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 Annals of Mathematics, 139 (1994), 117-144

 Homotopy groups of the complements
 to singular hypersurfaces, II

 By A. LIBGOBER*

 Introduction

 The fundamental groups of complements to algebraic curves in CIp'2 were

 studied by 0. Zariski almost 60 years ago (cf. [Z]). He showed that these
 groups are affected by the type and position of singularities. Zariski and

 Van Kampen (see [K]) described a general procedure for calculating these
 groups in terms of the behavior of the intersection of the curve with a generic
 line as one varies this line in a pencil. For the curves with mild and few

 singularities, these fundamental groups are abelian. For example, if C is an
 irreducible curve, having only singular points near which C can be given in
 some coordinate system by the equation x2 = y2, then its complement has

 an abelian fundamental group (cf. [F], [D]). On the other hand, one knows
 that there is an abundance of curves with nonabelian fundamental groups of

 complements (for example, branching curves of generic projections on a plane
 of surfaces embedded in some projective space). Some explicit calculations
 were made by Zariski. For example, for the curve given by the equation

 f3+f3- = 0, where fk(Zo, z1, Z2) is a generic form of degree k, the corresponding
 fundamental group is PSL2(Z) (cf. [Z]).

 If one thinks of the high-dimensional analog of these results, one can

 immediately notice that the class of fundamental groups of the complements

 to hypersurfaces in a projective space coincides with the class of fundamen-

 tal groups of complements to the curves. Indeed by a Zariski-Lefschetz-type
 theorem (cf. [H]) the fundamental group of the complement to a hypersurface
 V is the same as the fundamental group of the complement to the intersection

 v n H inside H for a generic plane H. In this article we will show, how-
 ever, that the homotopy group 7rn-k(Cn+l - V), where k is the dimension of
 the singular locus of V, exhibits properties rather similar to those properties
 of the fundamental group discovered by Zariski. (By abuse of notation we

 *Supported by an N.S.F. Grant. I am particularly indebted to the referee for a careful reading of
 the manuscript and for numerous remarks. I also want to thank Prof. P. Deligne for discussions and the
 Institute for Advanced Study, where a part of this article was written, for its support and hospitality.
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 118 A. LIBGOBER

 often will omit specifying the base point in homotopy groups, except when

 doing so causes confusion.) Actually, as in the case of curves (cf. [Z], [K]), we

 study a somewhat more general case of hypersurfaces in affine space (which

 is motivated by a desire to apply these results to the covers of ?IPn+1 of arbi-

 trary degree, the branching locus of which contains V). It appears that the

 group 7rnk (IPn+l - (V U H)) , where H is "a hyperplane at infinity", at least
 after taking a tensor product with Q, has an algebro-geometric (rather than
 a homotopy-theoretic) meaning: it depends on the "local type and position"

 of singularities of a section of V by a generic linear subspace of ?n+? of

 codimension k (see Examples 5.4). This group has a description in the spirit

 of geometric topology similar to the one given by the van Kampen theorem

 in which the Artin braid group is replaced by a certain generalization (see

 Section 2). For the most part we allow V to have a certain type of singu-

 lar behavior at infinity (see Definition 1.4). However the information on the

 homotopy groups we obtain in the affine situation when V is nonsingular at

 infinity, as we show below, is equivalent to the information on the homotopy

 groups of complements to projective hypersurfaces (see Lemma 1.13). An a

 priori construction of hypersurfaces with isolated singularities and nontrivial

 7rn(Cn+l - V), like the one with generic projections mentioned above in the
 case of fundamental groups, seems absent in our context (though the case of

 weighted homogeneous hypersurfaces discussed in Section 1 provides a class of

 hypersurfaces with one singular point in Cn+1 and nontrivial 70). Neverthe-
 less one can, starting from the equation of curves with nontrivial fundamental

 groups of the complements, construct equations of hypersurfaces having a
 nontrivial higher homotopy of their complements (see Examples 5.4). In par-

 ticular one obtains hypersurfaces with the same local data, but with distinct

 higher homotopy groups.

 A more detailed summary of this article is the following: In Section 1 we

 start with a study of the complements to nonsingular hypersurfaces in Cn+?.
 This, in particular, implies that the dimension n - k, where k as above is

 the dimension of the singular locus of V, is the lowest in which nontrivial

 homotopy groups -i (i > 2) can appear. It also allows one to reduce the
 study of rn-k to the case when V has only isolated singularities. Moreover we

 also derive a relation between nr(?IPn+l - V) and Tn (Cn+l - V) where V is a
 hypersurface with isolated singularities and no singularities at infinity.

 In Section 2 we outline a procedure for finding -rn(Cn+l - V) using a
 generic pencil of hyperplane sections of V. Such a pencil defines the geo-

 metric monodromy homomorphism of the fundamental group of the space of

 parameters of the pencil corresponding to nonsingular members of this pencil.

 The target of this homomorphism is the fundamental group of the space of

 certain embeddings of V n H into H = Cn, where H is a generic element of
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 HOMOTOPY GROUPS 119

 the pencil. The latter group has a natural linear representation over Z[t, t-1].
 Then the homotopy group in question is expressed in terms of the geometric

 monodromy and this linear representation (in some cases, information on cer-

 tain degeneration operators will be needed). In the case of curves, the whole

 procedure coincides with van Kampen's (cf. [K]); the group of embeddings is

 the Artin braid group and the geometric monodromy is the braid monodromy

 (cf. [Mo]). Theorem 2.4 reduces then to van Kampen's theorem. The linear

 representation mentioned above is the classical Burau representation, and the

 object which Theorem 2.4 calculates is the Alexander module of the curve

 (cf. [L2], [L4]).
 Section 3 describes a necessary condition for the vanishing of irn(Cn'+-

 V). Use of this result shows that in some cases the contribution from the

 degeneration operators, appearing in the description of irT(Cn+l - V) via pen-

 cils in Section 2, can be omitted. The vanishing results here are parallel to

 those on the commutativity of the fundamental groups of complements in the

 case of curves (cf. [Ab], [N]). The issue of explicit numerical conditions on

 singularities, which will assure the vanishing of the homotopy groups, is more

 algebro-geometric in nature than most issues treated here and will be discussed

 elsewhere. Note also that another vanishing result for 1r2 of the complement

 to an image of a generic projection was obtained in [L3].

 The next section, Section 4, gives restrictions on 7r, (Cn+l - V) imposed
 by the local type of singularities and the behavior of V at infinity. These

 results are generalizations of divisibility theorems for Alexander polynomials

 in [L2]. As a corollary, we show that in the case of the absence of singularities

 at infinity the order of 7r,(C?+1 - V) 0 Q coincides with the characteristic
 polynomial of the monodromy operator acting on Hn of the Milnor fiber of a

 (nonisolated) singularity of the defining equation of V at the origin in C,+2.

 These characteristic polynomials were also considered in [Dil], [Di2].
 In the last section, Section 5, we give two methods for constructing hyper-

 surfaces for which irT(Cn'l - V) f 0, and we calculate the homotopy groups in
 these cases. The first method is based on a generalization of Zariski's example,

 mentioned in the first paragraph of this Introduction. We show that if fk

 denotes a generic form of degree k of n + 2 variables, pi (i = 1, . .. , n + 1) are
 positive integers and qi = (JnJ+l Pi )/Pi, then the order irn (Ipn+1-(VUH))?Q
 as a module over Q[t, t-1] (see Section 1), where V is given by equation

 (0.1) fP1 + + fn+l =0

 is the characteristic polynomial of the monodromy of the singularity x'j1 +

 + X:n41 = 0. The hypersurface (0.1) and the nonvanishing of 7rn were
 described in [L1] as a consequence of the fact that singularities of (0.1) form

 a finite set in C]pn+l , which is a complete intersection of n + 1 hypersurfaces
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 120 A. LIBGOBER

 fql = =fq = 0 in CIPr+l (see also [L5]). The second method, based on
 the use of the Thom-Sebastiani theorem, results in examples of hypersurfaces

 with the same collection of singularities, but with distinct groups irn of the

 complement.

 The results in this article were partly outlined in the announcement [Li].

 On the other hand, the latter contained a number of results on the relationship

 of the homotopy groups in question with the Hodge theory of the cyclic covers

 of CPn+l branched over V; this is described in [L5]. Note that since [L1]
 appeared, [Dil], [Di2] and [Deg], all related to the case of hypersurfaces in

 CIpn+l , came out.

 1. Preliminaries

 This section describes the topology of complements to nonsingular hyper-

 surfaces in Cn+1 and ?Ipn+l (Lemmas 1.1 and 1.5 and Corollary 1.2), the case
 of weighted homogeneous hypersurfaces (Lemma 1.11), the homology of the

 complements (Lemma 1.6) and the relationship between complements in affine

 and projective spaces (Lemma 1.13).

 LEMMA 1. 1. Let V be a nonsingular hypersurface in Cn+1 that is trans-
 versal to the hyperplane at infinity (resp. a nonsingular hypersurface in

 Cpn+l). Then 7ri(Cn+1 -V) = 0 (resp. 7ri(CPn+1 -V) = 0) for 1 < i < n and
 ri(?n+l - V) = Z (resp. Z/dZ, d is the degree of V).

