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12 .1 Introduction 

Finding restrictions imposed on a group by the fact that it can appear 
as a fundamental group of a smooth algebraic variety is an important 
problem particularly attributed to J.P. Serre. It has rather different as-
pects in characteristic p and zero and here we will address exclusively the 
latter case. Most restrictions described in the literature seem to rely on 
Hodge theory or some clever use of it (cf. [2]). A prototype of such restric-
tions is evenness of rk(wl / wi ® Q) where wi is the commutator subgroup 
of the fundamental group Wl. In the case of open non-singular varieties 
one can apply mixed Hodge theory. This was done by J. Morgan who ob-
tained restrictions on the nilpotent quotients of the fundamental groups 
[13J. Here I shall describe a different (but also by no means complete) 
type of restriction on the fundamental groups of open varieties which are 
complements to hypersurfaces in en. It is implicitly contained in previ-
ous work on Alexander polynomial of plane curves [4J. For example many 
knot groups cannot occur as fundamental groups of the complement to 
an algebraic curve. This gives automatically the same restrictions on the 
fundamental groups of complements to arbitrary hypersurfaces in en as fol-
lows from the well-known argument using Zariski Lefschetz type theorem: 
For a generic plane H relative to given hypersurface V in en the natural 
map wl(H - H n V, Po) ....... Wl(en - V,Po) (Po E H) is an isomorphism, i.e., 
possible fundamental groups of the complement to hypersurfaces in en 
are precisely the fundamental groups of the complements to plane curves. 
Therefore from now on I shall work with plane curves only. 
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12.2 Alexander Polynomials of Plane Curves 

So let C be such a curve having, say, JL components. Let JL denote the 
number of irreducible components of such a curve C and d be its degree. 
Then according to van Kampen's theorem [10] 7rl(C2 - C) is generated by 
d generators belonging to a generic line L which are images of the standard 
generators of 7rl (L - L n C) (the latter is a free group on d generators). 
Here the standard generator is a loop which is formed by a path leading 
from a base point to a point near CnL, then going once around the nearby 
poaint of C n L and then returning back to the base point traversing the 
old path in the opposite direction. Generators corresponding to two points 
of C n L belonging to the same irreducible component of C are conjugate in 
7rl (C2 - C). The conjugating loop is composed of the path leading from the 
base point to the vicinity of the first point, a path leading from the vacinity 
of the first point to the vicinity of the second point which is a pushout into 
C 2 - C of a path in the locus of non-singular points of C connecting the 
first and second points and then returning to the base point along the path 
comprising the standard generator corresponding to the second point. 

In particular this implies that HI (C2 - C, Z) is generated by at most 
JL generators. On the other hand, linking coefficients with each irreducible 
component of C provide surjection of this group on ZM. Hence H 1 (C 2 -

C, Z) = ZM and consequently 7rl (C2 - C) is a normal closure of its JL el-
ements where JL = rk7rl / This simple (topological) condition prohibits 
some groups (like free products of Z with perfect groups) from being fun-
damental groups of the complement to plane curves. 

To state an algebro-geometric restriction, let us consider the homomor-
phism ¢ : HI (C2 - C) Z given by the total linking number with C 
and the infinite cyclic cover determined by ¢. Denote it (C2 - C)q,. Then 
HI (C2 - C)"" Q is a module over the group ring of Z over Q, i.e., over 
![t, rl], which as it turns out is a torsion module over this ring (cf. [4]). 
Hence it is isomorphic to E9 Q[t, rl] / (>'i) for some Laurent polynomials Ai 
determined up to a unit of Q[t, rl]. The order Ll = IIAi of C)"" Q 
is called the Alexander polynomial of curve C. The special property which 
is satisfied by the fundamental groups of the complement to plane curves 
is contained in the following theorem: 

Theorem. The Alexander polynomial Ll of a curve is cyclotomic. In fact 
Ll divides the product of the characteristic polynomials of monodromies of 
all singular points of the union of C and the line in infinity. 

In the case when curve C is transversal to the line in infinity one can give 
a very simple proof of the cyclotomic property of Ll (in this restricted case 
Kohno's algebraic description of the Alexander polynomial [10] or Randell's 
interpretation [8] of it as the characteristic polynomial of the monodromy 
operator of the 2-dimensional singularity defined by the equation of the 
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curve can be used). In fact one has the following: 

Proposition 
If C is transversal to the line in infinity then the automorphism of 

Hd(C2 - C)<I>' Q) induced by the deck transformation of the infinite cyclic 
cover has a finite order dividing the order of the curve C. 

To see this, let us put 7r1,a = 7r1 (C2 - C) and 7r1 = 7r1 (Cp2 - C) where 
C is the projective completion of C in CP2. Then one has the following 
diagram: 

o 

o 

Z/dZ 
i 
Z 

o 

o 
The surjections on the right ends of each row are homomorphisms of the 

fundamental group on HI for CP2 - C and C 2 respectively. The groups on 
the left side are the kernels of these surjections. The middle vertical arrow 
is induced by inclusion and is a surjection because any loop in Cp2 - C 
can be moved to miss the line in infinity. 7rt and 7rt a are the fundamental 
groups of the cyclic coverings having as the groups Z/dZ and Z 
respectively. The action of the Galois group on the homology of each of 
these cyclic coverings coincides with the action induced by each of these 
two sequences on the abelianization of the left terms. We will need the 
following (cf. [11], p. 509): 

Lemma If C is transversal to the line in infinity then Ker( 7r1,a ---+ 7rd = Z 
and belongs to the center of 7r1,a. 

