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1. Introduction

In a classic work [We], Weil connected, at least conjecturally, the topology
of the complex projective hypersurface defined say by a polynomial f(X)
rational over a number field K with the study of the number of solutions
of the reduced polynomial f(X) in the various residue class fields of K
and their finite extensions. This connection, proved in full generality by
Deligne, is now seen to be a basic example in the theory of motives. The
present work, in a similar spirit, ties together some properties of the
topology of the holomorphic map defined by a polynomial f(X) which is
nondegenerate with respect to its Newton polyhedron and rational over a
number field K and certain properties of the exponential sums defined by
the reduction of f taken over the vârious residue class fields k(B) of K (and
their finite extensions). The motivic framework of this work is not clear at
the present time.
To be more precise, consider a polynomial or Laurent polynomial

f (X ) = 03A3 A(03BC)X03BC ~ K[X1, ... , Xn , (X1 ...Xn)-1] defined over a field K. As
usual, Supp(f) = {03BC~Zn |A(03BC) ~ 01. Following Kushnirenko [Ku], we
define the Newton polyhedron of f at oo,

For any set 03A3 ~ Rn, let

Then f is nondegenerate [Ku] over K with respect to A.(f) provided

*Supported by NSF grant DMS 91-04192-02.
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have no simultaneous solutions in (K *)" for every (closed) face a not
containing 0. (Here K denotes an algebraic closure of K). If f(X) has
coefficients in a number field K then for almost all primes B of K it makes
sense to reduce f obtaining ji mod i3 and 0394~(f) = 0394~(). Recall that if f
is nondegenerate with respect to 0 = 0394~(f) over K then for almost all
primes i3 of K, 1 is nondegenerate with respect to 0 over k(B), the residue
class field of i3.
Assume f is defined over C and is nondegenerate with respect to 0394~(f).

In Section 2, we consider a locally trivial fibration defined by f : (c*)n -+ C
outside a disk in C of sufficiently large radius. If 1 e C traverses a sufficiently
large circle, then one obtains an automorphism M of Hi(f-1(~), Q) which
we call the monodromy at oo. One may then define the zeta function of
monodromy at oo by

Our main result in Section 2 is the following.

THEOREM 1. Assume f ~C[X1,..., Xn, (X 1... Xn)-1] is non-degenerate with
respect to A.(f), and dim 0394~(f) = n. Then the zeta function of monodromy at
oo is given by

where the product is taken over all faces a of A.(f) of codimension one not
containing the origin, and where the affine hyperplane La spanned by (1 has
normalized equation Y-!= 1 afxi = ma with {{a03C3i}ni=1, m,,,l 9 Z, relatively prime, and
m03C3 &#x3E; 0. Vol(a) is computed in La relative to the measure for which a fundamental
domain for Zn n La has measure 1.

In Theorem 2 (Section 2) this result is generalized to the case f : (C*)" 1 x
Cn2 -+ C. We recall that this result is entirely analogous to the result of
Varchenko [V] computing the zeta function of monodromy at an isolated
singular point say Pe C" of a holomorphic map f : Np - C (in a neighborhood
Np of P) in terms of analogous invariants associated with 0394p(f), the Newton
polyhedron of f at P.
The referee has kindly informed us that F. Loeser has also calculated

the monodromy in an unpublished paper "Déterminants et Faisceaux de

Kummer".
When V is a variety defined over the finite field F. (of characteristic p) and

f ~0393( V, (Dv) is a regular function on V we may consider the exponential sum
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where X runs over the Fq-rational points of V, T is an additive character of Fq,
and IF, is the additive character of Fql defined by composing 03A8 with the trace

map from Fql to F q* The associated L-function

is well-known to be a rational function of T with coefficients in the cyclo-
tomic field Q(03B6p). In the case when V = Gnm and 1 is nondegenerate with
respect to 0394~(f), then L(Gnm , 03A8, T)(-1)n+1 is a polynomial of degree equal to
n ! Vol 0394~(f) [A-S]. Furthermore, the Newton polygon of L(Gnm, , IF, T)(- 1)n+1
lies over a "Hodge-type polygon", i.e. the Newton polygon of a polynomial
H( f, T) determined from 0394~(f). In Section 3, we prove that for every r ~ Q, the
multiplicity of exp( - 203C0ir) as an exponent of monodromy at oo is the same as
the multiplicity of the reciprocal zeros y of H(l, T) satisfying ordq(y) ~ 1
r (mod Z). Conjecturally [A-S] the Newton polygons of MGn , f, ’P, T)(-1)n+

1

and H( f, T) agree in certain cases. In fact, in a recent work [Wa], Wan has
shown that for p in a certain arithmetic progression the Newton polygon of
L(Gnm, ,03A8, T)(-1)n+1 and H(f, T) agree for generic f. If so then in these cases,
for every r ~ Q the multiplicity of exp( - 2nir) as an exponent of monodromy is
the same as the multiplicity of reciprocal zeros y of L(Gnm, , 03A8, T)(-1)n+1
satisfying ordq(y) - r (mod Z).