 Proof. The statement about the fundamental groups follows immediately

 from the Zariski theorem by applying it to a section of the hypersurface by

 a generic plane. A hypersurface satisfying the conditions of the lemma is

 isotopic to the hypersurface given by the equation: zd + + zd+1 + 1 = 0
 (resp. the projective closure of this). The d-fold cover of the complement to

 the hypersurface zd + 4 + + zd+1 = 0 in ?]pn+l can be identified with the
 hypersurface V in ?n+2 given by zd + zd + + z$+1 = 1. This is n-connected
 because, for example, it is diffeomorphic to the Milnor fiber of the isolated

 singularity zgd + ** + zd1 = 0. Hence our claim follows in the projective case.
 The d-fold cover of the complement in ?n+1 is obtained by removing from V
 the hyperplane section Ho given by zo = 0. In other words, this d-fold cover

 is the hypersurface in ?Ipn+2 _ (Ho U Hc') = C* x Cn+1 that is transversal to
 these hyperplanes (H,, is the hyperplane at infinity). Hence the Lefschetz-
 type theorem applied to the closure of V in ?jpn+2, which is an ample divisor

 transversal to Ho U Ho, implies that 7i(V - Ho) = iri(C*). [

 COROLLARY 1.2. If V is a nonsingular hypersurface transversal to the
 hyperplane at infinity, then Cn+1 - V is homotopy equivalent to the wedge of
 spheres S1 V Sn+1 V ... V Sn+1l
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 Proof. Indeed the lemma implies that the CW-complex C?+1 - V is a

 (E, n + 1)-complex in the sense of Dyer [Dy] and hence is homotopy equiva-
 lent to the wedge as above (i.e., as a consequence of the stable triviality of

 n+l (Cn+l - V) as a Z[t, t-1]-module (cf. [Wh], thm. 14) and the fact that
 stably trivial modules over Z[t, t-1] are free). O

 Remark 1.3. It is interesting to see how such a wedge comes up geomet-

 rically. Let us compare the complements in Cn+i to the quadric hypersurfaces

 Qi and Qo, where Q, is given by z + + Z1 =e (0 < ? < 1). The com-
 plement to Qo fibers over ?* using the map (zi, * *, Zn+l) -* z2 + * + Zn1.
 The fiber is homotopy equivalent to Sn. Hence the complement to the singular

 quadric hypersurface can be identified with S x $n. On the other hand, the

 degeneration of the nonsingular quadric hypersurface Q, (e # 0) into the sin-
 gular one when 6 -* 0 results in the collapse of the vanishing cycle $n which
 is the boundary of a relative vanishing cycle (this relative vanishing cycle can

 be given explicitly as the set Z, of points (zi,. .. , Zn+l) E Rn+l C Cn+l such
 that Iz112 + ... + 1 zn~i12 < E.) In particular Cn+l - Q - l = ?n+l - Q0.
 The complement to Q1 can hence be obtained from the complement to Qo
 by attaching an (n + 1)-cell. Therefore the complement to the nonsingular

 quadric hypersurface can be identified with S x Sn U*xS, en+i = S1 V $n+1.

 Definition 1.4. Let V be a hypersurface in ?Qpn+l and H be a hyperplane.

 A point of V will be called a singular point at infinity if it is a singular point

 of V n H. The subvariety of singular points of V at infinity will be denoted

 as Sing,,(V).

 LEMMA 1.5. Let V be a hypersurface in CIpn+l having the dimension of

 Sing(V) U SingO,(V) (resp. Sing(V)) equal to k. If Clpn-k+l is a generic
 linear subspace of Clpn+l of codimension k, then C?n-k+l n V has isolated

 singularities including infinity (resp. isolated singularities) and 7rnk (cpn+l
 V U H) = lrnk(?Cpn-k+l - (V U H) n Cpn-k+l) (resp. 7rn-k(?Cpn1 - V) =
 lrnlk(CPn-k+l - V n Cpn-k+l)). Moreover ri(CIPn+l - V U H) = Z (resp.
 i7r(CIPn+l - V) = Z/dZ) and 7ri(CPn+1 - V U H) = ir(Cpn+1 - V) = 0 for
 2 < i < n- k.

 Proof. The first part is a consequence of the Lefschetz theorem (cf. [H]).

 If L is a generic subspace of codimension k + 1 in ?Cpn+l, then V n L is a
 nonsingular hypersurface in L that is transversal to L n H, and the claim

 follows from Lemma 1.1. O

 LEMMA 1.6. Let V be a hypersurface with isolated singularities including

 singularities at infinity. Then Hi(CpEn+l - (V U H), I) = 0 for 2 < i <
 n- 1. If V is nonsingular, then the vanishing also takes place for i = n. If
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 122 A. LIBGOBER

 n > 2, then for i = n this group is isomorphic to H1+1 (V, Hn V, z). Moreover
 H1 (C]pn+l _ (VUH), E) is isomorphic to Z unless dim V = 1, in which case this
 group is the free abelian group of the rank equal to the number of irreducible

 components of V.

 Proof. Calculating the group in the lemma for i < n- 1 using the Lef-

 schetz theorem can be reduced to the case where i = n (as was done above

 for homotopy groups). For i = n, the group in the lemma is isomorphic to

 Hn+i(CpEn+l - H, Cpn+l - (V U H), Z) as follows from the exact sequence of
 the pair (Ipn+l - H, ?Pn+l - (V U H)). Using duality one can identify this
 with Hn+i (V U H, H, 2). Using excision, one sees that this group is isomorphic
 to Hn+l (V, H n V, z), which proves the lemma. The remaining case of curves
 is well known (cf. [L]). L

 LEMMA 1.7. If V and VnH are Q-manifolds, then Hn+i (VHOV,Q) =
 0.

 Proof. The claim is equivalent to the infectivity of Hi(V, Q) -* Hi(H n
 V, Q) for i = n + 1 and to the surjectivity for i = n. This follows from
 the Poincare duality with Q-coefficients and the Lefschetz theorem, which

 implies that the homology groups dual to the cohomology groups involved are

 isomorphic to either Q or 0 depending on the parity of n. LI

 Remark 1.8. An easily verifiable condition for a hypersurface V to be a Q-
 manifold is the following: Let V have only isolated singularities and for each of

 the singularities the characteristic polynomial of the monodromy operator does

 not vanish at 1. Then V is a Q-manifold. This is an immediate consequence of

 (1) the fact that the condition on the monodromy is equivalent to the condition

 that the link of each singularity is a Q-sphere, and (2) the Zeeman spectral

 sequence (cf. [Mc]).

 Let V be a hypersurface in Cn+1 having only isolated singularities includ-

 ing infinity. According to Lemma 1.5, one can identify rn (Cn+l - V) with

 Hn(Cn+l? V, V ), where Cn+l - V is the universal cover of the space in ques-

 tion. The group Z of deck transformations acts on Hn(Cn?1 - V, Z). This
 action on irn(?n+l - V) can be described as 3 -* [a,/3] - 3, where /3 E

 rn(?n+l- V), a e 7ri(Cn+l - V) and [,] is the Whitehead product (alter-
 natively this action of the fundamental group on homotopy groups is the one

 given by the change of the base point). The structure of rn(Cn+?1 - V) as
 the module over the group ring of the fundamental group, i.e., over Z[t, t-],
 becomes particularly simple after we take a tensor product with Q. Namely
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 HOMOTOPY GROUPS 123

 we have the following isomorphism of Q[t, t-1]-modules:

 (1.1) ~ -7r (cn+l - V) o8(2 (Qt-t]/(Ai) (D ?2[tj t ]r

 for some polynomials Ai defined up to a unit of Q[t, t-1].

 Definition 1.9. If , =0 in equation (1.1), then the product fli Ai is called
 the order of rn (Cn+l - V) 0 Q (as a module over [t, t-]). If t, # 0, then the
 order is defined to be 0.

 Remark 1.10. We will see below that, for V with only isolated singular-

 ities, Irn(Cn+l - V) is always a torsion module (see Remark 4.4 and Lemma
 1.12). In the low-dimensional cases, if one works with the homology of infinite

 cyclic covers, one obtains results similar to those in this article. The order

 of the corresponding Q[t, t-1]-module in the case where n = 1 is the Alexan-
 der polynomial of the curves studied in [L2]. Note that if n = 0, then the
 1-dimensional homology over Z of the infinite cyclic cover of C - V (i.e., of

 the complement to, say, d points) is a free module over 2[t, t-1] of rank d - 1
 (cf. [A]).

 LEMMA 1.11. Let f(zl.... I zn) be a weighted homogeneous polynomial
 having an isolated singularity at the origin and let V be given by f = 0. Then

 7rn(? l- V) = Hn(Mf ) ,) where Mf is the Milnor fiber of the singularity
 of f. If one introduces the structure of Z[t,t-1]-modules on Hn(MfZ) by
 defining the action of t as the action of the monodromy operator, then this is

 an isomorphism of Z[t, t1] -modules.

