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P O S I T I O N  OF S I N G U L A R I T I E S  OF H Y P E R S U R F A C E S  
A N D  THE T O P O L O G Y  OF T H E I R  C O M P L E M E N T S  

A, Libgober UDC 512.761.512.73, 515.165.4 

We study the mixed Hodge structure on certain homotopy groups of the complements to algebraic hy- 
persurfaces in complex projective space. As part of this we describe how these homotopy groups depend on 
the position of singular points of hypersurfaces in the ambient space. We also obtain the regularity of certain 
linear systems with base points at the singularities of the hypersurfaces. 

0, Introduction 

A relationship between the position of singularities of the branching locus and topology was discovered 
by 0. Zariski [29]. He showed that the irregularity of a surface which is a resolution of singularities of a cyclic 
covering of C P  2, branched over a curve of degree d and having only nodes or cusps as its singularities, is equal 
to zero unless both the degree d and the degree of the covering is divisible by 6. In the remaining cases, the 
irregularity is equal to the difference between actual and expected dimensions (i.e., the superabundance) of 
the family of curves of degree d - 3 - d passing through the cusps of the curve. For example, a cover of C P  2 
which has a degree divisible by six branched over a sextic curve with six cusps has its irregularity equal to 1 
or 0 depending on whether these cusps belong to a conic or not. On the other hand, Zariski also proved that if 
the fundamental group of the complement to an irreducible curve is abetian, then the irregularity of the cyclic 
branched covering of any degree is zero. The precise way in which the irregularity of a cyclic covering depends 
on the fundamental group of the complement to the branching locus was described in [12] (cf. [13, 14]), where 
it was shown that the irregularity of a cyclic covering (or its first Betti number) depends on the quotient of 
the commutator of the fundamental group of the complement by its second commutator. Moreover, in the 
case where the singularities are more complicated than cusps or nodes, the irregularity of cyclic branched 
coverings can also be expressed via dimensions of certain linear systems which axe determined by the local 
structure of the curve's singular points (cf. [13, 18]). 

The present work concerns a high-dimensional generalization of these results. We consider the Hodge 
number h n,~ of a resolution of a cyclic covering of CP n+l, the branch locus of which belongs to the union 
of an irreducible hypersurface V with isolated singularities and the hyperplane at infinity. (The inclusion of 
this hyperplane into the branching locus allows us to consider coverings of arbitrary degrees, which is quite 
essential in our arguments, while the degree of a covering of C P  '~+I branched only over V must be a divisor 
of the degree of V.) The Hodge number h "'~ is a birational invariant and hence depends only on the branch 
locus and the degree of the covering. We show that it can be determined in terms of the actual and expected 
dimensions of certain linear systems of hypersurfaces in C P  '~+1. The latter have degrees depending on the 
degree and type of singularities of V and have base points at the singularites of V. These linear systems 
are specified by assigning "prescribed behavior" at these base points or, more precisely, by requiring the 
local equations to belong to certain sheaves of ideals depending on the local type of singularities. On the 
other hand, h '~'~ of a desingularization of a cyclic branched covering can be related to the homotopy group 
7r,~(CP '~+1 - (V U H) @ Q, which was studied in [16]. In particular, the triviality of the latter implies the 
vanishing of h '~'~ of cyclic coverings of an arbitrary degree. This actually can be made more precise. We study 
the mixed Hodge structure on zr, ( C P  ~+1 - V U H) | C for which both the weight and Hodge filtrations are 
invariant under the canonical action of r I ( C P  n+l - V U H) = Z on ~r,~. Next we use it to define a certain 
Q[t, t-~]-submodule Ln,0 in r n ( C P  n+~ - V U H) | C which is trivial if and only if h '~,~ vanishes for any 
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cyclic covering with branching locus V U H. In fact, we calculate this module in terms of the aforementioned 
linear systems of hypersurfaces determined by the singularities and the degree of V. Note that the space 
C P  "+l  - VU H is not nilpotent, so the construction of J. Morgan and R. Hain (d.  [22, 10, 11]) of the mixed 
Hodge structure on the homotopy groups is not directly applicable. 

To illustrate the consequences we note, for example, the following (cf. Corollary 4.4 and Example 4.5): 

Corol lary.  Let V ~e a hypersurface in C P  "+1 transversal to the hyperplane at infinity, all singularities of 
which are locally isomorphic to x ql a. _q,+t _ . . . .  ~ , + i  (qi > 2 for any i )  and the degree of which is divisible by D = 1-I qi. 
Let .~  D be a nonsingular model of a cyclic covering of C P  "+1 branched over V having degree D, and let s v (  N ) 
be the superabundance of hypersurfaces of degree N pazsing through the singularities of V. Then 

_1 dimc r . ( C P  '~+1 - (V U H)) | C > d i m c  L.,o = h" '~  _> s v  - -  -- n -- 2 . 
2 -- qi 