Finally in §4, we extend our earlier results from the case of the to the torus
Gnm to the case of affine space or a product of affine space and a torus
Gn1m x A n2.m ·

2. Calculation of the monodromy at oo

The purpose of this section is to prove Theorems 1 and 2 calculating
explicitly the zeta function of monodromy at oo. In what follows, we will
view f as a combination of characters

We seek a resolution of the base points of the pencil of hypersurfaces which
are compactifications of the hypersurfaces

in Gnm. In particular, we are seeking X ;2 Gnm such that the projective
closures of Ft in X form a base-point free pencil. In fact construction of X
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will be done in two steps. In the first step (the major one), we define a toric
variety XF ~ Gnm such that the pencil defined by Ft in XF has reduced base
locus with non-singular components having normal crossings. The second
step is just the blowing up of XF along this base locus of the pencil F, in
XF. The use of toroidal compactifications occur as well in related contexts
in the works of Varchenko [V] and Denef-Loeser [DL].
To construct XF we recall that a toric variety of dimension n is an

algebraic variety, with an action of the torus Gnm, which contains Gnm as a
dense set. The action of G" m on the toric variety is induced from the action
of Gnm on itself via translation. To fix notations we write (Zn)ch =
Hom(Gnm, Gm) for the lattice of characters, and (Rn)ch = (Zn)ch ~Z R. The
dual group to (Zn)ch is the group of one-parameter subgroups (Zn)sg. We
recall that toric varieties are in one-one correspondence with the "fans" of
(lRn)sg. A fan is a collection of rational polyhedral cones in (Rn)sg satisfying
certain axioms; the union of the cones in the collection is the underlying
set of the fan. Given a fan v, the corresponding toric variety will be denoted
Tv. The essential fact is that u ~ 4 is a functor from the category of fans
in (R")Sg into the category of toric varieties. In particular, this means that
if vl is a refinement of v2 then one has an equivariant surjective morphism
Tv1 ~ Tv2. A toric variety 7§ is complete if and only if the fan v is complete
(i.e. the underlying set Ivl of v is all of (IRn)sJ. A toric variety is non-singular
if and only if the fan is simple (i.e., every cone a in the fan v has the property
that the set of minimal lattice vectors in its one-dimensional edges may be
extended to form a basis of (Zn)sg).

Consider the Newton polyhedron g (Rn)ch of the Laurent poly-
nomial f(X)~C[X1,...,Xn, (X1...Xn)-1] which we assume to have di-
mension n. Recall that there is a dual (complete) fan v(f) of 0394~(f) in which
each i-dimensional cone in v(f) corresponds to an (n - i)-dimensional face
of A.(f). In fact the cone corresponding to a given face y consists of the
subset of (Rn),g formed of linear functions for which the minimal value on
âoo(f) is attained on the face y. Alternatively, the closures of the cones of
maximal dimenson of v(f) can be described as the cones in ((Rn)sg such that
the function hf(03C4) = min {03C4,x&#x3E;|x~0394~(f)} is linear on each cone. h f is
called the support function of the Newton polyhedron of f

Let us make an additional subdivision of the fan v( f ) to obtain the fan
(f) such that each cone is generated by a set of vectors in (Zn) g which can
be extended to a basis of (Zn)sg (i.e., each cone in the fan is simple), to assure
non-singularity of the corresponding variety which we shall denote XF. The
fact that such a subdivision is always possible is a standard fact (cf. [0]).
We will say an orbit of XF is at oo if it corresponds to a cone in (f)

which is contained in a cone of v(f) itself corresponding to a face not
containing the origin.
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LEMMA 1. The closures of the hypersurfaces Ft say Ft in XF have transverse
intersections with the orbits at oo.