 Proof. Clearly Cn+1 - V can be retracted on the complement of the link
 of the singularity of f. Hence this follows from the exact sequence of fibration

 and the n - 1 connectedness of the Milnor fiber. F

 LEMMA 1.12. Let Pv(t) be the order of 7rn (Cpn+l - (V U H)) X Q as the
 Q[t, t-1] -module. If Hn+1(V, H n V, Q) = 0, then Pv(1) # 0. In particular this
 homotopy group is a torsion module.

 Proof. Let us consider the exact sequence corresponding to the following

 exact sequence of the chain complexes of the universal cyclic cover

 (Cpn+1 - (V U H))oo:

 (1.2) ? -* C" ( (CEn+ 1- (V U H)) )j C* ( (Cpn+l _ (V U H)) cj
 yC* (Cpn+l -(V UH)) 3-~0,

 where the left homomorphism is the map of free Q[t, t-1]-modules induced by

 the multiplication by t -1 (C* (X) denotes the chain complex of a cell complex
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 124 A. LIBGOBER

 X corresponding to a cell structure, which we assume is equivariant whenever

 the group action is involved). We obtain

 (1.3) 3 Hn((CIpn+l -(V U H))OOQ) Hn((CIpn+l -(V U H))oQ)
 Hn (CJpn+l -(V U H) IQ?)3

 (the left homomorphism is the multiplication by t - 1). The right group in

 the exact sequence (1.3) is trivial by the assumption of Lemma 1.12 and by

 the isomorphism Hn(C1pn+1 - (V U H)1Z) = Hn+1(V, V n Hiiz) of Lemma
 1.6. Hence the multiplication by t - 1 in in (C1Pn+l - (V U H)) 0 Q =

 Hn(CIpn+l -(V U H),O, Q) is surjective. Therefore its cyclic decomposition has
 neither free summands nor summands of the form Q[t, t-]/(t - 1)'Q[t, t-1],
 with r, E N. ?

 LEMMA 1.13. Let H be a generic hyperplane and V a hypersurface of

 degree d with isolated singularities in Cpn+l. Let dZ be the subgroup of Z
 of index d. Then 7rn(CIPn+l - V) is isomorphic to the module of covariants

 of 7rn(C1Pn+l - (V U H))dz (i.e., the quotient by the submodule of images by
 the action of the augmentation ideal of the subgroup 7rn/(td - 1)7rn) with the
 standard action of Z/dZ.

 Proof. First let us show that the module of covariants in the lemma is

 isomorphic to

 (1.4) Hn ((Cpn+l -(V U H))d I Z)

 where (Cpn+l - (V U H))d is the d-fold cyclic cover of the corresponding space.

 Indeed the sequence of the chain complexes similar to that of (1.2),

 0 -3 C( (C1pn+l -(V U H)) -) C* ((Cpn+l _(V U H)) 00) C* ((g~n~l(V U H))d) -+01
 where the left homomorphism is the multiplication by td _ 1, gives rise to the