The content of the paper is as follows. In Sec. 1, we discuss models of cyclic coverings of arbitrary degree of 
C P  "+I as hypersurfaces blown up Cp"+2 ' s  and in weighted projective spaces. We describe the n-dimensional 
homology of unbranched coverings of C P  "+1 - V U H in terms of r n ( C P  n+t - V U H). Note that the order 
of 7rn(CP '~+1 - V U H) | Q can be viewed (in the case where V is transversal to H)  as the characteristic 
polynomial of the monodromy acting on the Milnor fibre of a nonisolated singularity (of a hypersurface with 
a one-dimensional singular locus). The latter is just the cone over the hypersurface V (cf. [16]). These char- 
acteristic polynomials were studied independently in [3]. Next We describe a classical method of dealing with 
holomorphic forms using adjoint ideals. As a slight generalization of the classical case, however, we express 
the dimension of the space of holomorphic form of a manifold in terms of ideal sheaves determined by the im- 
age of the manifold in a weighted projective space. Finally, we discuss local invariants of isolated singularities, 
namely, the constants of quasiadjunction which were introduced in the context of curves in C 2 in [13] and 
their dependence on an embedded resolution of singularity. 

In Sec. 2, we define the mixed Hodge structure of , r , ( C P  "+I - V U H) | C in the case where V has 
isolated singularities (including infinity in the sense of [16]). This allows us to define certain C[t, t- t]-torsion 
modules Lp,q arising from this mixed Hodge structure. In particular, the orders Ap,q of L~,,q are the polyno- 
mials in terms of which one can describe the Hodge numbers of the coverings. This is done in this section for 
unbranched coverings of C P  "+l  - V O H. 

Section 3 concerns the Hodge theory of branched coverings and shows how to calculate hn, ~ in terms of 
the modules L,,0 from Sec. 2. A consequence of this, which is essential in Sec. 4, is that h", ~ is a periodic 
function of the degree of the covering. The Hodge numbers h p,"-p depend on the resolution of singularities if 
p # 0, but in the case of weighted homogeneous singularities, one has a preferred resolution (in the category 
of V-manifolds). Using this, we interpret Lp,q for any p, q using the Hodge numbers of branched coverings. 
In the last section, we calculate h "'~ in terms of linear systems of hypersurfaces determined by constants 
of quasiadjunction of singularities defined in Sec. 2. As a result, one obtains the regularity of these linear 
systems (cf. Corollary 4.2). Note that these linear systems (for almost all local types of singularities) include 
the system of hypersurfaces passing through singular points of V. This also gives the calculation of irregularity 
in the case of coverings of C P  2. In this case another proof was given in [18] which is based on the approach 
developed in [6]. Our proof is close to the original one of 0.  Zariski, where the regularity of linear systems 
defined by the base points follows from the fact that the collection of irregularities ofnonsingular projective 
models of cyclic branched covers of C 2 branched over a fixed curve is a bounded set. However, here we use 
weighted projective spaces (instead of working with not normal hypersurfaces, cL [29]). A calculation of the 
Hodge numbers of cyclic branched coverings was also considered in [28]. 
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1. Preliminaries 

In this section, we discuss the birational models of cyclic branched coverings, a calculation of the homol- 
ogy of unbranched coverings, the theory of adjoints in weighted projective spaces, and a certain si tuation in 
which the Hodge numbers hp,q, p # q, of a divisor with normal crossings are zeros. We work with a hyper- 
surface V of degree d and a hyperplane H which we call the hyperplane a t  infinity. We say that  V has only 
isolated singularities including infinity iff both V and V N H have only isolated singularities (cf. [16]). The 
s tudy of the first nontrivial (in the sense [16]) homotopy group of the complement to a hypersurface with a 
singular locus of dimension s, i.e., 7 r , , , s (CP "+1 - V U H),  can be reduced to this case. Indeed, this group is 
isomorphic to the first nontrivial homotopy group of the complement to a generic section of the hypersurface 
by a linear subspace of codimension s, as follows from the Lefschetz theorem (cf. [13, 16]). 

De f in i t i on  1.1. The m-fold cover of C P  "+ t  branched along V U g is a complex algebraic variety Xm such 
that  

(1) Xm is a normal pseudomanifold (i.e., HdimR Xm (Xm, X m  - x)  = Z for any x E x m  cf. [7]); 
(2) there is a map r : Xm -+ C P  "+ t  such that  the restriction of 7r to Xm - ~ ' - I (V U H)  is isomorphic to 

the covering of C P  " + l  - (V U H)  corresponding to the canonical map of the fundamental  group of the latter 
space (which is isomorphic to Z) onto Z / m -  Z. 

R e m a r k  1.2. If, as above, d = deg(V) and f ( z 0 , . . . ,  z,,+x) = 0 is a defining equation of V, then the d-fold 
covering is just the hypersurface in C P  "+2 given by d z ,+2 = f ( z o , . . .  , z , + l ) .  In general, a hypersurface 
model of X,~ with isolated singularities in a nonsingular space can be obtained as foUows. Let V be a hyper- 
surface in C P "  + r which has isolated singularities including singularities at  infinity. Let f ( zo , . . . ,  z , +  1) = 0 
be an equatio n of V and z0 = 0 be the equation of the hyperpIane H at infinity. Then ther e is a manifold 

C-P'~+~ which is obtained from C P  "+2 by a series of blow ups with centers at codimension 2 subspaces over 
------'n+2 - - ~ + 2  

the subspace H C C P  " + l  given by z0 = z ,+2 = 0, a point p E C P  , and a map ~r : --+ C P  "+2, 
which have the following properties. 