Recall that on a toric variety complete linear systems correspond to the
functions on (R"), ,,,, linear on each cone of the fan (cf. [D], [0]). In the case
of the toric variety corresponding to the fan v( f ), the linear system
corresponding to the pullback of the support function of 0394~(f) from v( f )
to (f) is the linear system containing the closures of the hypersurfaces F,.
We will denote this system by DF’ It is base point free as a consequence of
the upper convexity of the support function of an n-dimensional poly-
hedron (cf. [O], p. 76). Hence a generic divisor G from DF has as support
a non-singular manifold transverse to all orbits of XF (Bertini’s theorem).
The restriction of the linear system G to Gnm produces a Laurent polynomial
(having the same Newton polyhedron as f but with "generic" coefficients).
This Laurent polynomial defines a pencil of hypersurfaces in XF whose
base locus is the intersection of G with certain orbits at oo of XF. Therefore
the lemma follows immediately for generic G. It remains to show however
that Kouchnirenko’s non-degeneracy condition implies this genericity, and
this is well-known.
Lemma 1 implies that the resolution of the base locus of the pencil given

by F, in XF can be achieved by simple blowing-ups of XF along the
components of the base locus. Indeed the blow-up along an irreducible
component of the Pt1 n Ft2 (where tl ~ t2) produces a pencil which has as
base locus the union of the proper preimages of the remaining components
(i.e., such a blow-up produces a pencil with base locus having strictly fewer
irreducible components). The resulting manifold we will denote by XF.

Let F 00 be the divisor corresponding to t = oo. Our goal now is to find
the multiplicities of the components of F 00. This divisor is clearly supported
on the union of the closures of the codimension one orbits of XF.

LEMMA 2. The multiplicity of the closure of a codimension one orbit
corresponding to a generator ea, of a one-dimensional cone (1 of the fan (f)
is equal to -hf(ea) where ea is a primitive lattice vector in the cone (1.

Proof. This follows from [0, p. 69]. One can see it directly as follows. Let
us calculate the limit of F, in a chart en corresponding to a cone à of (f)
spanned over R, by {e1, ... , eni and chosen so that e(1 = el. We define new
coordinates via xi = IIj= 1 ubi(ej)j where bi(e) denotes the ith coordinate of
the vector e. The equation of Ft, 03A3 A03B1Xa-t, becomes in the given chart

We see that the equation in the given chart of that part of the hypersurface
moving in the pencil is
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in which the sum on the left is taken over all monomials a E Supp( f ). When
t ~ oo we obtain that the equation for fi 00 in the given chart is

and Lemma 2 follows. 0

Before proceeding to the calculation of the zeta function of monodromy,
we prove a result describing the restriction of the linear system on XF
corresponding to the support function h f to the closure of a codimension
one orbit.

LEMMA 3. Let LF be the linear system on XF corresponding to A.(f). Let
6 be a one-dimensional cone of (f) generated by the primitive vector e(1 and
corresponding to a codimension one orbit T(1 of X F . Then the restriction of
LF to the closure T(1 of T03C3 in XF is the linear system on the toric variety 03C3
corresponding to the support function of the polyhedron which is the intersec-
tion of the hyperplane 03C3, x) = hf(e03C3) in (Rn)ch with 0394~(f).

Proof. LF has as representative the divisor - 03A3 hf(e03C4)03C4 (Lemma 2, [O],
p. 69) where e03C4 runs through the primitive vectors in the various one-
dimensional cones T of the fan (f). On the other hand 0394~(f) is the convex
hull of the points in (!R")ch which we may view as linear functions on (R"),g.
The linear functions on the n-dimensional cones of the fan v(f) (or (f))
corresponding to the restrictions of the support function h f to these cones
are precisely the vertices of A.(f). If 1(1 is a linear function on (Rn)sg such
that hf (e03C3) = l03C3(e03C3), then

is another divisor in LF. Because the 03C4 are transversal to one another and
TQ does not belong to the support of (LF)03C3, the pullback of LF on 03C3 is given
by

where the summation runs over all rays s for which there is a cone in the
fan having both r and u in their closure. Therefore the support function
corresponding to the restriction of LF on 7§ is given on (Rn)sg/(03C3) (which is
the natural domain for the fan of the toric variety 7§ (cf. [O], p. 11, cor.



