260) 

xl0 = (626, 779, 410) 

As in Example 1, we find that p~ = 3 0 .  On the other  hand, using (3.10), we 

5a - 4b 

(3.12) 
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get K 2 = - 1 2 0 .  Hence K2+8pg=8(-15+30)=8. 1 5 ~ 0 ( m o d  16). In view of  
Theorem 2.1, the singularity (I/, 0) is not smoothable. Notice that the conditions of 
Laufer's conjecture (cf. [La3]) or Wahl's version of Laufer's conjecture (cf. [W]) on 
nonsmoothable singularities are not satisfied for this example. 

In the following two examples, we shall show that for smoothable singularities, 
the condition in Theorem 2 is satisfied. 

EXAMPLE 5. The weighted dual graph of  the exceptional set is given as 
follows 

Es -10  

E~ 

- 8  

Et E2 E~ E6 E7 Es E9 Ejo 

This is a Gorenstein graph and the determinant of the intersection matrix is odd. 
The canonical divisor K is given by 

- 2 2  
- 2 1 2  

K =  - 1 3 4  - 2 6 8  - 4 0 2  - 3 2 4  - 2 4 6  - 1 6 8  - 9 0  - 1 2  (3.13) 

The manifold I7 consists of  eleven coordinate patches as in Example 4. The 
coordinate transformations are given as in Example 4 except for 

1 
U l 0  ~ - -  /710 ~ -  U9D89  9 

/7 9 

A function x = U'~vb(I --U3) ~ is holomorphic on I7 if and only if 

a > 0 ,  b > 0 ,  c > 0  

36a - 29b 2 0 

- 1 0 b  + 19c > 0 

- 3 a  + 4 b  - 3c > 0 

(3.14) 
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The divisor of  x is: (x) = 
2c - b 

c 
3 b - 2 a - 2 c  2 b - a - c  b a 2 a - b  3 a - 2 b  4 a - 3 b  5a - 4b 

(3.15) 

With the help of Max Benson's computer program, we find that the integral 
semigroup of (3.14) has four generators. Therefore the minimal embedding dimen- 
sion of V (the blown-down of I7) is four. By abusing the notation, we shall denote 
the divisor (x) of  a holomorphic function x by (a, b, c). The actual formula for (x) 
is given by (3.15). The four coordinate functions are as follows: 

xl = (46,57,30) 

x2 = (551,684,360) 

x3 = (29,36,19) 

x4 = (199,247,130) 

As in Example 1, we find that pg = 59. On the other hand, using (3.13), we get 
K 2 = -248 .  Hence K 2 + 8pg = 8( - 3 1  + 59) = 16 .14 = 0(mod 16). (V, 0) is a codi- 
mension 2 Gorenstein surface singularity in C 5. By a result of Schaps [S] (V, 0) is 
a determinantal scheme and is smoothable. 

EXAMPLE 6. The weighted dual graph of the exceptional set is given as 
follows: 

Es -14 

E4 

-4 

El E~ E~ E~ E7 Es E9 El0 

This is a Gorenstein graph and the determinant of  the intersection matrix is odd. 
The canonical divisor K is given by 

- -  1 0  

- -  128 
K = - 8 2  - 1 6 4  - 2 4 6  - 2 0 0  - 1 5 4  - 1 0 8  - 6 2  - 1 6  (3.16) 
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The manifold 17 consists of  eleven coordinate patches as in Example 4. The 
coordinate transformations are given as in Example 4 except for 

l 
UIO = - -  r I O  = U 9 v 9  4 

/')9 

l 
/2 5 = - -  D 5 = U 4 t ) / 4  

V4 

A function x = u'~vt~( 1 - u3) c is a holomorphic on 17 if and only if 

a > 0 ,  b > 0 ,  c > 0  

16a - 13b > 0 

- 1 4 b + 2 7 c > 0  

- 3 a + 4 b - 3 c > 0  

The divisor of  x is (x) = 
2c - b 

c 
3 b - 2 a - 2 c  2 b - a - c  b a 2 a - b  3 a - 2 b  4 a - 3 b  

(3.17) 

5a - 4b 

(3.18) 

With the help of  Max Benson's computer  program, we find that the integral 
semigroup of  (3.17) has four generators. Therefore the minimal embedding dimen- 
sion of V (the blown-down of  I 7) is four. By abusing the notation, we shall denote 
the divisor (x) of  a holomorphic function x by (a, b, c). The actual formula for (x) 
is given by (3.18). The four coordinate functions are as follows: 

xl = (22, 27, 14) 

x2 = (351,432,224) 

x3 = (39,48,25)  

x4 = (130, 160, 83) 

As in Example 1, we find that pg = 37. On the other hand, using (3.16), we get 
K 2 = - 1 5 2 .  Hence K 2 +  8pg = 8 ( -  19+  37) = 16 .9  = 0 ( m o d  16). By a result of  
Schaps IS], (V, O) is a determinantal scheme and is smoothable. 
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