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Abstract. The Hodge filtration on the cohomology of a non-singular complete intersection
of hypersurfaces in a projective space is described in terms of meromorphic forms with poles
along the union of these hypersurfaces. The components of the Hodge decomposition of a
complete intersection are identified with the components of a graded module, which in the
case of hypersurfaces reduces to the Jacobian algebra.

1.Introduction

Explicit constructions of differential forms for studying cohomology classes of non-
singular hypersurfaces in a projective space can be traced back at least to Gauss. More
recently, differential forms on non-singular hypersurfaces were investigated in the works of
P.Griffths, B.Dwork and N.Katz (cf. also [ABG]) in the late 60’s and were used for rather
diverse purposes. Among other things, it was shown in Griffiths’ work that the cohomology
classes of meromorphic forms with poles along a non singular hypersurface correspond to
the cohomology classes of the forms on the latter. Moreover the Hodge filtration on the
middle dimensional cohomology of a non-singular hypersurface corresponds to the filtra-
tion of the space of meromorphic forms given by the order of the pole. Griffiths’ theory is
quite explicit and it allows one to identify the Hodge spaces Hp,q of middle dimensional
cohomology of a hypersurface Q(z0, ..., zn+1) = 0 in CPn+1 with the graded components
of the Jacobian algebra of Q(z0, ..., zn+1), i.e.

C[z0, ..., zn+1]/(
∂Q

∂z0
, ...,

∂Q

∂zn+1
) (1.1)

Recently, Griffiths’ theory was used successfully for the calculations of the Picard-Fuchs
equations of families of hypersurfaces (cf. [M]) in weighted projective spacs and for partial
verification of conjectures of mirror symmetry. Also, motivated by mirror symmetry, in
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[HY] this correspondence between the Hodge spaces and the components of the Jacobian
algebra was used to a) interpret the duality of components of Hodge decompostion as the
duality in the Jacobian algebra (1.1) and b) construct on the latter, in the case when
Q(z0, ..., zn+1) = 0 is a Calabi Yau manifold, a natural representation of the Lie algebra
sl2(C) .

A relation between the holomorphic forms on a complete intersection in a complex
manifold and the forms with logarithmic singularities on the complement contains in a
work of Deligne (cf. [D]). For a complete intersection Vn of dimenision n given in CPn+1

by:
Q1(z0, ..., zn+r) = 0, ..., Qr(z0, ..., zn+r) = 0, (1.2)

one can interpret Hn,0(Vn) as the space of forms on the complement to the union of r
hypersurfaces, each given by one of r equations (1.2) which have the pole of order 1 along
each of r components of the union. In fact, Griffiths’s theory can be generalized to complete
intersections and this was outlined in [LT] in order to obtain Picard Fuchs equations for the
families of complete intersections (cf. also [KT] for further calculations using this method).

One of the purposes of this paper is to provide a justification of the method used in
[LT]. Another is to describe a module associated with a complete intersection in a projec-
tive space (over C[z0, ..., zn+r] in the case when the latter is given by equations (1.2)) the
components of which, similar to the components of the Jacobian algebra in hypersurface
case, correspond to the components of the Hodge decomposition of the complete intersec-
tion. This module for a complete intersection (1.2) is a quotient of C[u1, .., ur, z0, ..zn+r+1]
where the weights of the variables are determined by the degrees of defining equations. In
particular for r = 1 the algebra is different from the Jacobian algebra (though is closely
related to it cf. Example 1 in section 4).

We shall start by describing the correspondence between the cohomology classes from
components of Hodge decomposition of complete intersections (1.2) and classes of mero-
morphic forms on the complement to the union of r hypersurfaces, each of which is given
by one of the defining equations of a complete intersection (1.2). We also give a proof of
Dolbeault lemma (cf. [G1] App.). Then we shall describe the module whose components
correspond to the Hodge spaces of a complete intersection (1.2). Finally we shall give ex-
amples of calculations of the components of Hodge decomposition in some particular cases
to illustrate the above. The issues of duality and the sl(2,C) representation mentioned
above will be discussed elsewhere.