 homology sequence

 (1.6) Hn((CP'n+1 -(V U H))4o, I) Hn ((CP~n+1 -(V U H ))o )

 ~~~- H( ?En-(V U H)) dl ) I)

 in which the right homomorphism is surjective because of the vanishing of

 rn-1 (C>n+l - (V U H)), which proves our claim.
 To conclude the proof of the lemma we need to show that

 (1.7) H ((CIP'n+1 -(V U H))d, Z) = Hn((C1Pn?1 - V)d, Z)
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 HOMOTOPY GROUPS 125

 where (CP+l - V)d is the universal (d-fold) cyclic cover of CIP+l - V. This

 will follow from the vanishing of the relative group Hi((CIPnRl- V)d,

 (CIPn+l -(V U H))d, Z) for i = n, n + 1. Let Wd be the cyclic d-fold cover
 of CIpn+l branched over V and let Z C Wd be the ramification locus (iso-
 morphic to V). Let Hd be the submanifold of Wd that maps onto H n V. Let

 us consider the regular neighborhoods T(Hd) and T(Z) in Wd of Hd and Z,
 respectively. The boundary of T(Hd) - T(Hd) n T(Z) contains the part 01,
 which is the part of the boundary of T(Hd). We denote 02 the part of the

 boundary of T(Hd) - T(Hd) n T(Z) that is complementary to 01. By excision

 (1.8)

 Hi ((Cpn+l - V) d) (CIpn+l - (V U H)d, Z) = Hi (T(Hd) - T(Hd) n T(Z), 01, IZ).

 Moreover

 Hi(T(Hd) - T(Hd) n T(Z), 01, Z) = H2n+2-i(T(Hd) - T(Hd) n T(Z), 02, Z)

 = H2n+2i (Hd, Hd n Z, z)

 by duality, excision and retraction. The assumption that H is generic implies
 that Hd, which is a cyclic branched cover of H of degree d with branching locus

 HnZ, is nonsingular and, hence, H2n+2-i(Hd, HdnZ, z) = Hi-2(Hd-HdnZ, Z).
 The latter group, which is the homology group of the affine hypersurface
 transversal to the hyperplane at infinity, is trivial except for i = 2 and i = n+2.
 This implies the lemma. O

 2. Calculation of homotopy groups

 using generic pencils

 In this section we shall describe a method for calculating 7rn (Cn+l - V)
 using the monodromy action on homotopy groups. A typical homotopy group
 supporting such an action is 7rn-1 of the complement to a nonsingular hyper-
 surface in Cn, which appears as the intersections of V with an element of a
 generic pencff of hyperpfanes. The action on such homotopy groups is obtained
 by moving a hyperplane from the pencil along a loop in the subset of the
 parameter space of the pencil corresponding to hyperplanes transversal to V.

 Monodromy action is the composition of "geometric monodromy" with values
 in the fundamental group of the space of certain embeddings and a linear

 representation of this group over Z[t, t-1]. In the case where n = 1, this con-
 struction, with the monodromy taking values in the fundamental group of the

 space of embeddings (which in this case is Artin's braid group), reduces to the
 van Kampen theorem (cf. [K]). The composition of this monodromy with the
 Burau representation leads to a calculation of the Alexander module of the
 curve (cf. [L4]).
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 126 A. LIBGOBER

 We will start by specifying the loops such that, by moving along these

 loops, we will get the information needed for the calcultions of ir((C'+1 - V).

 Definition 2.1. Let t1,... ,tN be a finite set of points in C. A system of

 generators of yi E irl(C - {tl,... tN}, to) is called good if each of the loops

 -Yi : S1 -- - {ti,. .. ,tN} extends to a map of the disk D2 - C with non-
 intersecting images for distinct subindices i.

 A standard method for constructing a good system of generators is to

 select a system of small disks Ai about each of ti, i = 1, ... , N, to choose
 a system of N nonintersecting paths 6i connecting the base point to with a

 point of &Li and to take -yi = 6-1 o o\i ? 6i (with, say, the counterclockwise
 orientation of O2i).

 Let V be a nonsingular hypersurface in Cn that is transversal to the

 hyperplane at infinity. Let us consider a sphere ?2n-1 in Cn of a sufficiently

 large radius. Let a,,V = V n ?2n-1. Let us consider the space Emb(V, Cn) of
 submanifolds of Cn, which are diffeomorphic to V and isotopic to the chosen
 embedding of V, such that for any V' E Emb(V, Cn) one has v'n2n-1 = &OV.
 We assume the compact open topology on this space of submanifolds. Let

 us describe a certain linear representation of r, (Emb(V, Cn)) (over Z[t, t-]),
 which after the choice of a basis gives a homomorphism into GLr(Z[t, t-1]),
 where r is the rank of Hn (Cn-V, Z) (the reduced homology of the comple-
 ment).

 Let Diff(Cn, ?2n-1) be the group of diffeomorphisms of Cn acting as the

 identity outside ?2n-1. This group can be identified with Diff(s2n, D2n) of the
 diffeomorphisms of the sphere fixing a disk (cf. [AnBuKa]). Let Diff(Cn, V) be
 the subgroup of Diff(Cn, ?2n-1) of those diffeomorphisms which take the hyper-
 surface V into itself. The group Diff(Cn, ?2n-1) acts transitively on Emb(V, Cn)
 (cf. [C], p. 116) with the stabilizer Diff(Cn, V). This implies the following exact
 sequence:

 (2.1) 7r, (Diff (S2n, D20)) 7r- (Emb(V, Cn)) 7ro(Diff(Cn, V))
 ro (Diff (S2n, D2n))

 Any element in Diff(Cn, V) induces the self-map of Cn - V and the self-map of
 the universal (resp. cyclic in case n = 1) cover of this space. Hence it induces

 an automorphism of Hn(Cn - V, Z) = rn (Cn - V), (n > 1). The composition
 of the boundary homomorphism in (2.1) with the map of 7ro(Diff(Cn, V)) just
 described results in

 (2.2) A: 7r1(Emb(V, Cn)) Aut(rn(Cn - V)).
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 In case n = 1, V is just a collection of points in C,

 7ri(Emb(V, C)) = ro(Diff (C, V))

 is Artin's braid group, and this construction gives the homomorphism of the

 braid group into Aut(Hi (C - V, Z)), which after the choice of the basis in
 H1(C - V) corresponding to the choice of the generators of the braid group,
 gives the reduced Burau representation. This construction coincides with the

 one described in [A].

 Now we can define the relevant monodromy operator corresponding to a

 loop in the parameter space of a linear pencil of hyperplane sections. Let V

 be a hypersurface in CIPwn+1, which has only isolated singularities, and H be

 the hyperplane at infinity (which we shall assume is transversal to V). Let Lt,
 t E C, be a pencil of hyperplanes, the projective closure of which has the base

 locus B C H such that B is transversal to V. Let t1,... , tN denote those t
 for which V n Lt has a singularity. We assume that for any i the singularity

 of V n Lti is outside H. Over C - {t, . . , tN } the pencil Lt defines a locally
 trivial fibration r of Cn+l - V with a nonsingular hypersurface in Cn as a
 fiber transversal to the hyperplane at infinity. The restriction of this fibration

 on the complement to a sufficiently large ball is trivial, as follows from the

 assumptions on the singularities at infinity. Let -y: [0,1] -? C - {tli... , ttN}
 be a loop with the base point to. The choice of a trivialization of the pullback

 of the fibration r on [0, 1], using -y, defines a loop e? in Emb(V nL to, Lto).
 Different trivializations define homotopic loops in this space. By abuse of

 language we shall assume that eA E7 r(Emb(V nL to, Lto)).

 Definition 2.2. The monodromy operator corresponding to -y is the ele-

 ment A (e,) in

 Aut(irn(Lto -Lto n V)),

 where A is the map in (2.2).

 Next we will need to associate with each pair (Lti, -y) consisting of (1) a
 singular fiber Lti and (2) a loop -y with the base point to in the parameter
 space of the pencil (where it bounds a disk /Ati not containing other singular
 points of the pencil) certain homomorphisms

 (2.3) rn-li(Lti -Lt n v) - rn(Lto - L0to n v)/ im(r - I),

 where F is the monodromy operator corresponding to -y.
 First let us, note that the module on the right in the map (2.3) is iso-

 morphic to the homology Hn(T_1(&AZti),Z) of the infinite cyclic cover of the

 restriction of the fibration r on the boundary of At,. This follows immediately
 from the Wang sequence of a fibration over a circle and the vanishing of the
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 homotopy of Lto - Lto n Vin dimensions below n. Let Bi be a polydisk in

 Cn+1 about the singular point of Lt, f V such that Bi = Ati x B for a certain
 polydisk B in Lt2. Then Tr-(Ati) - Bi is a trivial fibration over /Ati with the
 infinite cyclic cover Lti-Lt, n V as a fiber. In particular one obtains the map
 (2.4)

 7rn-l(Lt, -Lt n V) = Hn - (Lt,-Lt, n V, 2) - Hn(T- (O ti) -09Ati x B, 2)

 = Hn- - (Lt,-t n V, 2) e Hn (Lt,-t, n V, E).

 (The latter isomorphism is the Kfinneth decomposition of

 7-1(otti) - xAti x B = $1 x (Lt, - Lt, n V).

 This map associates to a cycle its product with S1.)

 Definition 2.3. The degeneration operator is the map (2.3) given by com-

 position of the map (2.4) with the map

 Hn('T-l (/ti)- M\t, x B, E) -* Hn(T (&Zti), E) = 7in(Lto -Lto n v)/(r - I)

 induced by inclusion.

 THEOREM 2.4. Let V be a hypersurface in Cpn+l having only isolated

 singularities and transversal to the hyperplane H at infinity. Consider a pen-

 cil of hyperplanes in CPn+l, the base locus of which belongs to H and is
 transversal in H to V n H. Let Cn (t E Q) be the pencil of hyperplanes in
 Cn+1 = -pn+l- H defined by Lt (where Q = C is the set parametrizing all ele-