(1) If the variety Xt,, is the projective closure in C P  "+2 of the affme hypersurface z,~+2 = f (1 ,  Zl, . . . .  
-------n+2 

z , + l ) ,  then the proper ~r-preimage X~, of X ~  in C P  is an m-fold branched covering of C P  "+1 branched 
over V 13 H. 

(2) The covering lrm : X m  ~ C P  "+1, where 7rm = 7r[x,~, is totally ramified over V and the, restriction 
of ~rm over the hyperplane at  infinity H: 7 r~ ( H)  -+ H is a covering of H of degree g. c. d.(d, m). 

(3) The singularities of X m  are only at the points 7r~,l(Sing(V)). In particular Xm is nonsingular along 
~r~,l(H - H N Sing(V f3 H)).  (Here Sing( ) denotes the singular locus of a variety.) 

R e m a r k  1.3. We shall need a birational model of a cyclic branched covering Xm which is a hypersurface 
in a weighted projective space (cf. [4]). Recall that  the weighted projective space CP~,  +2 of weight w = 
(q0, . . .  ,q,~+2) is a quotient of C "+3 - 0 by the action of C* given as follows: t  9 ( z 0 , . .  ,z,,+2) = (t q~  9 
z0, . . .  , gq"+~ " z,+2).  Alternatively CPrtw+2 is a quotient of the s tandard projectiv e space by the action of 
the product of n + 3 cyclic groups Z/qo  9 Z x .-- x Z/qn+2  9 Z. The map C P  "+2 -+ CP~,  +2 is given by 
( z 0 ,  ' ' =  9 , , z,~+2), where z i 

Let F ( z o , . . .  , z , + l )  = 0 be an equation of a hypersurface of degree d in C P  "+1 which has only isolated 
singularities including infinity. Let l = 1. c. m.(d, m) and g = g.c .d.(d,  m). Let CP~,  +2 be the weighted 
projective space of weight w = (1, re~g, re~g, ..., re~g, d/g) ,  where the weight of z~,+2 is d/g,  the weight of 
each of zt, ..., z,,+l is re~g, and the weight of zo is 1. Such a choice of weights yields that  
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(a) The weighted projective space CP"w +2 contains C "+t  as an open set (cf. [4, 1:2.4]). The projective 
closure of the hypersurface zam+2 = F(1, z l , . . . ,  zn+l) in CP~, +2 is an m-fold cyclic branched covering of 
CP.n. +1 . . . branched over the union of the closure of V and the subspace H0 given in the latter pro- I, J . , r n l g , . . .  , m / g ]  
jective space by z0 = 0, i.e., provides a model of Xm; 

(b) the restriction of this covering over H0 has degree g (as one can check directly). 
The degree of this hypersurface is equal:to l. If V is transversal to the hyperplane at infinity, then this 

projective closure has only isolated or quotient singularities. Alternatively, Xm can be described in a similar 
way as a hypersurface of degree d. m in weighted projective space of weight (1, m , . , .  , m, d), with the same 
conclusions about singularities (recall that projective spaces of weights (1, ~ , . . .  , 9 '  ~) and (1, m, . .  , m, d) 
are isomorphic (cs [4, 1.3.1])). If m divides d, then there is no ramification over the points of H0, and using 
the identification of weighted projective spaces of weights (1, m , . . . ,  m, d) and (1, 1,. ,1, ~ )  we obtain the 
model of the cover discussed in [4, 3.5.4]. 

Next we shall consider the homology of unbranched coverings. 

L e m m a  1.4. Let V be a hypersurface in C P  "+t  having isolated singularities, including singularities at 
infinity. Then 

1. For2 < i < n - 1, the homology of the k-fold cyclic covering o f ( C P  "+1 - V U H ) k  0 f C P  "+1 - V U H  
satisfies 

H i ( ( C P  "+l  - Y U g)k ,  Q) --- 0. 
2. The homology group H,~((CP "+1 - V U H)k, Q) is isomorphic to the cokernel of the multiplication by 

t k - 1 on 7r,(CP '~+1 - V U H)  | Q / f n  > 2. 
3. The eigenJpace of the linear map of H n ( ( C P  r'+l V U H)k,  C), induced by the deck transformation 

corresponding to the eigenvalue ~, is isomorphic to the cokernel of the multiplication of rn(  C P  "+ I - V U  H )|  
by t - ~ provided n >__ 2. 

- - l  I _ _ l l  4. I fn  = 1, let ~rz = r l ( C P  2 - (V U H)). Then the cokernel of multiplication by t k - 1 on nz/Tt 1 @ Q is 
isomorphic to a subspace of codimension I in H I ( ( C P  2 - V U H)k, Q). 