I am grateful to J.Teitelbaum for useful discussions of material in this work which came
out from our joint paper [LT].

2. Meromorphic forms on projective space with

poles along a divisor with normal crossings

Let D = ∪Vi (i = 1, ...r) be a divisor in CPn+r for which Vi are irreducible components
given by the equations Qi(z0, ..., zn+r) = 0 (i = 1, .., r) . Let As(CPn+r − D) be the
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space of meromorphic forms of degre s on CPn+r holomorphic outside of D. Forms from
As(CPn+r − D) can be written in homogeneous coordinates z0, ...., zn+r of CPn+r as a
sum of the forms (cf. [G], th.2.9):

1

Qs1
1 ...Qsr

r
Σ0≤j1<...<jn+r+1−s≤n+r,0≤i1<...<is≤n+r,ip≠jq [Σ(−1)αzjαPj1,...ĵα..,jn+r+1−s

(z0, ..

..., zn+r+1)](−1)j1+...jn+r+1−sdzi1 ∧ ... ∧ dzis (2.1)

where
ΣisidegQi = degPj1,...,ĵα,jn+r−s

+ s+ 1 (2.2)

In particular a form of top degree n+ r is a sum of the forms

P (z0, ..., zn+r)

Qs1
1 ...Qsr

r
Ω ,Ω = Σ(−1)αzαdz0 ∧ ...d̂zα ∧ dzn+r,

degP = ΣisidegQi − (n+ r + 1). (2.3)

Similarly a form of degree n+ r − 1 is a sum of the forms:

1

Qs1
1 ...Qsr

r
Σi<j(−1)i+j [ziPj − zjPi]dz0 ∧ ... ∧ d̂zi ∧ ... ∧ ˆdzj ∧ ... ∧ dzn+r,

ΣisidegQi = degPl + (n+ r) (2.4)

The spaces As have a natural filtration defined by the ”order of the pole” defined as
follows. Let

As
l (CPn+r −D)

be the space of forms of degree s the sum of the orders of which along irreducible com-
ponents of D does not exceed l. A form (2.1) belongs to As

l (CPn+r − D) iff Σsi ≤ l.
Since

Hn+r(CPn+r −D,C) = An+r(CPn+r −D)/dAn+r−1(CPn+r −D) (2.5)

according to algebraic deRham theorem (cf. [Gr]), the filtration on An+r(CPn+r − D)
defines an increasing filtration on the cohomology of the complement to D by setting

F lHn+r(CPn+r −D)

to be the image of An+r
l (CPn+r −D) in (2.5).

Now let us assume that V ⊂ CPn+r is a non-singular complete intersection of non-
singular hypersurfaces V1, ..., Vr. Let Hn(Vn,C)0 be the primitive part of the cohomology
i.e. the kernel of the cup product Hn(V,C) → Hn+2(V,C) with the cohomology class
h ∈ H2(V,C) dual to the hyperplane section of V .

The following lemma provides a link between the vector spaces of meromorphic forms
with poles along certain components of ∪k=r

k=1Vk and cohomology of V :
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Lemma 2.1. The following exact sequence takes place:

⊕k=r
k=1A

n+r(CPn+r − V1 ∪ ... ∪ Vk−1 ∪ Vk+1 ∪ ... ∪ Vr)⊕An+r−1(CPn+r − V1 ∪ ... ∪ Vr) →

→ An+r(CPn+r − V1 ∪ ... ∪ Vr) → Hn(V,C)0 → 0 (2.6)

The left homomorphism in (2.6) is the direct sum of the r maps induced by inclusion
CPn+r−V1∪ ...∪Vr ⊂ CPn+r−V1∪ ...∪Vk−1∪Vk+1∪ ...∪Vr and the differential ω → dω.