 ments of the pencil Lt different from H). Denote by t1,. .. , tN the collection
 of those t for which VnLt has a singularity. Assume that the pencil was cho-
 sen so that LtnH has at most one singular point outside H. Let to be different

 from either of ti (i = 1, . . ., N). Let -yi (i = 1, ... , N) be a good collection, in
 the sense described above (Definition 2.1), of paths in Q based in to and form-

 ing a basis of 7r,(Q - {ti,.. . tN}, to). Let ri E Aut(7rn (C n-V - l Cnn)) be the
 monodromy automorphism corresponding to ngo. Let L virnl (Cn - V f Cn)
 7rn (?n- v nfl ?)ri be the degeneration operator of the homotopy group of
 a special element of the pencil into the corresponding quotient of covariants

 constructed above. Then

 (2.5) 7r (Cn+l - v n ?n)
 =r X(tnO- v n tnO)/(im(r - I) ,iM 07, . .. iM(rFN- I), iM UN)

 Proof. Let p Cn+l1 - Q be the projection defined by the pencil Cn. Let
 T(Cn) be the intersection of the tubular neighborhood of Lti in CPn+l, with
 the finite part Cn+1 which can be taken as P-1 (si), where Ai C Q is a small
 disk about ti (i = 1, ... , N). Each loop -yi is isotopic to the loop having the

This content downloaded from 128.248.156.45 on Mon, 15 Jul 2019 02:06:11 UTC
All use subject to https://about.jstor.org/terms



 HOMOTOPY GROUPS 129

 standard form 6b71 o &Oi ? 6i (6i, as above, is a system of paths in Q connecting
 to to &Li and nonintersecting outside to). We shall assume from now on that
 the -yi have such a form. The restriction Pv of P on Cn+l-V cn+l defines

 over Q- Ui(yi U hi) a locally trivial fibration and, therefore, Cn+l -V n +1
 is homotopy equivalent to PVI'(Ui(-yi U Ai)). The latter space is homotopy
 equivalent to

 (2.6) U T(?Cn) -V T(?Cn) (i = 1, ... , N),
 T(Cno)-vnT(Cn )

 with the embedding of the common part of the spaces in the union in each of

 them depending on the trivialization of P71 (6i) over 6i. The space in formula
 (2.6) can be decribed as a disjoint union of indicated spaces in which two

 points are identified if and only if they both are images of the same point in

 T(Cn)-V - T(Cn). We are going to calculate the homology of the infinite
 cyclic cover of the space (2.6) by repeated use of the Mayer-Vietoris sequences.

 First we claim that if to,i denotes the endpoint of the path 6i and FV is the
 automorphism of rn (C?n - C?n n v) induced by the monodromy corresponding
 to the loop &2i, then

 (2.7) Hn(T(Cn) -)-V f T(Cn), Z) = 7rn (Ctn -V n CnO i I)/(im(F-I), im rio)

 for any i (i = 1, ... , N), where X denotes the universal cyclic cover of a space

 X. To verify equation (2.7) let us consider a small polydisk Bi C T(Cn) for
 which the projection P induces a splitting Bi = Ai x Din as a product of a
 2-disk A~ C Ai, ti E A~ and an n-disk Din in Cn such that Din contains the
 singular point of V n Cn. One has a natural retraction Bi -Bi n V onto

 OBi- B, n V, which shows that T(Cn) - T(Cn) n V is homotopy equivalent
 to T(Cn) - T(Cn) n V - Bi. Let us decompose the latter as:

 (2.8) PF '(Ai - Al) U (P1'(Al) - Bi).

 The first component in this union, which we shall call 61, is a locally triv-

 ial fibration over the homotopy circle Ai - L~ with the fiber Cn - V n C?.
 The second component, which we denote by e2, is fibered over the 2-disk L\
 with the fiber Cn - Cn n V and, hence, is homotopy equivalent to this fiber.

 The intersection eo of two pieces in formula (2.8), which is the preimage of
 the boundary circle &L\, forms part of a fibration over a disk and, hence, is
 homotopy equivalent to Cn - Cn n V. This defines the decomposition of the
 infinite cyclic covers:

 (2.9) T(?Cn) -T(?Cn n V) = e1 Ue0 e2.
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 The split of e0 as a direct product (C? - cn n v) x $1 defines the splitting of

 the infinite cyclic cover of e0 as (Cn - C?n n v) x $1. Therefore

 (2.10) Hj(e0 ,z ) = Hj~i(?t -?. ZlV ) ?D Hj(C -? lV,) (j EZ)
 Next let us consider the Mayer-Vietoris homology sequence corresponding to

 decomposition (2.9):

 (2.11)

 Hn (e0, Z) Hn (61, Z) e Hn(e2, Z) -* Hn(T(Cn) -T(Cn) n v, z)
 ?-~ -0
 Hn-1 (60) --- Hn-1 (61) (D3 Hn-1 (62)

 The group Hn(E1, Z) can be identified as above with inr(C?n~ -Cnnv)/(rF-I);
 and the left homomorphism in the sequence (2.11) takes the second summand

 in equation (2.10), in the case where j = n, isomorphically to Hn(e2,Z).
 Hence the Coker of the left homomorphism in the sequence (2.11) coincides

 with 7n(Cn - Cn n V)/(rF - I, im a/). Moreover the same argument shows
 that the homomorphism of Hn-1(e0, Z) in sequence (2.11) is an injection,

 because Hn-2(Cn - fn n V, z) is isomorphic to rn-2 of the same space and,
 therefore, is trivial (see Lemma 1.5), which implies equation (2.7).

 Next we shall calculate the homology of the infinite cyclic cover in for-

 mula (2.6) inductively, using the Mayer-Vietoris sequence corresponding to

 this decomposition. Because 7ri(Cn - Cn n V) = 0 for 2 < i < n - 1 (see

 Lemma 1.5), the terms in the Mayer-Vietoris sequence below dimension n
 vanish. The cokernel of the map

 (2.12)

 Hn(T(Cn) -T(Cn) n v,7z) -+ H(Ctn - fn n vZ)/(im(IF - I), im o')

 Hn j no-: noj n v z) )/ (im (V,-i) , im .17)
 0 H~(C~JC- im V,,Z)/(im(F[,I-,I), im oby

 is isomorphic t o- tnO vz)/im(ri-I),)imuvim(F3-I),imu3) by
 linear algebra. Now the theorem follows. O

 3. A vanishing theorem

 In this section we give a necessary condition for the vanishing of rn (Cn+l-
 V). This is useful in applications of Theorem 2.4, because it allows one to

 dispose of degeneration operators in some cases. We give a numerical condition

 for such vanishings in the case of curves. The key step in deriving the vanishing

 of rn (Cn+l - V) is the following counterpart of the commutativity of the
 fundamental group in the case of curves.
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 THEOREM 3.1. Let V be a hypersurface in (CIP+l that has only isolated

 singularities, including singularities at infinity, and let H be the hyperplane

 at infinity. Suppose that a nonsingular projective variety W and a birational

 map 0: W -*+ Cpn+l are such that the union of the strict transform V' of
 V, the strict transform H' of H, and the exceptional locus E of X form a
 divisor with normal crossings on W. Assume that V' is an ample divisor on

 W. Then the action of r1(Cpn+l - (V U H)) = Z on 7rn-(n+l -(V U H)) is
 trivial.

 Proof. Let Uv' be a tubular neighborhood of V' in W. First note that the

 map Xi ((UV - V') - (E U H') n (Uvp - V')) - Xi (- (E U V' U H')), induced
 by inclusion, is an isomorphism for i < n - 1 and is surjective for i = n.

 This follows immediately from the assumption of the ampleness of V' and the

 Lefschetz theorem for open varieties (cf. [H]). In the setting of this reference,

 one applies Theorem 2 from [H] to W embedded into CN using a multiple of
 the line bundle corresponding to V' and taking V' as the hyperplane section

 at infinity. Because W - (V' U H' U E) = Cpn+l - (V U H), we find that

 i: 7ri ((Uv - V') - (E U H') n (Uvp - V')) -* ir,(CIPn+l - (V U H)) is an
 isomorphism for i < n - 1 and is surjective for i = n.

 Let a be the boundary of a 2-disk, which is normal to V' in Uvi at

 a point of V' outside E U H'. The action of a (considered as an element of

 7ri ((Uvp-V')-(EUH') n (Uv-VI))) onirn((UVI-V')-(EUH') n (Uv'-VT))
 is trivial. Indeed (Uvp - V') - (Uvp - V') n (E U H') is a (trivial) circle bundle
 over V' -V' In (E U H'), because V' U H' U E is assumed to be a divisor with
 normal crossings. Moreover the projection map A induces the isomorphism

 ,* : ri((Uv' - V') - (Uvp - V') n (E U H')) - ri(V' - V' n H' n E) for i > 2.
 If -y E 7i((Uv'-V')-(Uv'-V') n (E U H')) then >,(a y) = >*(a) . X,(y) =
 A,(y), i.e., a y = -y, and our claim follows. This also concludes the proof of
 the theorem, because On is surjective and because a is taken by L' onto the
 generator of 7r1(C1pn+l - (V U H)). El

 THEOREM 3.2. Let V be a hypersurface in CFn+l satisfying all conditions

 of Theorem 3.1. Assume also that H ~1(V, V n H, Z) = 0. Then 7rn (CIn+1-

 (V U H)) vanishes.

 Proof. Let us consider the Leray spectral sequence

 (3.1) EF2,q = Hp(Z, Hq(Cpn+1 -(V U H), z)) X Hp+q (C n+1 - (V U H), Z)

 associated with the classifying map of CEn+l - (V U H) into S1 = K(I, 1)
 corresponding to the generator of H1 (CPn+l1 - (V U H), _) = Z. The homotopy

 fiber of this map is the universal cyclic cover (Cp(n+l - (V U H)). The sequence

This content downloaded from 128.248.156.45 on Mon, 15 Jul 2019 02:06:11 UTC
All use subject to https://about.jstor.org/terms



 132 A. LIBGOBER

 (3.1) implies that Ho(Z, Hn((CPn+ 1 -(V U H)), Z)), which is isomorphic to the
 module of covariants

 H ((?C1n+l (V UH)) )71(cIP (VUH))I- H (Cpn+l - (V UH) ,Z)

 The group in the left-hand side is isomorphic to the module of covariants

 Xrn (CPn+l - (V U H))71(CIpn+l-(VuH)). Hence the result follows from the above
 theorem, and from the vanishing of Hn(C1Pn+1 - (V U H), Z) (the latter is a
 consequence of Lemma 1.6 and the assumption we made on the cohomology

 of (jV n H)). n