293

1.7)) by the push-forward of hf(e03C4) - lu(et) where J and 03C4 are in the closure
of a cone. But the convex hull of those points corresponding to the linear
functions of which this piecewise linear function is composed is equivalent
to the face of 0394~(f) on which the linear function defined by U, i.e. 03C3, - ),
achieves its minimum. D

Before we proceed to the calculation of the (-function of the monodromy
of the pencil (2.1) at oo we shall state a version of A’Campo’s formula for
the (-function of the monodromy on the cohomology of a fibre of a
morphism 0: X ~ S (S = {z ~ C | |z| ~ 1}) about the special fibre which is a
divisor with normal crossings. The proof in [AC] is given for proper
morphisms and is based on the spectral sequence EP," = Hp(~-1(0), 03C8q) ~
Hp+q(~-1(1)) (1/1q is the sheaf of vanishing q-cycles) which is not valid in
general in the non-proper case (cf. SGA2, p.8). We have however the
following lemma.

LEMMA 4. Let ~:X ~ S be a proper holomorphic map of a non-singular
variety onto a disk S which is a locally trivial fibration outside of the center
of S. Assume that the central fiber ~-1(0) = U Ei is a divisor with normal

crossings. Let D be a divisor on X such that D n Supp(~-1(0)) is a divisor

with normal crossings as well. Assume that ~|D: D - S is a locally trivial
fibration outside the center of S. Then the 03B6-function of the monodromy of
~|X-D:X- D - S is given by II (1 - Smi)~(Si-Si~D) where mi is the multiplicity
of the i th component Ei of 0-1(0), Si is the open set of Ei which is

non-singular on ~-1(0), X is the Euler characteristic and the product is taken
over all irreducible components of the central fiber.

Proof. This result may be derived from the case D empty which is
contained in [AC] using induction on the number of components of D.
Assume that one already has removed i components, that one has the
formula from this lemma, and that one takes away an additional compo-
nent Di+1. Then

is a locally trivial fibration outside zero and (~|Di+1)-1(0) is a divisor with
normal crossings. A point of it is singular if and only if it is singular on ~-1(0)
and the multiplicity of a component Sl of ~-1(0) is the same as the multiplicity
of S, n Di+1 in (~|Di+1)-1(0) as follows from the assumptions on D in particular,
the fact that D n Supp ~ -1(0) is a divisor with normal crossings. Hence the
addivity of the Euler characteristic and the (-function (which is, for example,
a consequence of its interpretation via the numbers of fixed points of geometric
monodromy ([AC])) implies the inductive step. D
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Proof of Theorem 1

Now we are in a position to give the proof of Theorem 1. Let XF be the
compactification of Gnm constructed above and let D03C3 be the closure of the
codimension one orbit in XF corresponding to a one-dimensional cone J in
the fan (f). Let -9 be the union of those D,,’s for which the codimension one
orbit T03C3 does not belong to the support of 03C3. (These are the orbits
corresponding to one-dimensional cones J of (f) for which h f(ea) = 0). Let
B be the base locus of the pencil F, on XF. Then the pencil defines the map

The fibres of 0 over points t~P1-{~} are the hypersurfaces F = t in
the torus Gnm. Let S be the complement in C of a disk of sufficiently large
radius containing all the critical values of f and those values t for which
F, is not transversal to a "finite" orbit of XF (i.e. an orbit corresponding to
a cone of (f) contained in a cone of v(f) corresponding to a face of A.(f)
containing the origin). Then by Lemma 1, the closure of F, in XF for t in
S form a locally trivial fibration.
The monodromy of F = t about infinity is the monodromy of 4J. Now

we shall apply Lemma 4 to F (blow-up of XF along B) with D equal to
the union of D and the exceptional locus B of the blow-up of XF. A point
on a component with positive multiplicity is non-singular if and only if it
either belongs to a codimension one orbit properly or in the case of higher
codimension if it is in the closure of exactly one orbit of maximal dimension
having positive multiplicity. In the latter case, it also belongs to the closure
of an orbit having multiplicity zero. Hence, in the notation of Lemma 4,
Si - Si n D is the complement to the base locus B in a codimension one
orbit, the closure of which has positive multiplicity. Thus, the Euler
characteristic of Si - Si n D is minus the Euler characteristic of the inter-
section of the base locus with the codimension one orbit. The part of the
base locus of the pencil inside this orbit is just an element in the restriction
of the linear system defined by f to this codimension one orbit.
By Lemma 3, this linear system will correspond to the polyhedron which

is a face of 0394~(f) not containing the origin. The Euler characteristic of a
hypersurface in a torus with given Newton polyhedron can be calculated
using the formula of [BKH] (cf. also [A]). In particular, the base locus will
have non-zero Euler characteristic only in those orbits corresponding to
vectors 03C3~(Rn)sg which are generators such that 03C3,x&#x3E;= -hf(03C3) is the

hyperplane spanned by a codimension one face of the polyhedron 0394~(f).
The multiplicity of the corresponding orbit is given in Lemma 2. Hence we
obtain Theorem 1.
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Theorem 1 can be generalized as follows. Let K be an arbitrary
field and f(X)~K[X1, ... , Xn1, Xn1 + 1, ... Xn1+n2, (X1 ... Xn1)-1]. Set