Proof .  The first statement follows from the (n-1)-connectedness of the universal cover o f ( C P  "+1 - V U H ) ,  
which is proven in [16]. To verify the rest let us consider the sequence of chain complexes with compact support 
and rational coefficients (el. [16]) in which ( C P  n+l - V U H)oo denotes the i,afinlte cyclic cover: 

0 -~ C.((CP "+l - V t.J H)~) -+ C.((CP "+t - V tJ H)o~) -+ C.((CP "+I - V tl H)~:) --+ 0. (i.i) 

We consider these complexes as complexes of finitely generated Q[t, t-1]-modules with the action of t given 
by the action of the generator of the group of deck transformations of the coverings. The left homomorphism 
in (1.1) is multiplication by t k - 1. The corresponding sequence of the homology groups gives 

H.((CP "+t - V U H)oo, Q) -+ H.((CP "+* - Y U H)oo, Q) -+ 

-+ H , , ( ( C P n + I - V U H ) k , Q ) - - +  H , _ x ( ( C P " + t - V U H ) o o ) - - +  (1.2) 

The right term in this sequence is trivial according to the first part of this proposition. The left term is canon- 
ically isomorphic to r , ( C P  "+~ V U H) | Q, and parts 2 and 3 follow. In the case n = 1 (i.e., part 4) the 
homomorphism of the right term in (1.2) is the map of 0-dimensional homology groups. This map (i.e., t - 1) 
is trivial since the deck transformation acts as the identity on H0. The result hence follows since the infinite 
cyclic cover is connected and hence H0((CP 2 - (V U H))r162 Q) = Q. 

The following sufficient condition for the vanishing of h p'q when p # q for divisors with normal crossings 
will be used in the study of the Hodge numbers of compactifications of unbranched coverings just considered. 

Def ini t ion 1.5 (cf. [24]). A complex space X has V-singularity at a point p 6 X ifp admits a neighborhood 
Up in X which is analytically equivalent to Ct/Gp (l = d imX) for a finite subgroup of GL(I, C). A complex 
space is V-manifold if it has only V-singularities at all its points. A compact complex space X is a V-variety 
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w.ith normal crossings if at any p E X it admits a neighborhood Up which is isomorphic to a quotient by a finite 
group Gp C G L ( I , C ) o f  a union of coordinate planes: {(zl , . . .  ,z~)E C t l z l . . . . . z k  = O, ]zil < e, 1 < i  < l}. 

Lemma 1.6. Let U Di be a V-variety with V-normal crossings with n = dim Di for any i. Suppose that 
(1) GrPFGrpW+q(['~P+q(Di), C )  = 0 f o r  p n t- q ~> n + 1 and p • q for any i. 
(2) The mixed Hodge structure on H p+q (U Di, C)/s pure of weight p + q provided p + q >>_ n + 1. 
Then OrPFGrpW+q (/.jrp+q (UDi, C)) = 0 for p + q > n + I and p ~ q. 

Proof .  Recall that the weight filtration on H p+q (U Di, C) is the filtration induced on the abutment 
of the Mayer-Vietoris spectral sequence E[  'q = HP(D [q]) ::~ H p+q (U Di, C) (cf. [9, Sec. 4]). This spec- 
tral sequence degenerates in the term E2. Therefore the weight filtration Wi on i t  ~+q (U Di, C) satisfies 
W i / W i - i  = 0 for i r p +  q artd Wp+q = EPoo +q'O = E~ +q'~ = K e r ~  HP+q(Di) --+ ~ HP+q(Di f3 Dj). The 
F-filtration on Wp+q is the restriction of the F-filtration on the E1 term of the spectral sequence above, i.e., 
the restriction from the F-filtration on ~) HP+q(Di, C). Therefore, the lemma follows from our assumption 
on:GrFGrw for each component Di. 

Next let us consider the calculation of the Hodge numbers of a hypersurface F in a weighted projective 
space C P ~  using the sheaf of adjoint ideals AdjF (cf. [1] for the case of standard projective space). Let D 
be the degree of F and Q = ~']~qi be the sum of weights of CP  N where the weight w is (q0,...  ,qN). Let 
lr : O c p  ~ --+ OF be the restriction map and let f : F --~ F be a resolution of singularities of F. Then we put 
Adj f  = r - t ` 4  for ,4 = f .  ( ~ p ) ( - D  + Q). Here f2p is the dualizing sheaf of the resolution F,  i.e., the sheaf 
of holomorphic N - 1-forms on _F. In particular, one has 

0 -+ O c p ~ ( - D  ) --+ Adj F -+ ,4 --+ 0. (1.3) 

Note that in this definition one can take, instead of ~', a V-manifold : admitting a birational morphism 
( N - ,  ) ,  where i is the embedding i :  : S ing( : )  --~ f : -+ F, and replace f~#, by ~: = i. f~m-slng(:) 

( S i n g :  is the singular locus of : ) .  Then ,4 = f.((~1~) because, if f '  : : --+ : is a resolution of : ,  one has 
fi~ = f~(~2:) (cf. [24, Lemma (1.1)]). The stalk AdjF(p ) of the sheaf AdjF at a singular point p e r can be 
described as follows. Let r E O c e g ( p )  be a germ of a holomorphic function at p and w0 be a nonvanishing 
holomorphic (N - 1)-form on F - Sing(F). Then r ~ Adjf(p)  i f f / ( r  w0) extends to a holomorphic form on 
fl' -- Sing(fl') (cf. [19]). An equivalent description is that ~b e Adj f ifffor any (N - 1)-chain 7 in F - Sing(F) 
one  has  

f (~-~o)  < oo (1.4) 