 COROLLARY 3.3. Let V be a hypersurface in Cpn+l satisfying the con-

 dition of Theorem 3.1. If V and V n H are Q-manifolds, then rn(CIPn+l-

 (Vn H)) = 0.

 Proof. This follows from Theorem 3.2 and Lemma 1.7. El

 Remark 3.4. In the case where n = 1, the argument given in the proof

 of Theorem 3.1 can be strengthened to show that V'. V' > 0 implies that the

 fundamental group of the complement is abelian (see [Ab], [N]). Recall that,

 for example, for a curve C of degree d, which has 6 nodes and r, cusps, this

 implies the commutativity of r (C1Pn+l1 - C), provided that 46 + 6 < d2. For
 the application of the technique of Section 2 the following result is useful:

 LEMMA 3.5. Let C be a curve in CP2 that has only one singular point,

 which is unibranched, and has one characteristic pair (m, k) (k < m). If

 d2 > m. k, then 7r,(Cp2 - C) is abelian. In particular the Alexander module
 of C is trivial.

 Proof. The greatest common divisor of m and k, which is equal to the

 number of branches of the singularity, is equal to 1. The resolution of singu-

 larities of plane curves can be described in terms of the euclidian algorithm

 for finding this greatest common divisor (see [BKn]). Let m = aik + ri, and

 k = a2 r ? +r2, .. ., r1 = as,+ r, + 1 be the steps of the euclidian algorithm.
 Then the sequence of blowups that results in the embedded resolution pro-

 duces the following: each of the first a, blowups gives an exceptional curve
 with multiplicity k, the intersection index of which, with the strict transform

 of the curve in question, is equal to k. The result is that the self-intersection

 index of the strict transform drops by k2. Subsequent blowups have a sim-

 ilar effect with the blowups corresponding to the last step in the euclidian

 algorithm resulting in a nonsingular strict transform with the tangency order

 with the exceptional curve equal to r,. The strict transform of additional r8
 blowups is a curve, the union of which, with the exceptional locus, is a divisor
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 with normal crossings. The self-intersection of the strict transform is equal to

 d' - a, * -2 al * r'2 *a,+, *, r2 _-r

 =d2_mri) k- k -(s -1 -r
 -d2- m k >0.

 Hence our claim follows from Nori's theorem in [N]. El

 4. The divisibility theorems

 In this section we prove two theorems relating the order of the homotopy

 group of the complement to a hypersurface V, to the type of singularities

 of V including the singularities at infinity. We will discuss the relation of

 these results to the divisibility theorem for Alexander polynomials in [L2]. We

 assume, for the reason described in Lemma 1.5, that all singularities of V are

 isolated.

 First recall that if c E V is a singular point of V, then one can associate

 with it the characteristic polynomial PC of the monodromy operator in the

 Milnor fibration of the singularity c. By a certain abuse of language we will call

 P, the polynomial of the singularity c. This polynomial also can be obtained
 as follows: Let us consider the cyclic cover U, of B, -B n v, where B,
 is a small ball about c in some Riemannian metric in C1P1+, corresponding

 to the kernel of the homomorphism lk, : ilr(Bc -B n v) -* Hl(B, -B n
 V, Z) = Z (this homomorphism is given by the evaluation of the linking number

 with V n Bc). Clearly U, is homotopy equivalent to the Milnor fiber and the
 characteristic polynomial of the automorphism of H (UC, Q), induced by the
 deck transformation, coincides with the polynomial of the singularity c. This

 is a consequence of the existence of the fibration of Bc - B nv. On the

 other hand, if c c Sing, and B, is as above, then H1 (Bc - (V U H) n B, Z) =
 H2(B, Bc - (V U H), Z) = H2n(BC n T(V U H),Sc n T(V U H)), where Sc is
 the boundary of Bc and To ) denotes the regular neighborhood. The latter is
 isomorphic to H2n (Vn Bca(Vn Bc), Z) e H2n(Hn Bc, (Hn Bc),Z) = Z eZ.
 The map lkc : 7ri(Bc - (V U H) n Bc) -+ Z corresponding to the projection of
 H (Bc -Bc n (v u H)) onto H2n(BC n V, &(Bc n v), z) = Z geometrically is
 the linking number with V. For c c Sing,) let Uc be the infinite cyclic cover
 of Bc - (V U H) n Bc corresponding to the kernel of the homomorphism lkc.

 Definition 4.1. For c E Sing,, V the order Pc(t) of Hn(UC, Q), where Uc
 is the infinite. cyclic cover constructed in the last paragraph and where the

 homology group, considered as the module over Q[t, t-1] via the action induced
 by the deck transformations on Uc, is called the polynomial of the singular

 point c.
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 Remark 4.2. Note that U, has a homotopy type of a finite-dimensional
 complex. In particular Hi(UC, Q) is a torsion Q[t,t-1]-module for any i. So
 the above polynomial PC(t) is nonzero. For singularities at infinity this follows

 from the following realization of the infinite cyclic cover U,. Let Xc be a
 holomorphic function in a neighborhood N, of c in CPFn+ such that qc = 0
 coincides with V in this neighborhood. Let VI(s) be given by the equation

 Xc = s in Nc. Then Uc is homotopy equivalent to Vc(s) - H n vc(s) for s
 sufficiently close to 0. Indeed the union of hypersurfaces qc = s (s < 'e and
 Nc is sufficiently small) is homeomorphic to the ball (see [Mi]), and the function

 Xc provides the locally trivial fibration of this ball over a punctured disk.
 Because the singularity of V n H is isolated, H will be transversal to all

 hypersurfaces 4c = s (e sufficiently small). Therefore 4c(s) also provides the
 locally trivial fibration of the complement in this ball to VnH. Hence Vc(s) -
 vc(s) n H is homotopy equivalent to Uc.

 THEOREM 4.3. If V and VnH have only isolated singularities, then the

 order Pv of irQ(CP+f1 - (V U H)) X0 Q as the module over Q[t, t-1] divides
 the product llIcPc (t - 1)' (for some r, E Z) of the polynomials Pc of all
 singularities of V including those in Cn+1 = CPn+l - H as well as those at
 infinity. The factor (t - 1)' can be omitted if one of the following conditions
 takes place:

 (a) Hn+1 (V, H n V, @) = O.
 (b) the Q[t,t-1]-submodule of rn(CPn+l1 - (V n H)) 0( Q consisting of

 elements annihilated by a power of t - 1 is semisimple.

 Remark 4.4. One of the consequences of the theorem is that the order of

 7r(C?pn+l - (V U H)) is not 0. Hence this Q[t, t-1]-module is a torsion module.

 Proof. Let T(V) be a regular neighborhood of V in cIRpn+l. First let us

 observe that 7rn(T(V) - T(V) n (H U V)) surjects onto 7rn (CRn+l- (V n H)).
 Indeed T(V) contains a generic hypersurface W of the same degree as V,

 which is transversal to V U H. According to the Lefschetz theorem, 7ri(W -

 W n (V U H)) maps (by the map j*, induced by the inclusion) isomorphically

 to ri(Cp'n+l - (V U H)) for 1 < i < n - 1 and surjects for i = n. Now our
 claim follows from the fact that j*, can be factored as

 (4.1) rn(W-W - n (V U H)) - -rn(T(V) - T(V) n (V U H))
 _ 7rn-(n+l- (V U H)).

 Next let us consider a collection of nonintersecting balls Bc about the

 singular points of V, c E Sing(V) U Sing,,(V). For a sufficiently small regular
 neighborhood T(V) of V the complement to the union of Bc (c E Sing(V) U
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 Sing,,(V)),

 (4.2) Bo = T(V) - (T(V) n(V U H)) - UBc n (T(V) - T(V) n(V U H)),
 C

 fibers over V- (HnVuc (Bc nV)) with a punctured disk as a fiber. A generator
 of H1 of such a fiber maps onto the generator of H1 (Cn+1 - V, Z). Hence one
 has the surjection

 lkT: Hi(T(V) - T(V) n (V U H), Z) -) H1(Cn+l _ V, Z) = Z

 (see Lemma 1.6; this map is just the linking number). The kernel of lkT defines

 the infinite cyclic cover UT of T(V) - T(V) n (V U H). For any c the map lkc
 coincides with the composition of the map of the fundamental groups induced

 by the embedding Bc - Bc n v -* T(V) - T(V) n (V U H) and the map lkT.
 A similar factorization takes place for the linking number homomorphism of

 7ri(Bo), which defines the infinite cyclic cover Uo of Bo. We obtain

 (4.3) UT = Uo UC Uc.

 We claim that UT is n - 1-connected and in particular irn(T(V) - T(V) n
 (V U H)) = Hn (UT, EZ). Indeed the fundamental group of UT can be obtained
 from the fundamental group of Uo by an induction corresponding to adding

 Uc one by one using the van Kampen theorem (on 7rl of the union). Each
 time, the fundamental group is replaced by the quotient by the image of the
 fundamental group of the link of the corresponding singularity (in the case
 that c E SingO (V), one should rather take the quotient by the image of the
 fundamental group of the complement to the intersection of the link of the sin-
 gularity with the hyperplane at infinity inside this link). But the fundamental

 group of the affine portion of the smoothing of V, which is transversal to H,
 is calculated by the same procedure. Because the latter is simply connected,
 we obtain that the fundamental group of UT is trivial.

 On the other hand, we have the following Mayer-Vietoris sequence:

 (4.4) Hi(Uo n Uc) Hi Hi(Uc)EHi(Uo) - Hi (UT)
 C C

 For 2 < i < n-1 we have Hi(Uc) = Hi(Vc(s) -Vc(s) n H) = 0 (where, as in