S1 = {1, ... , n1}, S2 ={n1 + 1,..., n}, where n = n 1 + n2. For any subset
A ~ S2, define fA to be the Laurent polynomial in n - lAI variables
obtained from f by setting Xi ~ 0 for every i ~ A. We say f(X) is

convenient with respect to the variables {Xi}i~S2 provided
dim 0394~(fA) = n - lAI for every A ~ S2.
THEOREM 2. Assume K = C and let f as above be non-degenerate and
convenient with respect to {Xi}i~s2. Then the zeta function of monodromy at
00 of the map f : Gn1m x Cn2~C is given by

03A0 (1 -Sm(03C3))(-1)dim03C3(dim03C3)!vol(03C3)

where the product is taken over ail faces a of codimension one in 0394~(fA) not
containing the origin for all A ~ S2. For any such a, Vol(03C3) is the volume in the
affine hyperplane L03C3 spanned by 03C3 in the space Rn-|A| having coordinates

{Xi}i~S1~(S2-A) with respect to the measure for which a fundamental domain in
zn n Hu has measure equal to 1.

Theorem 2 can be derived from Theorem 1 as follows. G’:,.1 x cn2 can be
compactified in a way entirely similar to the compactification of G’:,.. For each
i ~ S2, the convenience hypothesis implies that dim 0394~(f{i}) = n-1,so that
0394~(f{i}) is a face of 0394~(f) of codimension 1. As a conséquence, the rays along
the last n2 coordinates in ((Rn)sg belong to v(f) which assures that the

compactification of the torus is at the same time a compactification of

Gn1m x cn2. Then Ft = f - t induces the pencil on each of the tori of

(G’:,.1 x cn2) - Gnm. The additivity of 03B6-functions allows us to express the

03B6-function of monodromy on Gn1m x cn2 as the product of 03B6-functions corre-
sponding to each of thèse added tori. The added tori correspond to the cones
which are subsets of all possible coordinate hyperplanes with non-zéro coordi-
nates among the various subsets of the last n2 coordinates and for which these
non-zéro entries are positive real. In particular, for each A ç; S 2 let WA be the
torus in V = G’:,.1 x cn2 having coordinates {Xi}i~S1~(S2-A). Then

V = U WA is the decomposition
A~S2

of V into orbits. The additivity of the zêta function implies

which then yields Theorem 2 as a direct consequence of Theorem 1.
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For example if f(X, Y) = X3 + X2 Y2 + y4 + X Y then 0394~(f) = convex
closure {(0, 4), (2, 2), (3, 0), (0, 0)} and viewing f on (C*)2, the zeta function of
monodromy is 03B6(s) =(1 - S4)-2(1 - S6)-1 and viewing f on C2, the zeta
function of monodromy is ’(s) = (1 - s4)-2(1 - s6)-’(1 - s3x1 - s4).

3. Results from number theory

In this section, we recall some results from number theory, and relate the
formula above for the zeta function of monodromy at oo to a formula

estimating the p-divisibility of an exponential sum defined over a field of
characteristic p. We begin as in the previous section with the case of the
n-dimensional split torus V = Gnm defined over an arbitrary field K,
f ~ 0393(V, (Dy) a regular function f defined on V represented by a Laurent
polynomial.

Let cone( f ) be the union of all rays in Rn beginning at 0 and passing
through points of 0394~(f) (distinct from 0); let M( f ) = cone( f ) n Zn, an
additive monoid. Then R = K[M(f)] is the monoid-algebra consisting of
Laurent-polynomials with support in cone(f). R is a filtered ring. For each
oc E M( f ), we define w(a) to be the smallest non-negative rational number
such that 03B1~03B2·0394~(f) where the set on the right is the image of 0394~(f)
under the homothetie centered at 0, of magnitude 03B2. Then the Newton
weight w has the following properties:

(i) w(M(f» 9 1/(M)Z+, for some positive integer M;
(ii) w(03B1) = 0 if any only if ce = 0;
(iii) w(c03B1) = cw(03B1), for ce Z + ;
(iv) w(« 1 + «2) ~ w(« 1) + w(« 2) and equality holds if and only if the rays

from 0 to 03B11 and to o2 intersect the same closed face of 0394~(f).