(cf. [19]). 
Using adjoint ideals of the tower of cyclic covers, one can define the invariants (constants of quasiad- 

junction) of an isolated singularity f(zt,..., z,+t) (which we shall assume to be at the origin of C '~+~) as a 
consequence of the following (cf. [13, 18]): 

Propos i t ion  1.7 (d. [13; 18, D~firfition-Proposition 3.2]). Let us srm a germ r of a holomorphic function at 
the origin and let un conaider the following function r of rn C N: r  = rain {l I z,,+ 2 t  . r  E Adj(z~+ 2 "  = 
f ( z l , . .  . , z ,+t)} .  Then r  = [g~-m] for some ~:ational number x~ called the constant of quaniadjunction 
of the singularity f corresponding to the germ r 

We shall recall a proof fo r convenience. Let us first note that a V-manifold/~m and a birational map f : 
: ,~ -+ Fro, where Fm is a germ at the origin of the complex space given in C "+2 by z~+ 2 = f ( z t , . . . ,  z ,+l  ), 
can be obtained as follows. Let p : ( ~ ,  U El) -~ (C "+l,  0) be an embedded resolution of the singularity 

g 

f ( z l , . . .  , z ,+t )  = 0. Then the normalization of the fibre product Fm • Yf (the latter is defined using 
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p and the projection of Fm onto C " + t )  has only quotient singularities (c f. [17]) and can be taken as $',,. 
For each component Ei of the exceptional locus of the embedded resolution p, let ai be the  multiplicity of 
E / i n  the full preimage of the hypersurface f ( z l , . . .  ,z,,+1) = 0 and let ci (resp. f i )  be the multiplicity of 
p*(dzl A . . .  A dz ,+ l )  (resp. p*(r along Ei. Finally let gi(m) = g. c. d.(ai, m).  The composition of the 
normalization -g'm -'+ F,~ Xc,,+~ Yf  and the projection of the latter on the second factor identifies/~m as a 
cyclic cover of Yf" On the other hand, -g'm is a regular neighborhood of the exceptional locus of a resolution of 
the singularity z,,~+2 = f ( z l , . . .  , z,,+i). Each component of this exceptional locus is a branched covering of 
one of the Ei's. The raznification index at the points of components which cover Ei is equal to ~i' as can be 
seen from the normalization of the covering of a transversal to Ei (which in terms of a local parameter  u in this 

dzl A . . .  A dz,-,+t 
transversal looks like the  normalization of u ~ = z,~+2). One can take m - t  as a nonvanishing 

Zr tq , -2  
1 r n  form on Fro. Hence z , +  2 - r is in the adjoint ideal of the singularity z , +  2 = f ( z l , . . . ,  z , + ] )  iff 

(l - m + 1) - mult  /*(z=+2) + mult f* ( r  + mult f*(dz l  A . . .  A dz,~+1)> 0 (1.5) 

for any component of the exceptional set of fl',,, -+ Fm and where mult  is the multiplicity along such a 
g *  

component. For components over Ei one has m u l t f * ( z , + 2 )  = ~- multfi*(~b) = J im mult(dzl  A . . .  A 
~i ' g i  ' 

dzn+t) = c i m +  m _ 1. (To verify the latter it suffices to note that in the local coordinates ( U l , . . . ,  un+l )  
gi gi 

rtt 
e i  in which fl'm --+ Y:  is given by ut  = vgi,  the pull back of the form u t dul A du2 A . . .  A dUn+l is equal to 

v g, g~ dv A du2 A . . .  du,,+I). Hence the inequality (1.5) in this case shows that  r  is the minimum 

over alli  of solutions of the inequality: ( l - r e + l )  ai + / i r a  + + - -  - I _> O. The latter is equivalent 
gi gi gi 

to l + l > r e ( l ,  f i  + ci + l )"  The minimal s~176 ~ this inequahty is I r a (  f i + c ' + l " ) ]  " H e n c e a i  

d2q,(rn)=[tc~.m],wheretc~ = m a x i  ( i  f i  +c i  + 

R e m a r k  1.8. The proof  shows in particular the following. Let ai be the multiplicity of a component  of an 
embedded resolution of an isolated hypersurface singularity and let ci be  the multiplicity along this compo- 
nent of the pull back of a nonvanishing top-dimensional differential form. Then m i n ( ~ )  is an invariant of 
the singularity. More precisely, this number  is I - ~l,  where ~;l is the constant of quasiadjunction described 
above corresponding to r = 1. This proof also shows how the constants of quasiadjunction are related to the 
geometric weigMs from [271 (cf. also [5]). 