 Remark 4.2, VC(s) is a smoothing of a singularity c E Sing V U Sing,, V). This
 follows from the standard connectivity of the Milnor fiber for finite singularities

 and, for singularities at infinity, it follows from the latter, the exact sequence

 of the pair and Hi(Vc(s), Vc(s)-Vc(s)nH) = Hi2(VC(s)fnH) = 0 for 2 $& i < n
 (the first isomorphism is a consequence of excision and the Poincare duality).

 On the other hand, the map (Dc Hi(uon uc) - Hi (Uo) is surjective for i < n-1.
 To see this let us consider excision of the union of small balls about all singular
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 points of V. This shows that

 Hi(uo n (Yun)) = Hi (Y Vc(s) - &1/(s) n H) Hi(Uo)

 = Hi (V - H nv'- U(Vc(s) - Vc(s) n H))
 C

 is surjective for i < n - 1 and is an isomorphism for i < n - 2, because

 Hi (V' - H n V - U(Vc(s) - Vc(s) n H), U vcV(s) - &Vc(s) n H)
 C C

 = Hi (V'I j Vc(s) U H n v') (by excision)
 C

 = Hi(v, v n H) (by retraction)

 = 0

 in this range by the Lefschetz theorem. Moreover from Hi(Uo n Uc) =

 Hj(&Vc(s)) = 0 for 0 < i < n-1 we obtain H(UT) = 0 for 0 < i < n. LI

 For i = n the sequence (4.4), being equivariant with respect to the action

 of Z by the deck transformations, implies that if

 Q = ord (Ker O H- 1(Uo n Uc) - Hn-l(Uc) e Hn-l(UO))
 C C

 = ord(Ker (Hn-l(Uo n Uc) Hn- H (UO))
 C

 and

 R = ord (Coker Hn(Uo n Uc) - Hn(Uc) ED Hn(Uo))
 C C

 then ord(Hn(UT)) = Q * R. The orders of Hn-l(Uo n Uc), Hn(uo n Uc) and
 Hn(Uo) are powers of t - 1, because those are the cyclic covers of the (trivial)

 circle bundles. The order of EDHn(Uc) is equal to IcPc and, hence, R divides
 this product multiplied by a power of t -1. Therefore the order of Hn(T(V) -
 T(V) n (V U H)) divides HcPc multiplied by (t - 1)' for some ,. It follows from
 the exact sequence (4.1) that the same is true for order Pv(t) of rn(?CJpn+l -
 (V U H)). To conclude the proof we need to show that the order of 0 of Pv(t)
 at 1 does not exceed the sum of the orders of the 0 at 1 of PC(t).

 If one assumes case (a) above, then according to Lemmas 1.12 and 1.6,

 Pv(1) $& 0 and the theorem follows. Moreover, in case (b), the order of the
 0 of Pv(t) at 1 is equal to the rank of Hn+1(V, H n v, Q), as follows from
 the sequence (1.3) and the assumption on semisimplicity of the submodule of
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 (?pn+l - (V U H)) 0 Q annihilated by a power of (t - 1). The order of the
 0 of PC(t) at 1 is greater than or equal to the rank Hn1 (La, Q), where L, is
 the link of the singularity c (see [Mi]). Hence, in case (b), the theorem follows

 from the inequality

 (4.5) rk H+1(V, V A H, Q) < Ecrk Hn- 1(Lc IQ).

 To show this, note that

 Hn IE v n H, Q) = H1(VVnH U SIQ)

 = Hn+1(V - T(H) n V, (aT(H) n V) U T(S), Q),

 where S is the collection of the singular points of V outside H, T(S) is a
 small regular neighborhood of this finite set in V and T(H) is the regular

 neighborhood of V n H in V. The last cohomology group is dual to Hn1 (V -
 VnH- S, Q) (use excision of T(S)). Inequality (4.5) will follow from the exact

 sequence of the pair and the vanishing of Hn-I(V -S-Vn H, U Lc, Q). This
 group is isomorphic to Hn I(V -H -n v, U M, Q), where M, is the Milnor
 fiber of the singularity c and V is a generic hypersurface in the pencil of

 hypersurfaces containing V and having VnH as the base locus. The vanishing

 of the last group is a consequence of the n - 1 connectedness of the Milnor

 fibers Mc, and the vanishing of Hn1(V- V n H) follows from the exact
 sequence of the pair (V, V -H n V).

 THEOREM 4.5. Let V be a hypersurface in CIpn+l having only isolated
 singularities including infinity. Let H be the hyperplane at infinity. Let S be

 a sphere of a sufficiently large radius in Cn+1 = CIPn+l - H (or equivalently
 the boundary of a sufficiently small tubular neighborhood of H in CIp?n+l). Let
 UOO be the infinite cyclic cover of s$ - V n s$ corresponding to the kernel of

 the homomorphism 7rl(S - V n S0) -* Z given by the linking number (see
 remark below). Let POO be the order of Hn(UOO, Q) as the Q[t,t-1]-module.
 Then Pv divides P,.

 Remark 4.6. Note that V n s$0 is a connected manifold if n > 2. If

 n = 1, the number of connected components of V n s$ is "the number of

 places of the curve at infinity." By Alexander duality Hi(%oo- V n s$, 2) =
 H2n-l(V A S, 2). The latter is isomorphic to 2, provided that n > 2. For

 curves (i.e., n = 1), Hi(So- S0 n V, 2) is a free abelian group of the rank
 equal to the number of places at infinity.

 Remark 4.7. Note that Hn(U,,, Q) is a torsion module. Indeed let LC(V)
 (resp. LC(V A H)) be the link of the singularity c of V (resp. V n H) in cpvn+l
 (resp. H). Let B, be a polydisk in CIn+l of the form D2n x D2 about c such
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 that part of its boundary S x DCn c aT(H) = S,. Then

 (4.6) $oc - $oc n V = AT(H) - AT(H) n V U(S x D~n _ V) U U.
 C

 where U fibers over H-H nV with a circle as a fiber and, hence, the homology

 of the infinite cyclic cover of U is a torsion Q[t, t-1]-module (of the order that
 is a power of td _ 1, where d is the degree of V, because the circle about H is

 homologous to d multiplied by the generator of H1(Cpn+l - (V U H))). Then

 S' x D2n - V = Bc- (V U H) n Bc, and the homology groups of the infinite C C

 cyclic cover in question are Q[t, t-1]-torsion modules, as follows from Remark
 4.2. Finally the intersection in the union (4.6) of U with S x -n _vnsx D2n

 fibers over Lc(vnlH). Hence the homology of its infinite cyclic cover is a torsion
 Q[t, t-1]-module as well. Hence the Mayer-Vietoris sequence yields the claim.

 Proof of Theorem 4.5. First note that sf n V is homotopy equivalent
 to T(H) - T(H) n (V U H), where T(H) is the tubular neighborhood of H

 for which $%c is the boundary. If L is a generic hyperplane in CIpn+l, which
 we can assume to be contained in T(H), then once again by the Lefschetz
 theorem we find that the composition

 4.7- n( L - (V U H)) - irn(T(H) - T(H) n (V U H))
 . r (?Ipn+l - (V U H))

 is surjective. Now the theorem follows from the multiplicativity of the order

 in exact sequences. D_1

 COROLLARY 4.8. If V is a hypersurface transversal to the hyperplane H

 at infinity, then 7rn(CJP+f1 - (V U H)) 0 Q is a semisimple Q[t, t-1]-module.
 Any root of the order Pv of the homotopy group is a root of 1 of degree d.

 Proof. The surjectivity of the right homomorphism in the sequence (4.7)

 shows that the claim will follow from the semisimplicity of 7r, (T(H) - T(H) n
 (V U H) 0 Q) as a Q[t, t-1]-module. But T(H) - T(H) n (V U H) is homotopy
 equivalent to the link of the singularity Vo: zd +* + z$1 = 0 (d = deg V)
 in Cn+l, provided that V is transversal to H. Indeed the projective closure of
 this hypersurface intersects H in a nonsingular hypersurface which is isotopic

 to V n H, and this isotopy can be extended to a neighborhood of H n V. The
 monodromy of Vo is semisimple (this is the case for any weighted homogeneous
 singularity, because this monodromy has a finite order, as one can see from

 the explicit description of it (cf. [M])). The last part in the statement of the
 corollary follows from Milnor's formula for the characteristic polynomial of the
 monodromy of weighted homogeneous polynomials applied to the singularity

 Vo (cf. [M]).
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 COROLLARY 4.9. Let V be a hypersurface in CIf)n+l given by equation

 f = 0. Assume that the singularities of V have codimension k in V. If

 V is transversal to the hyperplane H at infinity (as a stratified space), then

 Frk(CPn+1 - (V U H)) X Q is isomorphic as a Q[t, t-1] -module to Hk(Mf, Q),
 where Mf is the Milnor fiber of the singularity at the origin in Cn+2 of the

 hypersurface f(xo, .. ., xn+l) = 0, with the usual module structure given by the
 monodromy operator.

 Proof. We can assume that the singularities of V are isolated, because the

 general case can be reduced to this via the Lefschetz theorems (see Section 1).

 First notice that -nr(Clfn+l - V) is isomorphic to Hn((Cpn+l - V)d, Z), where

 (CIn+l - V)d is the d = deg V-fold cyclic covering of CIpn+l - V, because 7r, of
 the latter is Z/dZ. This d-fold covering is analytically equivalent to the affine

 hypersurface f = 1, which is diffeomorphic to Mf. The deck transformation

 of the covering (CPn+l - V)d , ?CIn+l - V in this model corresponds to

 the transformation induced by multiplication of each coordinate of Cn+2 by

 a primitive root of unity of degree d. It is well known that this is also a

 description of the monodromy of a weighted homogeneous polynomial (cf.
 [M]). Finally, according to Lemma 1.13

 ?r(CIn+l - V) (rn?(Ipn+l - (V U H)) ? Q/(td _ 1)
 In(CIPpn+l - (V U H)) Q,

 which is isomorphic to irn (CIn+l - (VUH)) ?Q because of the results contained
 in Corollary 4.8. 1

 Remark 4.10. Corollary 4.9 is an extension to high dimensions of a result

 due to R. Randell [R], which gives a similar fact for Alexander polynomials.
 In the case of irreducible curves the divisibility theorem, Theorem 4.3, gives

 a somewhat different result than the one in [L2], where it is shown that the