For i E 1/(M)7 +, Fil,(R) consists of the elements of R all of whose terms
have weight less than or equal to i. If R = gr(R) = QRi is the associated
graded ring where Ri = Fili(R)/Fili-1/M(R), then we denote hi = dimK i.
By definition, f(X) E Fill(R), and its image in RI will be denoted by F(X).
Consider the Koszul complex on R defined by {Xi ~F/~Xi}ni=1. If f is

nondegenerate with respect to 0394~(f) and dim 0394~(f) = n then [Ku] the
Koszul complex is acyclic except in degree 0, and
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is a graded K-algebra of dimension equal to n! Vol(0394~(f)). Furthermore if
hi is the dimension of the ith graded piece,

of H,(R) then the acyclicity of the Koszul complex

yields

The purpose of this section is to relate hi and the invariants of 0394~(f)
appearing in the formula in Theorem 1 for the monodromy about 00.

Recall that for l~ 1/(M)Z+, the multiplicity of e-2nil as a zero of C(s) is

given by

where the sum runs over all faces J of codimension 1 not passing through
O such that ma . 1 E Z. Let

where the sum runs over all i E 1/(M)Z +, i ~ 1 (mod Z).

THEOREM 3. For 1 E l/(M)Z +, Hl = NI.

Before proceeding with the proof we recall the number-theoretic signifi-
cance of the integers hi. The following result appears in [A-S].

Let f (X) E Fq [X1, ... , Xn, (X1 ... X,,)-’] be non-degenerate with respect to
0394~(f) and dim 0394~(f) = n. Then L(Gnm/Fq, f, 03A8, T)(-1)n+1 is a polynomial in
Q(03B6p)[T] of degree equal to n! Vol(0394~(f)). Furthermore, the Newton polygon
of L(Gnm, f, 03A8, T)(-1)n+1 lies over the Newton polygon of H(, T) =
1-1 (1 - qiT)hi where the index of the product runs over i E 1/(M)Z+. In fact this
is a polynomial since h, = 0 for i &#x3E; n (in the case 0 is not an interior point of
0394~(f), i = 0 for 1 a n).
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We now proceed with the proof of Theorem 3. For each Q a face of 0394~(f)
of codimension one not containing the origin we set

Then N, = E N’ta where the sum runs over all faces a of 0394~(f) of codimension
1 not containing the origin. Recall [Ku] there is an exact sequence

where

Thus h(03B5)i = 0, unless O ~ interior(0394~(f)) and i = 0, in which case h(03B5)0 = 1. More
generally, for any face (J of 0394~(f) not containing 0 we will use the notation

to denote the "part" of f having support in J. (Of course 0394~(f03C3) has only one
face (namely Q) not containing 0 of dimension equal to dim J. As a conse-
quence, R. is not only filtered but graded and R03C3 = Ra. In this case, we denote
0394~(f03C3) = à.)

Since the maps in the above exact sequence are homogeneous of degree zero,

in which the sum runs over all closed faces 6 of 0394~(f) not containing the
origin. Consider the following Poincaré series
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in which all sums run over i E ll(M)Z , and HO(Ra) is the zero-dimensional
homology of the Koszul complex defined on

where f03C3 in fact lies in R1,a. As in the case of R, the acyclicity of this Koszul
complex yields

Equation (3.2) implies that

the sum running over faces a of 0394~(f) not containing the origin. Each P03C3(T)
is a rational function of T having a pole at T = 1 of order dim(Q) + 1 [Ku].
Equations (3.1) and (3.3) imply

so that multiplying (3.4) by (1 - TM)" we obtain

for some polynomial U(T). For any given

is the coefficient of Tl’M in (1 - TM) -1Q(T) for any l’ such that l’ - 1 (mod Z)
and l’ large enough (in fact, l’ &#x3E; n -1 will suffice). Thus if Hl,03C3 =03A3j~ 1(mod Z) hj,a, 
then

where 6 runs over all codimension one faces of 0394~(f) not passing through the
origin. Thus the theorem is implied by the assertion Hl,03C3 = N"a. Note that
trivially H"a = 0 if l · m03C3 ~ Z (since w(M(f03C3)) ~ 1/(m03C3)Z +).
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We claim for 1, l’~(1/m03C3)Z+, 0 ~ l, l’  1, that H,,,, = Hl’,03C3. If so, using

then

as desired. However we know by [Ehr] (also [A-S (4.5)]) that

for all i ~ l (mod Z). Fix l, l~(1/m03C3)Z+, 0 ~ 1  1. We know by (3.3) that

it being understood that hr,03C3 = 0 for r  0. The right-hand side then is a

polynomial in i (for i ~ n) and is zero (by the finite dimensionality of HO(Ra»
for i sufficiently large. Hence it is identically zero. Therefore

Trivially, if
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then

and

Hence substituting (3.5) into this last formula, we obtain

as desired.