E x a m p l e s  1.9. Weighted homogeneous singularities. Let g ( z l , . . .  , z,~+l, zn+2) b e a  weighted homogeneous 
,~+2 belongs to the adjoint ideal of g(zl ,  .. , z,~+2) if and singularity. According to [19], a monomial  z'l ~- . .  z , +  2 

only if (il + 1 , . . . ,  i,~+2 + 1) is inside the Newton polytope of g ( z l , . . . ,  z,,+2). This immediately implies 
the proposition in the case of weighted homogeneous singularities. If the singularity is locally equivalent to 

q n + l  m z~ 1 + - - .  + z,,+l = 0, then the Newton polytope of z,~+2 = f (Zl , . . . ,  z ,+ l )  is 
? 

{ IT } ( z l ,  , z , + 2 )  E R "+2 m-  D . . .  ~ . z i  + D - xn+2 > D " m , 
.= qi 
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i--k+l 
where D = l'I qi. Hence the minimal I such that z t z i l+ l  ~in+t+l is in the adjoint ideal of znm+2 n+2" 1 " ' ' " n + l  

f ( z t ,  . . . ,  zrL+t) equals rn 1 - ~ - ~ k - - - ~ / j .  Therefore, the constants of quasiadjunction are 

(1 - )-~" it~ + ! )  ' pr~ this expressi~ is P~ qk 

Note that, using Proposition 1.7, one can, of course, always determine the constants of quasiadjunction 
from an embedded resolution of the singularity. 

Def ini t ion 1.10. The ideal of quasiadjunction of a hypersurface F with isolated singularities is the ideal 
A~ such that r(V,A.) = {r E r(u, Oop~+,)l~ = minA E O, sr  < A e 0} ,  where O is the collection of 
constants of quasiadjunction of all singularities of F.  

Example  1.11. Let us consider the ideal of quasiadjunction in the local ring of a point p E C P  n+l in 
which F(z0, . . .  , zn+l) --- 0 has a quasihomogeneous singularity. Such an ideal corresponding to the constant 

of quasiadjunction of r --- t which equals ~l - ~ is just the maximal ideal in (.gcp~+~. In general, 
i----1 

a germ r ---- 0 belongs to an ideal A,~ if the curve satisfies a certain geometric condition. For example, for a 
plane curve singularity x 2 =  y5 the ideal A 3  consists of germs the set of zeros of which has the tangent cone 10 
belonging to the tangent cone of the singularity. 

2. Mixed  H o d g e  S t r u c t u r e  on ~r,~ 

In this section, we shall introduce the mixed Hodge structure on the first nontrivial homotopy group of 
the complement to a hypersurface. We shall use it to define C[t,~-l]-modules Lp,q providing a link between 
7r~ and the Hodge numbers of the cyclic branched coverings (Proposition 3.3). 

Let V be a hypersurface of degree d with isolated singularities in CP "+I and H be a hyperplane at infini- 
ty such that V and VNH have, at most, isolated singularities (cf. [16]). It follows from the divisibility theorem 
([16, Sec. 4]) that the order Av(t) of wn (CP "+t -VUH)| as a C[~, t-t]-module is a cyclotomic polynomial 
and that the action of t is quasi-unipotent. Indeed Av(t) divides the product of polynomials associated with 
singularities of V, including singularities at infinity. For singular points of V which are outside the hyperplane 
at infinity, the associated polynomial is the characteristic polynomial of local monodromy and hence is cyclo- 
tomic. Let us consider a singular point at infinity near which V (resp. H)  is given by f ( zo ,  z l , . . . ,  z,~) = 0 
(resp. z0 = 0). Let MI (resp. M2) be the portions of f ( z 0 , . . . ,  z,~) = s (resp. f(0, z l , . . . ,  z,,) - s) in a small 
ball about the singular point. The polynomial associated with this singular point is the characteristic poly- 
nomial of the monodromy acting on ML - M2 (cf. [16, Remark 4.2]). Its cyclotomic property follows again 
from the monodromy theorem and equivarianf, with respect to the action of the monodromy operator, exact 
sequence: H•-I(M2) --* H n ( M I  - M2) -+ Hn(M1) (i.e., the exact sequence of the pair (M1, M1 - M2) in 
which gn+i(M1,  M1 - M2) is replaced by H~-I(M2)) .  

Let N ( V )  be an integer such that any root of A v ( t )  is a root of unity of degree N ( V ) .  The action of the 
fundamental group of the N(V)-fold cover ( C P  n+l - V tA H ) N ( v  ) of C P  n+l - V U H on z n ( ( C P  '~+1 - V O 
H)lv (v ) )  is nilpotent. 

n+l On the other hand, the homology of ( C P  - V t9 H ) N ( v )  can be identified with the cokernel of the 
endomorphism of 7rn | C which is the multiplication by ~N(V) _ 1. In the cases where one knows that 
rn(C ~+1 - V U H) | C is a semisimple C[t , t  -1] module (for example, if H is transversal to V, cf. [16]), 
the multiplication by t N(V)  - 1 is trivial (cf. [16]) and the cokernel of this map coincides with ~r~, | C. In 
general, we shall call this cokernel the ,emisimvle part of 7r~ | C and shall denote it ~r~. 