The proof is based on the following:

Lemma 2.2. Let V be a complete intersection in CPn+1. Then there is a spectral
sequence Ep,q

1 = ⊕Hq(CPn+r−Vi0∪...∪Vip) abutting to the primitive cohomologyHn(V )0
where the direct sum is over all collections of indices 1 ≤ i0 < ... < ip ≤ n.

Proof of lemma 2.2. Recall that the cohomology of a union of spaces Vi (i = 1, ..., n)
can be found using Gysin spectral sequence ([D],[GS]):

Ep,q
1 = ⊕Hq(Vi0 ∩ ... ∩ Vip) ⇒ Hp+q(V1 ∪ ... ∪ Vn) (2.7)

where direct sum is taken over all collections of ij ’s (1 ≤ i0 < ... < ip ≤ n). Applying this to
Vi = CPn+1−Vi we obtain the spectral sequence as in 2.7 abutting toHp+q(CPn+r−V,C).
On the other hand the sequence:

→ Hi(CPn+r) → Hi(CPn+r − V ) → Hi−2r(V ) → Hi+1(CPn+r) → (2.8)

shows that the primitive part of Hi(V ) is isomorphic to Hi−2r(CPn+r − V ) ((2.8) can be
viewed as exact sequence of the pair (CPn+r,CPn+r−V ) in whichHi(CPn+r,CPn+r−V )
is replaced using excision and Poincare duality by Hi−2r(V )).

Proof of lemma 2.1. One has Ep,q
1 = 0 in the following cases: a) q > n+ r (because

CPn+r − ∪Vi is an n + r-dimensional Stein manifold and b) if p > r. This implies
that Er,n+r

2 = Er,n+r
∞ = Hn+2r(CPn+r − V ) = Hn(V ). On the other hand Er,n+r

2 =
Hn+r(CPn+1 − V1 ∪ ...∪ Vr)/(⊕Hn+r(CPn+1 − V1 ∪ ...Vk−1 ∪ Vk+1...∪ Vr) and the result
follows from (2.5).

The Hodge filtration on Hn(V,C)0 i.e. the filtration: F pHn(V,C)0 = ⊕i≥pHi,n−i(V )0
and the filtration by the order of the pole on An+r(CPn+r − D) in (2.6) correspond to
each other. More precisely one has the following:

Theorem 2.3. In the sequence (2.6)

Im(F q+r(An+r(CPn+r − ∪Vi)) = Fn−q(Hn(V,C)0 (2.9)

The subspace of Hn+r(CPn+r−∪i=r
i=1Vi) of cohomology classes the image of which belongs

to Fn−q+1Hn(V,C) is generated by the subspace F q+r−1Hn+r(CPn+r −∪i=r
i=1Vi) and the

classes of forms which are holomorphic along one of the hypersurfaces Vi.
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The proof (as in [G]) is based on the following lemma of Dolbeault (cf. [G1]):

Lemma 2.4. Let X be a complex manifold and Ω̂p
X be the sheaf of closed holomorphic

p-forms. There is a canonical isomorphism:

ψp,q : Hq(Ω̂p) → F qHp+q(X,C) (2.10)

onto the subspace of classes inHp+q(X,C) of Hodge filtration q. Moreover the coboundary
operator δq : Hp−1(Ω̂q+1

X ) → Hp(Ω̂q
X) of the exact sequence:

0 → Ω̂q
X → Ωq

X → Ω̂q+1
X → 0 (2.11)

(the right homomorphism is the differential) corresponds to the embedding:

F q+1Hp+q(X,C) → F qHp+q(X,C)

.

Proof of Lemma 2.4. The truncated holomorphic deRham complex

Dq : Ωq
X → Ωq+1

X → ... → ΩdimX
X → 0 (2.10)

has hypercohomology Hr = F q(Hr(X,C) (cf. [D], ch. 3 ). On the other hand the complex
(2.10) is quasiisomorphic to the complex:

Ω̂q → 0 → ... (2.11)

and the hypercohomology of the latter is isomorphic to Hq(Ω̂p
X). The second part of

the lemma follows from surjectivity of the map of the hypercohomology Hp+q(Dq) →
Hp+q(Ωq

X) = Hp(Ωq) corresppndingto the morphism of the complexes:

Dq → Ωq
X → 0 (2.12)

(by abuse of notation we denote by Ωq
X the complex which has a single non zero term Ωq

X).