4. Generalization to V = Gn1m x An2

The purpose of this section is to extend the results above (especially,
Theorem 3) to the case V = G", x An2. Let

Assume f is non-degenerate and convenient with respect to {Xi}i~S2. For
l~Q, let l dénote the multiplicity of exp(-203C0il) as a zero of 03B6v,f(s), and
N’tA dénote the multiplicity of exp( -2nil) as a zero of (03B6WA,fA(s). Then the
additivity of zeta functions implies

It is our goal now to relate N, with a quantity arising in the estimation of
the p-adic size of the roots of the L-function associated with a certain

exponential sum. We will proceed algebraically and we will recall the precise
relevant result from number theory subsequently. Let A 9 S2. Denote by RA
the subring K[M( fA)] of K[{Xi}i~S1~(S2-A), (X 1 ... XnJ-1]. RA is filtered by
A.(f); denote the associated graded ring by RA = EfJieM;l7L RA,i and the image
of

by FA,i. Denote by K(A). the Koszul complex defined on RA by {FA,i}i~S1~(S2-A).
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For every B, B 9 S2 - A we define as well a subcomplex K(A, B). of K(A). (so
that K(A, 0). = K(A) .). In particular, we set

where the sum runs over subsets C = {c1, ... , cj of 81 ~ (S2 - A) of cardinality
i and where for B~S2- A, BA dénotes the sub K-vector space of RA
generated by monomials 03A0i~S1~(S2-A) X03BCii with Pi &#x3E; 0 for i E B. Since multiplica-
tion by FA,i takes BA to B~{i}A the restriction of the maps of K(A). to K(A, B).
define a subcomplex. Recall that in [A-S, Appendix] it is shown that if f is
nondegenerate with respect to 0394~(f) and f is convenient then K(~, S2). is

acyclic except in dimension zero, that

and that

where VN = Vol 0394~(f) and VN - j = 03A3|A|=j Vol 0394~(fA) where Vol 0394~(fA) is com-
puted with respect to Haar measure in ~i~S1~(S2-A) Rej normalized so that a
fundamental domain for the lattice ZN~ ~i~S1~(S2-A) Rej has measure 1. For
j~(1/M)Z+, let

Set Hl = 03A3j~ 1(mod Z) hj.
THEOREM 4. For l E 1/(M)Z+,

Before proceeding with the proof we indicate the number-theoretic signifi-
cance of the quantities j. Let K = F. be the finite field with q elements. Let
f(X) E F. [X1,..., XN, (X 1 ... Xn1)-1]. Consider the family of exponential sums
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where the sum runs over X ~(F*qi)n1 1 x (Fql)n2, IF is an additive character of IFq,
and lPi = 03A8 o TrFql/Fq. Associated with this exponential sum is the L-function

We recall the following result. [A-S, Corollary 3.11].

Let (X) be nondegenerate with respect to 0394~(f) and convenient with respect
to S2. Assume dim 0394~()=n. Then L(Gn1m x An2, , 03A8, T)(-1)N+1 is a poly-
nomial and the Newton polygon of L(Gn1m x An2, , 03A8, T)(-1)N+1 lies over the
Newton polygon of the polynomial 03A0i~(1/M)Z+(1- qiT)i.
We proceed now with the proof of theorem 4.
Proof. Since l = 03A3A~S2 (-1)|A|Nl,A and by the previous section, N"A = H"A

for all A ~ S2, it suffices to show

We claim the existence of an exact sequence of complexes

the maps of which are all homogeneous of degree zero. Let us assume this
claim and prove the theorem. Since f is nondegenerate and convenient
therefore fA is nondegenerate with respect to 0394~(fA) and dim 0394~(fA) =
N - |A|. As a consequence K(A, 0). is acyclic except in dimension zero. But
then (for example, by breaking the exact sequence into a system of short exact
sequences), we obtain an exact sequence of homology:

in which the maps are homogeneous of degree zero. But then for j E (1/M)Z+,
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where

and

It remains then to prove the above claim. Whenever B’ ~ B ~ S2 - A, there
is an obvious inclusion of complexes