 Alexander polynomial divides the product of the characteristic polynomials of

 all branches of the curve in all singular points.

 5. Nontrivial irn

 The purpose of this section is to prove two results that allow one to

 construct special classes of hypersurfaces with isolated singularities for which

 n (Cn+l - V) 0 Q is nontrivial. We start with the following lemma which may
 be of independent interest:

 LEMMA 5.1. Let p(xi,... ,x+i) be a polynomial having a singularity of
 codimension k at the origin 0. Let xi = fi(zi,l.... , Zini+l) (i = 1, ... I + 1) be
 a collection of polynomials, all of which are assumed to have at most isolated
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 singularities at 0. Suppose that ni > k + 1 for every i, for which fi has a
 singularity at the origin. Then the polynomial of N = i+=l (ni + 1) variables

 P(f) = P(fl(zl,l,... , Zl,ni +i). , fl+l(zi+l,li ... z l+l,n,+1+)) has the singular-
 ity at 0 of codimension k. If Mp and Mp(f) denote the Milnor fibers of the
 singularities of p and p(f), respectively, then Hk(Mp, Z) = Hk(Mp(f), Z) as
 Z[t, t-1]-modules, where the action of t in each case is given by the action of
 the monodromy operator.

 Proof. First note that the use of induction allows one to reduce this

 lemma to the case when f(zi,1, ... , Zi,ni+) = zi,l for i > 2, i.e., when the
 change of variables takes place only in one of the xi. Let us select e1 > 0
 and a small ball B1 in Cnl+l such that the intersection of the hypersurface

 f (Z,li... , Zjni+l) = s with B1, provided that 0 < Isl < el, is equivalent to
 the Milnor fiber of fi. Let us consider a ball Bo centered at the origin C+1l

 of a radius less than el. Let 7r > 0 be such that for 0 < Isl < 7r the portion
 of p(x, ... , xl+) = s, which belongs to Bo, is equivalent to the Milnor fiber

 of p. Let L be the intersection of M. with the coordinate hyperplane x1 = 0
 in ?l+l. Finally let us fix a polydisk D C Cl(+nl+l, the projection of which on
 the subspace x2 = ... Xl+l = 0 belongs to B1, such that the intersection of D

 with p(f) = s for 0 < IsI < 7r is equivalent to the Milnor fiber of p(f). On a
 part D' of the polydisk D the formula

 (5.1) xl = fi(z,, ..., zl,n1+l), xi = zi,1(i = 2, ..., I + 1)

 defines a holomorphic map F D' -* B. This map, when restricted on a

 Milnor fiber AMp(f) C D' of p(f), which is given by p(f) = r, takes Mp(f) onto
 the Milnor fiber of p given by p = r1. Let L be the preimage of L: F-1(L).

 The restriction of F on Mp(f) -L is a locally trivial fibration F: Mp(f) -L -*
 Mp- L. The fiber of this fibration is equivalent to the Milnor fiber Mf1 of
 fi (zl,,... , zi,,n~1+). This Milnor fiber is (n1 -1) connected. The Leray spectral
 sequence E2q= Hp(Mp-LHq(MfiQ)) ?: Hp+q(Mp(f )-L,Q) shows that the
 isomorphism Hi(Mp(f) - L, Q) = Hi(Mp - L, Q) will take place for the set of
 the i, which includes k and k + 1. The following diagram (which compares two

 exact sequences of a pair)

 Hk+1 (Mp(f Mp(f - L Q) Hk(Mp(f -L, Q) Hk(Mp(f ), Q)

 1 1 1

 (5.2) Hk+l (Mp, Mp - L,Q) - Hk(Mp -L,Q ) Hk(Mp,) -Q
 -* Hk(Mp(f), Mp(f) - L, Q) Hki(Mp(f - L, Q)

 4 4
 Hk(Mp, Mp - L, Q) Hk-* H (Mp - L, Q)
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 and the 5-lemma yield that the isomorphism of our lemma is a consequence

 of the isomorphism

 (5.3) HiM(Mpy Mpy Hi(Mp, Mp-LQ Q) for i= k k + 1.

 Let T(L) (resp. T(L)) be the regular neighborhoods of L (resp. L) in Mp (resp.
 Mp(f)) and AT(L) (resp. &T(L)) be the boundary of T(L) (resp. T(L)). Then
 using excision, one obtains Hi(Mp(f ), Mp(f) -L, Q) = Hi (T(L), AT(L), Q) and
 Hi(Mp, Mp -L, ? Q) = Hi(T(L), AT(L),Q). But Hi(T(L),Q) = Hi(T(L),Q).
 Indeed L fibers over L with a contractible fiber (i.e., the part of fi = 0 inside

 B1, which is the cone over the link of the singularity fi), and AT(L) is a
 fibration over AT(L) with an (ni - 1)-connected fiber. Hence the last claimed

 isomorphism follows from the 5-lemma.

 Lemma 5.1 has the following implication:

 THEOREM 5.2. For an integer k let gk(zo,. .. zn+l) be a generic form of

 degree k. Let Vdl,..dn+l be a hypersurface of degree D = d . + d2 dn+ given
 by the equation

 (5.4) gdi + g d2d3 d + + g. d+i 0 (54) 9d2' - 1dn+l + dd3g ddn++ di-d2 dn = 0;

 Vd1,...,dn+1 is a hypersurface in CIpn+l with Dn isolated singularities each of

 which is equivalent to the singularity at the origin of q(xl, . , Xn+) = xi'j +
 * + xdn++. For a generic hyperplane H C cIRpn+l there is the isomorphism

 (5.5) 7rn (Cpn+l - (V U H)) 0 Q = Hn(Mq, Q),

 where Mq is the Milnor fiber of the singularity of q at the origin. This iso-

 morphism is the isomorphism of Q[t, t-1]-modules, where the module structure
 on the right is the one for which t acts as the monodromy operator.

 Proof. The hypersurface Vdl .dn+l is a section by a generic linear subspace

 of dimension n + 1 of a hypersurface Vdl.. 7dn+1 in ?Cp(n+2)(n+1)-l given by

 (5.6) Gdl,...,dn+l =d2. (Z1,0, * * Zln+l)

 + + 9d (f+. - dn. (,0 Zn+in+i) = 0,

 where jk are generic forms of a disjoint set of variables. The hypersurface
 (5.6) has a singular locus containing the component of codimension n + 1

 in the ambient space, which is given by ji = ... jn+1 = 0 (i.e., having
 codimension n inside the hypersurface) as well as possibly some components
 of larger codimensions. According to Corollary 4.9, for a generic hyper-

 plane H the module 7rn (CpJ(n+2)(n+)-1 - (Vdl...dn+l U H)) 0 Q is isomorphic
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 to Hn(MGdl.dn+l, Q) with the usual Q[t, t-1]-module structure. The forms
 .d2 - -dn+l v * v v , gdr.- -dn have isolated singularities at the origins of correspond-
 ing Cn+2 because of the assumption that gA are generic. Hence the last lemma

 implies that Hn(MGd1l.. dn+1 Q) is isomorphic to Hn(Mq, Q). LI

 PROPOSITION 5.3. Let fi = 0 (i = 1, 2) be the equation of a hypersurface

 Vf, of a degree d in CJpnfi+l. Assume that the codimension of the singular locus
 of Vf2 is ki. Then the hypersurface Vfi+f2 in CPn 1+n2+3 given by fi + f2 = 0
 has the singular locus of codimension k1 + k2 + 1, and

 1Fkl+k2+l(?1+ 2+ -Vf +f2 )Q
 (5.7))= (7rkl(Cnl+l _ Vf1) 0 Q) ?Q (7rk2(CIpnf2+1 - Vf2) (0 Q).

 Proof. This is an immediate consequence of Corollary 4.9 and the Sebas-

 tiani-Thom theorem in [ST]. 1I

 Examples 5.4. Example 1. Let f(xo, xl, x2) = 0 be an equation of a curve
 C of degree 6, which has 6 cusps on a conic curve. The homology of the infinite

 cyclic cover of CP2_(CUL), for a generic line L, is isomorphic to Q [t, t-1]/(t2-
 t +1) (see [L2]). Recall that ri (CIp2 - (CU L)) is the braid group on 3 strings,
 i.e., the group of the trefoil knot, and hence the homology in question is the

 Alexander module of the trefoil. Let g(yo, Y1, Y2) = 0 be an equation of another
 sextic with six cusps also on a conic curve. According to Proposition 5.3 (in

 which the homotopy groups in the case of curves are replaced by the Alexander

 modules), the generic section by CIP4 of the hypersurface in CIp6 given by

 (5.8) f(Xo,xi,x2) +9(YoY1,Y2,) = 0

 is a threefold W, which has isolated singularities (the number of which is 62),
 and the order of the homotopy group 7r3 0 Q of the complement is (t2 - t + 1).
 If one takes as f in equation (5.8) the equation of a sextic with 9 cusps, which

 is dual to a nonsingular cubic, then one obtains W, for which the order of
 7r3 (0 Q of the complement is (t2 - t + 1)3. Indeed the Alexander module of
 the complement to a sextic with 9 cusps is (Q[t, t-1]/(t2 - t + i)) 3. This
 is a consequence of calculating the fundamental group of the complement

 to such a curve, due to Zariski. He found that the fundamental group of
 this curve is the kernel of the canonical map of the braid group of the torus

 S' x S onto H1 (?1 x S1, Z) (see [Z]) Combining this with the calculation that
 uses the Fox calculus and the presentation for the braid group of the torus,

 one arrives at the Alexander module, as above. Therefore one obtains the

 threefold W with 7r3(CP4 - W) 0 Q being the same as the Alexander module
 just mentioned. Iteration of this construction, obtained by replacing g in (5.8)
 by the equation of an n-dimensional hypersurface with isolated singularities
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 and a nonvanishing homotopy group irn($Q of the complement, gives examples

 of hypersurfaces of degree 6 and dimension n for which irn (0 Q has an arbitrary
 large rank for sufficiently large n.

 Example 2. Let us consider the equation (5.8) in which f(xo, x1, x2) is
 the form giving the equation of a sextic with 6 cusps not on a conic curve.

 The fundamental group of the complement to such a curve is abelian (see [Z])

 and, therefore, the homology of the universal cyclic cover of the complement

 is trivial. In this case, the construction of Example 1 yields a threefold W',

 which has 7r3(CP4 - W') 0 Q = 0, but which has the same degree (i.e., 6) and
 the same number of singularities (i.e., 36) of the same type as W (i.e., locally

 given by x2 + y2 + u3 + V3 = 0).
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