3200 



Defini t ion 2.1. The mixed Hodge structure on rr,*(CP "+l  - V UH))  is the one obtained from the MHS on 
the homotopy Lie algebra (el. [10, 11]) via isomorphism: r n ( ( C P  "+t  - V U t'I)N(V ) ---- r n ( C P  n + l  - Y U/r~-). 
Alternatively, the induced mixed Hodge structure on a's, is the one obtained from the canonical mixed Hodge 
structure existing on the homology of a quasiprojective variety (el. [2]) via the isomorphism res,(CPn+t - 
V U H) | C) = H , ( ( C  "+ t  - V tJ H)N(V), C)) described in Lemma 1.4. 

Note that the deck transformations acting on (C "+I - V U H)N(V ) are algebraic maps and in particular 
preserve both filtrations on rn | C. Therefore 

Lp,q(V) = GrFPGrW_p q (2.1) 
has the natural structure of C[t, t-1!-modttle. We will need the cyclic decomposition of this module: 

L,,,q(V) =  c[t, t-lll(&,(,,,q),v(t)), (2.2) 
where Ai+tlAi. 

These polynomials Ji,(p,q),v(t ) are well defined up to a unit of C[t, t-L]. 

Defini t ion 2.2. The (p, q)-part of the order of re,, | C is the C[t, t - t ]-order of the module (2.2). We denote 
this polynomial A~q(t).  

R e m a r k  2.3. One can define similar groups (2.1) and corresponding polynomials using a's, instead of re,, | C. 
By abuse of notation we shall use the same symbols in both cases. The statements refer to either case unless 
otherwise stated. I do not know examples of hypersurfaces for which re~ # re,, | C. 

R e m a r k  2.4. The mixed Hodge structure on re~ is independent of a choice of the base point used in the 
definition of the homotopy group. 

I I I t  R e m a r k  2.5. In the case n = 1, the same arguments give the mixed Hodge structure on rel/Trl (resp. 
semisimple part of it), where ret is the fundamental group of the complement to an affiae curve. In the case 
where the line H at infinity is transversal to the projective closure C of the curve, the polynomial At,~ - 
A0,t (t) coincides with the Alexander polynomial of C (cf. [12]). Indeed, if Xd is a resolution of the singularities 
of the cyclic branched covering of C P  2 branched over C, C is the preimage of the curve C in -~d, and E is 
the exceptional locus, then one has the exact sequence of the mixed Hodge structures: 

--r H2(Xd) --+ H2(E) --+ H3(fCd, E) --+ H3(.l~'d) --+ (2.3) 

The left homomorphism in this sequence is surjective. Indeed, the composition H2()Ed,)Cd -- E, C) -+ 
H2()f~, C) --> H2(E, C) can be identified with the homomorphism 

H2(T(E), OT(E), C) --+ H2(T(E), C), 

where T(E) is a regular neighborhood of E in ~Td and 0T(E) is its boundary. The latter can be interpreted 
as the map Hom(H2(T(E), C), C) -+ H2(T(E), C) which is an isomorphism because it corresponds to the 
intersection form H2(E, C) x H2(E, C) --+ C which is nondegenerate (cf. [21]). Hence (2.3) implies that 
the Hodge structure on H3(ffd,E) is pure of weight 3 and hence the Hodge structure on Ht(.Xd - E) is 
pure of weight -1 .  On the other hand, one can easily verify using the sequence (1.2) specialized to the case 
n 1 that the composition of the embedding ' "  " = re~/Trt | C into Ht(Xa (C u E)) With the homomorphism 
gt(,f(a - (C U E)) --+ Ht(_f(-a - E) induced by inclusion is an isomorphism. Therefore the claim follows. 

R e m a r k  2.6. This mixed Hodge structure, in the case where V is a weighted homogeneous hypersurface 
given by f ( z l , . . .  , z,,+t) = 0, coincides with the canonical mixed Hodge structure on a nonsingular alge- 
braic variety which is the afflne hypersurface f ( z t , . . .  , z,,+l) = 1. To see this we let w t , . . .  , w,,+t be the 
weights of the weighted homogeneous polynomial f ( z l , . . .  , z,+t) (i.e., f is a linear combination of mono- 
minis z~ 1 . . . .  -,+1'~+~ such that i t /w t  + "" + i,,+l/w,,+l = 1 (cf. [20])). Let N = g .c .d . (wl , . , .  ,wn+t). If 
Vf=l (reap. Vf=0) is the hypersurface given by f = 1 (resp. f = 0), then re,,(C ,*+1 - Vl=0) is isomorphic to 
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Hn(Vf=l ,  Z) as a module over Z[t, t -L] with the module structure given by defining the action of t to be the 
same as the action of the monodromy operator. T h e  order of r n ( C  n+I - V/=0) @ C)  as a C[t, t -~]-module 
is the characteristic polynomial of the monodromy operator acting on Hn (Vf=~, Q). Hence any root of the 
Q [t, t - t]_order of rn  ( C "  + 1 _ Vf =0) | Q is a root of a unity of  degree N. Moreover, because the monodromy 
operator acting on the homology of the Milnor fibre of a weighted homogeneous singularity is semisimple 
([25]), we see that  7r,~(C '~+l - Vf=0) = rr,~(C n+l  - V/=0). Next we claim that  the N-fold cyclic covering of 
C "§ - Vf=o is biregularly equivalent to C* x Vf=l.  Indeed, the cyclic covering in question is isomorphic to 
the hypersurface Vr in C n+2 given by the equation f ( z l , . . .  , zn+l) = Zo N with a removed intersection 