Remark 2.5 If X is Kahler and h ∈ H2(X,C) is the Kahler class then h belongs to

H1(Ω̂1
X) because a Kahler class is clearly in F 1H2(X). Hence the primitive part ofHq(Ω̂p

X)
can be defined as the kernel of the multiplication by h which is the composition of the
cup product in cohomology and the exterior product on coefficients: Hq(Ω̂p)⊗H1(Ω̂1) →
Hq+1(Ω̂p+1).

Proof of the Theorem 2.3 Let D = ∪i=r
i=1Di be a divisor with normal crossings in

a compact complex manifold X such that each of r components Di (i = 1..r) is smooth.
Let Ω̂p

X(kD(i1,...is)) be the sheaf of closed meromorphic p-forms holomorphic outside of
Di1 ∪ ...∪Dis and having a total order of poles along the components Di1 , ..., Dis of divisor
D at most k.
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Step 1. One has the following exact sequence:

0 → Ω̂p+r((0)D(0)) → ⊕Ω̂p+r((1)D(1)) → ... → ⊕Ω̂p+r((r − 1)D(r−1)) →

→ Ω̂p+r((r)D) → Ω̂p
V → 0 (2.13)

Here ⊕Ω̂p+r((k)D(s)) denotes the direct sum over all possible choices of s components of
D of the sheafs of meromorphic p + r forms with a) the total order of poles along the
components of D not exceeding k and b) having the order of the poles not exceeding 1
over each of chosen s components of D. The middle maps ⊕Ω̂(sD(s)) → ⊕Ω̂((s+1)Ds+1)
are defined by assigning to a collecton of the forms wi1,..,is the collection of the forms
ωj1,...,js+1

= Σ(−1)kωj1,...,ĵk,..,js+1
. To define the last non-trivial map in (2.13) note that

a form from Ω̂p+r((s)Di1,..,is) is closed only if it is logarithmic (i.e. for some choice of
coordinates z1, .., zn+r belongs to C[z1, ..., zn+r] submodule generated by dzi

zi
cf. [D] ch.3).

Indeed a form ω = Σφi

zi
where φi has no summand divisible by dzi has

dω = Σ
dzi ∧ φi

z2i
. (2.14)

Hence dω = 0 implies that its component having a pole of order 2 along zi = 0 is zero.
That is φi = 0 i.e. the form ω is logarithmic. The right homomorphism in (2.13) is just
the residue of a logarithmic form defined by:

Res
dzi1
zi1

...
dzis
zis

φ(z1, ..., zn+r) = φ|zi1=0,...,zis=0 (2.15)

The exactness of (2.13) in the middle terms is straightforward. In order to show exactness
of (2.13) at the term Ω̂p+r((r)D) (the only part of (2.13) which is used below) we need
to verify that if Resω = 0 and dω = 0 then ω is holomorphic along one of components of
D. It follows from (2.15) that Resω = φ(z1, ..., zn+r) = 0 on V i.e. φ belongs to the ideal
generated by z1, ..., zr. Hence it is a sum of the forms divisible by one of zi i = 1, ..., r.
Therefore ω is sum of the forms holomorphic along one of components of D.