Whenever A’ 9 .4 c S2 - B, there is an obvious surjection of complexes

Furthermore [A-S, Appendix]

then the following sequence is exact

We will show how these properties enable us to define the sequence (4.1),
prove it is a complex, and then show it is exact. (In fact, the proof applies
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not only in the category of complexes but in any abelian category. For this
reason, in the rest of the proof, we will write K(A, B) for K(A, B)..) First, we
define the sequence. The map a on the left is given by a = 1(~; S2, ~) and is
clearly injective. The rest of the sequence is essentially a Koszul complex
using the projections 03C0(A, y4 u {i}; ~). More precisely, let {i1,..., ir} g S2 and
i 1  i2  ...  ir, and let

be the obvious projection. Then br-1 is defined by

for each 1, 1 ~ 1 ~ r. Since

clearly 03B4oo 03B5 = 0. Furthermore, by usual combinatorial business 03B4ro03B4r- 1 = 0
for 1 ~ r ~ |S2|, so the sequence (4.1) is a complex.
We are indebted to Joel Roberts for the following argument proving the

exactness of the complex (4.1). We will prove instead the more general
assertion that for any A 9 S2 the following complex is exact

If so, then A = 0 is the claim we are trying to prove. We proceed first by
induction on |S2| = n2. The assertion is trivial if S2 = 0 and follows directly
from (iv) above in the case IS21 = 1. Now assume S2 = {1, ... , n2j and (4.3) is
exact for all proper subsets S2 of S2 and all A’ ~ S2. We proceed to prove the
exactness of (4.3) for S2. We proceed by induction on |A|. The case A = S2 is
trivial:

Assume n2 E A and we will assume (4.3) is exact for S2 and A. We now prove
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it is exact for S2 and A’ = A - {n2}. Set S’2 = S2 - {n2}. Consider the map of
complexes:

Let A be the complex in the top row, and B the complex in the middle row.
Since 0 - K(A’, S2) ~ A. is the complex (4.3) for the pair (A’, S’), we have that
the top row is exact by induction hypothesis on |S2|. The bottom row has the
form Dt = (0 - D.) where 0 - K(A, S2 - A) ~ D is the complex (4.3) for the
pair (A, S2) and hence D. is exact by induction hypothesis on lAI. The short
exact sequence of complexes

gives rise to a long exact sequence of homology from which we conclude
Hi(B.) = 0, for i ~ 2, and

The exactness of (4.3) for the pair (A’, S’2) yields Ho(A.) = K(A’, S’2-A’). and
the exactness of the complex (4.3) for the pair (A, S2) yields H1(D.+) = Ho(1I) J=
K(A, S2 - A). Since the map 03B3=03C0(A’, A; S2-A) is surjective it follows that

H1(B.) = 0. Finally the beginning part of (4.4) may now be identified as

which identifies H,(B.) as K(A’, S2) by (iv) above.

References

[AC] N. A’Campo, La fonction zeta d’une monodromie, Comm. Math. Helv. 50 (1975) 233-248.
[AS] A. Adolphson and S. Sperber, Exponential sums and Newton polyhedra, Ann. of Math.

130 (1989) 367-402.



307

[A] M. Atiyah, Angular momentum, convex polyhedra and algebraic geometry, Bull. London
Math. Soc. 26 (1983) 121-138.

[BKH] D. Bernstein, A. Kushnirenko and A. Hovanski, Newton polyhedra, Uspekhi Math. Nauk
31(3) (1976) 201-202.

[D] V. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978) 85-134.
[DL] J. Denef and F. Loeser, Weights of exponential sums, intersection cohomology, and

Newton polyhedra, Inv. Math. 106 (1991) 275-294.
[E] E. Ehrhart, Sur les problem des geometrie diophantienne linear, Crelle J. (1977)

A91-A94.

[K] A. Kushnirenko, Polyedres des Newton et Nombres des Milnor, Inv. Math. 32 (1976)
1-31.

[O] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik und ihre
Grenzgebiete, 3 Folge. Band 15, Springer-Verlag, 1985.

[SGA2] Séminaire de geométrie algebrique.
[Wa] D. Wan, Newton polygons of zeta functions and L-functions, Ann. of Math. 137 (1993)

249-293.

[We] A. Weil, Numbers of solutions of equations over finite fields, Bull. AMS 55 (1949)
497-508.

[V] A. Varchenko, Zeta function of the monodromy and Newton’s diagram, Inv. Math. 37
(1976) 253-262.