We shall postpone the proof for a moment. This lemma implies that the 
left arrow in the diagram above is an isomorphism because the kernel of 
the middle map injects by the map ¢ into Z. Hence HI ( (C2 - C) <1>, Z 

7rf,a)/(7r) 1, a<l>)' 7rt /(7rt)' H I (CP2 - C<I>, Z). Moreover the action of 
the generator of Z in the diagram above on abelianization 7rt a coincides 
with the action of Z/dZ on the abelianization of 7rI/7ri under above iso-
morphism and our claim about the order of the action of the automorphism 
induced by deck transformation follows. 

As far as the proof of the lemma is concerned notice that the fact that 
the kernel of 7r1 (C2 - C) ---+ 7r1 (Cp2 - C) is a normal closure of a loop 'Y in 
the vicinity of the line in infinity Loo which surrounds this line follows from 
the comparison of van Kampen's presentations of the fundamental groups 
of the complement in CP2 to C U Loo and C which use as generators the 
standard generators of 7r1 (D - D n C n Loo) for a generic line D. To see that 
'Y is in the center of 7r1 (C2 - C), select a line Lt which is small perturbation 
of Loo and write the van Kampen presentation for 7r1(C2-C, LtnD) usiong 
generators in 7r1(Lt - nLt(C U Loo)). Let Doo be a small disk in D about 
D n Loo , parameterizing lines in the pencil of lines containing Loo and Lt. 
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Then the union of affine parts (Le., in C 2 ) of these lines minus CULoo is the 
trivial fibration over Doo - Doo n Loo with fibre C minus d points because 
this fibration extends over Doo , (as follows from our assumption that Cis 
transversal to Loo). The generator of 7Tl (Doo which can be identified with 
v hence commutes with all generators of (C2 - C) and the lemma follows. 

Note that if the line in infinity is not transversal to the curve then the 
relationship between 7Tl (C2 - C) and 7Tl (Cp2 - C) is more subtle. For 
example if C is given in C2 by equation x 2 = y3 then 7Tl (C2 - c) = 
{a,b,/aba = bab} and 7Tl(Cp2 - C) = Z/3Z as follows for example from 
Abhyankar's calculations [1]. 

A series of calculations of the fundamental groups of the complements 
is discussed in [5]. In particular the class of possible fundamental groups 
includes braid groups (Zariski, Moishezon) and groups of torus knots of 
type (p, q) (M. Oka). The cyclotomic property of Alexander polynomials 
of algebraic curves discussed above prohibits, however, many knot or link 
groups to be fundamental groups of an algebraic curve. For example, the 
fundamental group of figure eight knot (Alexander polynomial is t 2 - 3t + 1) 
cannot occur as a fundamental group of a complement to a plane algebraic 
curve. The lower central series of this group at the same time stabilizes in 
the second term. Indeed if r i is the lower central series of 7Tl (i.e., r 1 = 7Tl 
and ri+l = [7Tl,ri] then Hom(r2/r3,Z) can be identified with the kernel 
of the cup product map: A 2 Hl ----> H2 (cf. [8]) which is trivial for a space 
with Hl = Z. Hence the methods of [13] does not out rule these groups as 
the fundamental groups of an open algebraic variety. 

Finally note that the theory of Alexander polynomials of plane curves 
has a high dimensional generalization in which the first homology of the 
infinite cyclic cover are replaced by the first non vanishing homotopy group 
of the infinite cyclic cover which imposes a non-trivial restriction on the 
possible homotopy types of the complements to hypersurfaces in C n (cf. 
[6]). 

12.3 References 

[1] S. Abhyankar, Tame coverings and the fundamental groups of algebraic 
varieties (Par VI) Amer. J. of Math., 81, 1959, pp. 46-94. 

[2] F.E.A. Johnson and E.G. Rees, On the fundamental group for a com-
plex algebraic manifold, Bull. London Math. Soc., 19, 1987, pp. 463-
466. 

[3] T. Kohno, An algebraic computation of the Alexander polynomial of 
plane algebraic curve, Proc. Japan Acad. Ser. A. Math., 59, 1983, pp. 
94-97. 

[4] A. Libgober, Alexander polynomials of plane algebraic curves and 
cyclic multiple planes, Duke Math. J., 49, 1982, pp. 833-851. 



Groups Which Cannot be Realized as Fundamental Groups 207 

[5] A. Libgober, Alexander invariants of plane algebraic curves, Pmc. 
Symp. Pure Math., 40, Amer. Math. Soc., Providence, RI, Part 2, 
pp. 135-144. 

[6] A. Libgober, Homotyopy groups of the complements to algebraic hy-
persurfaces, Bull. A.M.S., 1985. 

[7] J. Morgan, The algebraic topology of smooth algebraic varieties, [nst. 
Hautes Etudes Sci. Publ. Math. 48, 1978, pp. 137-204. 

[8] R. Randell, Minor fibres and the Alexander polynomials of plane al-
gebraic curves, Pmc. Symp. Pure Math., 40, Providence, RI, Part 2, 
pp. 415-420. 

[9] D. Sullivan, On the intersection form of compact 3-manifold, Topology, 
14, pp. 275-277. 

[10] van Kampen, On the fundamental group of an algebraic curve, Amer. 
J. Math., 55, 1933. 

[11] O. Zariski, On the irregularity of cyclic multiple Planes, Ann. of Math., 
32, 1981, pp. 309-318. 