Step 2. We are going to show that on X = CPn+r the sequence (2.13) applied to
D = ∪Vi implies that

Hq(⊕Ω̂p+r

CPn+r(r − 1)D)0 → Hq(Ω̂p+r

CPn+r ((r)D)0 → Hq(Ωp
V )0 → 0 (2.16)

where subscript 0 designates the primitive part of the cohomology group. That is, the
kernel multiplication by h ∈ H1(Ω̂1

CPn+r) induced by the productHq(Ω̂p(sD))⊗H1(Ω̂1) →

Hq+1(Ω̂p+1(sD)). Let Wm(Ω̂p+r(sD) be the m-th term of the filtration on Ω̂p+r(sD)
induced by the weight filtration on logaritmic forms. The exactness of (2.16) follows from
the vanishing:

Hq+1(Wr−1(Ω̂
p+r

CPn+r((r − 1)(Vi1 ∪ ... ∪ Vir−1
)))0 = 0 (p+ q = n). (2.17)
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We shall prove (2.17) by showing that Nl = Hq+1(Wl(Ω̂
p+r

CPn+r(logD))) satisfies Nl ≥ Nl+1

((logD) indicates logarithmic along D forms). For l = 0 we have N0 = Hq+1(Ω̂p

CPp+r)0 = 0
which proves (2.17). To verify the equality among Nl let us consider the exact sequence:

Wl(Ω̂
p+r(logD)) → ⊕Wl+1(Ω̂

p+r(logD) → ⊕1≤i1<...<il+1≤rΩ̂
p+r−l
Vi1

∩...∩Vil+1

→ 0 (2.18)

(cf. [D] 3.1.5). From (2.18) we obtain:

Hq+1(Wl(Ω̂
p+r(logD))0 → Hq+1(Wl+1(Ω̂

p+r(logD))0 → Hq+1(Ω̂p+r−l−1
Vi1

∩...∩Vil+1

)0

The latter group is zero because the primitive cohomology of a complete intersection is
trivial in all dimensions except the middle one (and p + q + r − l ≠ n + r − l − 1 =
dimVi1 ∩ ... ∩ Vil+1

). Hence Nl ≥ N+1.

Step 3. Let us consider the exact sequence:

0 → Ω̂l((k)D) → Ωl((k)D) → Ω̂l+1((k + 1)D) → 0 (2.19)

in which the right homomorphism is the exterior differential. The corresponding exact
cohomology sequence gives the isomorphism:

Hq(Ω̂l+1((k + 1)D)) = Hq+1(Ω̂l((k)D), (2.20)

for any q ≥ 0 because of vanishing Hq(Ωl((k)D)) (cf. [B] p.246).

Step 4. In follows from (2.20) that

Hq(Ω̂p+r((r)D) = H0(Ω̂p+q+r((q + r)D)) = H0(Ω̂n+r((q + r)D)) = H0(Ωn+r((q + r)D).

Hence we obtain the surjection:

F q+r(An+r(CPn+r − ∪Vi)) → F p(Hp+q(V,C))

and the theorem follows.

Remark 2.6.The case q = 0 of this theorem is a consequence of (3.1.5) of [D] (and
does not require Bott’s vanishing theorem). The latter establishes the following. Let X be
a compact complex manifold, Y be a divisor with normal crossings and Ỹl be the disjoint
union of l-fold intersections of components of Y and il∗ : Ỹ → X the embedding. Let
Ω∗

X(< Y >) be the logarithmic complex and let W be its weight filtration. Then the
residue map provides the isomorphism of complexes (cf. [D] ch.3):

Res : GrWl (Ω∗
X(< Y >)) → il∗Ω

∗
Ỹ l [−l]

In particular if V = ∩i=k
i=1Di is a non-singular complete intersection, then for l = k we

have an isomorphism of components of degree n+ 1: GrWk (Ωn+1
CPn+1 < ∪Di >) → Ωn+1−k

V .

The left sheaf is isomorphic to the sheaf of meromorphic form on CPn+r − ∪Di having
the total order of the pole not exceeding k modulo forms whose polar sets are a proper
subsets of ∪Di. Hence the space of its global sections is identified via the residue map
with H0(Ωn+1−k

V ).
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3. A quotient module of a complete intersection.

We continue to work with a non-singular complete intersection V given by the equations
(1.2) of degrees di = degQi.

Let S = k[z1, ..., zn+r+1], R = k[z1, ..., zn+r+1]⊗k k[u1, ..., ur]. For the most part R will
be considered as a S-module. We shall call the grading by the degree relative to u (resp.
relative to z) u- (resp. z-) grading. Let Lk : R → R k = 1, ..., n+ r + 1 be given by

Lk : F → Σi=r
i=1u

2
i ∂(F )/∂ui∂Qi/∂zk (3.1)

On a monomial in variables u1, .., ur the operator Lk acts as follows:

Lk(u
s1
1 ...usr

r Fs1,...,sr(z0, .., zn+r+1)) = Σi=r
i=1siu

s1
1 ...usi+1

i ...usr
r

∂Qi

∂zk
F (z0, .., zn+r+1) (3.2)

Let Mi : R → R (i = 1, ..r) be the operator of multiplication by Qi. Operators Lk and
Mk are homomorphisms of S-modules.

Let us define Q̃(V ) as the cokernel of the map

Φ = ⊕k=n+r+1
k=1 Lk ⊕i=r

i=1 Mi : R
n+2r+1 → R. (3.3)

It follows from (3.2) that a) Lk are homomorphisms of graded S-modules (of (u, z) bidegree
equal to (1, d− 1)) and b) clearly that Mi are homomorphisms of S-modules of degree 0.
Hence Q̃(V ) is a direct sum of graded S-module and can be viewed as a bigraded vector
space which is a graded S-module with respect to z-grading.

Let us consider two gradings deg1 and deg2 on R. We put:

deg1ui = 1, deg1xj = 0, deg2ui = −di, deg2xj = 1 (3.4)

(deg1 is u-grading mentioned above). This bigrading on R defines the bigrading on Q̃(V )
(Lk (resp. Mi) has deg1 = 1 (resp. 0) and deg2 = −1 (resp. di)).

Let Q(V ) = Φ(I) ⊂ Q̃(V ) be the image of the principal ideal I of R generated by the
element u1 · ... · ur

Proposition 3.1. The Hodge space Hp,n−p(V ) canonically isomorphic to the space of
the elements of Q which have deg1 equal to p+ r and deg2 is −n − r − 1.

Proof. The space F p+r(An+r(CPn+r − ∪Vi) can be identified with the component
of R = C[u1, ..., ur, z0, ..., zn+r+1] the polynomials for which deg1 = p + r and deg2 =
−(n+ r + 1) via the correpondence:

Σs1+...sr=p+r
Ps1,...,sr

Qs1
1 ...Qsr

r
Ω → Σus1

1 ...usr
r Ps1,...,sr . (3.5)

According to theorem 2.3 the space Hp,n−p is the quotient of F p+r(An+r(CPn+r − ∪Vi)
by a subspace spanned by
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a) forms holomorphic along a component Vi (i = 1, ..r)
b) exact forms; and
c) forms which have pole filtration p+ r − 1.
The quotient of bigraded component Rp+r,−n−r−1 by the subspace corresponding to

a) in (3.5) is naturally identified with the corresponding component of the principal ideal
I(R) generated by u1...ur. Similarly the quotient of I(R)p+r,−n−r−1 by the subspace
correponding to c) via identification of forms and the components of R becomes identified
with the bigraded component of the quotient of I(R) by the subspace spanned by the
images of Mi (i = 1, ..., r). Finally from the identity:

d(Σs1,...,sr

1

Qs1
1 ...Qsr

r
Σk<l(−1)k+l[zkPs1,..,sr,l − zkPs1,..,sr,l]dz0 ∧ ... ∧ ˆdzk ∧ ... ∧ d̂zl∧

...∧dzn+r) = Ω·Σs1,...,srΣ
i=r
i=1Σ

k=n+2
k=1

siPs1,....,sr,k · ∂Qi/∂zk
Qs1

1 · · ·Qsi+1
i · · ·Qsr

r

+Σk
∂Ps1,...,sr,k/∂xk

Qs1
1 · · ·Qsi

i · · ·Qsr
r

(3.6)

it follows that Hp,n−p(V ) is isomorphic to the component of the quotient of I(R) by the
space spanned by the images of Mi and Lk. The latter is the component of Q(V ).

Remark. Though the theorem of section 2 provides an identification of the meromor-
phic forms with the cohomology of V in the middle dimension the proposition does not
identify a bigraded component of Q(V ) with a subspace in cohomology of V . The com-
ponents of Q(V ) are identified with the graded vector space associated with the Hodge
filtration. In particular, vanishing of an element in Q(V ) does not mean that the corre-
sponding form defines a trivial cohomology class but rather that the corresponding form
is cohomologous to one with a smaller order of the pole.

4.Examples

1. In a number of cases the quotient module defined above for a complete intersection
(1.2) or some of its graded components can be identified with components of the related
algebra:

C[u1, .., ur, z0, ..., zn+r]/(Σui
∂Qi

∂z0
, ...,Σui

∂Qi

∂zn+r
, Q1, ..., Qr) (4.1)

with bigrading defined by (3.4). This is so in the case r = 1 (hypersurfaces). Indeed the
image of Lk : R → R coincides with the image of multiplication by u ∂Q

∂zk
. The bigrading

(3.4) is equivalent to the u, x bigrading (i.e. components of both bigrading coincide).
Moreover the evaluation at 1 identifies the components of the algebra :

C[u, z0, .., zn+r]/(..., u
∂Q

∂zk
, ...) (4.2)

with the components of the Jacobian algebra (1.1).
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The component of Q(V ) of bidegrees deg1 = p, deg2 = −n− 1 and deg1 = p+1, deg2 =
−n−2 can be identified with the components of the same bidegree of the quotient algebra
(4.1) because in this case Lk again coincidse with the multiplication. This can be used for
a fast calculation of the basis of the Hodge spaces in the cohomology. For example for V
given by

z20 + z21 + z22 + z23 + z24 = 0

λ0z
2
0 + λ1z

2
1 + λ2z

2
2 + λ3z

2
3λ4z

2
4 = 0 (4.3)

µ0z
2
0 + µ1z

2
1 + µ2z

2
2 + µ3z

2
3 + µ4z

2
4 = 0

one obtains the following basis (using for example Macaulay ([Mc]) command “k-basis”):

u1u2u
2
3z0z

2
4 , u1u2u

2
3z1z

2
4 , u1u2u

2
3z2z

2
4 , u1u2u

2
3z3z

2
4 , u1u2u

2
3z

3
4 (4.4)

2. Let us consider the case r = 2, n = 4, degQ1 = degQ2 = 3 which was studied in [LT].
The subspace of Q(V ) of elements for which deg1 = p − 2 (p ≥ 2) and deg2 = −6 (and
which according to the lemma can be identified with the Hodge component Hp−2,5−p(V ))
is a quotient of the component of R of polynomials the degree of which relative to xi’s is
3p−6 and relative to u1, u2 is p. The component of R of elements of having deg relative to
u1, u2 equal to p can be identified with ⊕i=p

i=0S and its intesection with the ideal I(Q̃(V ))
is isomorphic as an S-module to Sp−1. Φ−1(I(R) ∩Rp,∗) belongs to ⊕k=6

k=1I(R)p−1,∗ ⊕r=2
r=1

I(R)p,∗. The latter can be considered as a free S-module of rank 6(p − 2) + 2(p − 1) =
8p−14. Hence the p-component of Q(V ) as S-module is the cokernel of the map S8p−14 →
Sp−1 given by the matrix (Bp, Q1Ip, Q2Ip) where Bp is given on p.33 [LT]. Hence the p-
component of Q(V ) as S-module is the cokernel of the map S8p−14 → Sp−1 given by the
matrix (Bp, Q1Ip, Q2Ip) where Bp is given on p.33 [LT].
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