J ~  0 
of this hypersurface with the hyperplane z0 = 0, Let us consider the map ~ : C* • Vf=l --~ Vf=zoN given 

by (t, z l , . . .  , Zn+l) --+ (t, t N/wt z l , . .  . , t N/w~+l Zn+l). ~ clearly is a biregular map and has as its image the 
complement to the intersection of Vr with the hyperplane z0 = 0. The mixed Hodge structure on the 

. J - -  0 
product can easily be calculated using the fact that  the Kunne th  formula is consistent with mixed Hodge 
structures. This, combined with the calculation of the mixed Hodge structure on C* (cf. [2]), gives the as- 
sertion on the mixed Hodge structure on the homotopy group of the complement to a weighted homogeneous 
hypersurface. The Hodge numbers of an afrme quasihomogeneons hypersurface were completely calculated by 
J. Steenbrink ([25]). For examples, the calculations on p. 223, ibid., give the following Hodge numbers for the 
mixed Hodge structure of 7r2 | C of the complement to the hypersurface x 3 + y3 + z 3 + 3,~xyz = 0 (A3 r 1): 
h 2'~ = h ~ =O,h  1'1 = 6, h I'2 = h 2'1 = 1. 

L e m m a  2.7. The Hodge number hp,q((CP n+l - V U H)k)  of the k-fold cover of C P  n+l - V U H is equal 
to the number of common roots of t k - 1 and the polynomials )~i.(v.q),v which are the orders of the cyclic 
decomposition of the module (2.2). 

P roof .  First notice tha t  if I = g. c. d.(k, N(V)),  then the homology of k-fold and/ - fo ld  cyclic covers are 
canonically isomorphic in dimensions not exceeding n. Indeed, we have the following exact sequence (cf. Lem- 
ma 1.4): 

--+ H n ( ( C P  "+1 - V t9 H)k)  -+ H n ( ( C P  '~+1 - V IJ H)k)--~ H n ( ( C P  n+l  - V U H) t )  "-+ O. (2.4) 

The homomorphism between two left terms in the last exact sequence is the multiplication by ti - 1. A root r/ 
of an order of a Q[t, t - ' ] -  cyclic summand of H n ( ( C P  '~+1 - V U H)k ,  Q) considered as a Q[t, t -1]-module is 
a root of unity which satisfies rl g ( v )  = rik = 1. Hence such a root is a root of uni ty of degree l. Therefore the 
left homomorphism in (2.4) is trivial. Note also that  the right homomorphism in the sequence (2.4) is induced 
by an algebraic map which is the projection map of the covering and therefore is a morphism of mixed Hodge 
structures. 

Let us now show the lemma in the case where k = l, i.e., when k I N ( V  ). To this end, let us consider the 
exact sequence (2.4) with k = N ( V ) ,  Both middle maps in (2.4) are the maps of the mixed Hodge structures 
because the deck transformation and the projection both are algebraic maps. The result follows: 

If k r l, then the homology of the k and/-fold covers are isomorphic and the multiplication by t k - 1 and 
t k - 1 

t t - 1 have the same cokernels since none of the roots of ~ is a root of t N(V) - 1. 

3. Hodge Numbers of Cyclic Branched Coverings 

In this section, we shall compare the Hodge numbers of branched and unbranched coverings and obtain 
the restriction on the weights of the mixed Hodge structure on the homotopy groups considered in the last 
section. 

P r o p o s i t i o n  3.1. Let V be a hyperzurface in C P  n+l  such that all singularities of V are isolated (n > 2): Let 
n + l  Xm be a non~ingular model of the m-fold cyclic cover of C P  branched along V U H. Then the Hodge number 
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h n,o(f~., ) i~ equal to the number of common rooLs of the C[t, t -t]-orders Ai,(.,o), v of the cyclic decomposition 
of the C[t, t - t ]  module (2.2) and t m - 1. In particular, the Hodge number h"'~ does not ezceed the sum 
over i of the numbers of common roots of t r" - I and the C[t, t - I ]  orders Ai(t) of the direct summands of the 
cyclic decomposition of Ir .(C "+1 - V) |  C = ~C[t, t-1]/(Ai(t)), 

Proof.  Let Xm be the m-fold cyclic cover of 
C P  n+t - (V U H). (3.1) 

First note that r kiln (Xrn, C) is equal to the sum over i of the numbers of common roots of Ai (t) and t'n _ 1 
(cf. Lemma 2.7). Next let us consider the branched covering 7r : X , ,  ~ C P  n+t branched over V U H 
constructed in Remark 1.2. Let E be the exceptional locus of the resolution of singularities -~m of X,~ which 
are in 7r-t(SingV). Let/~r be the union of components in ~'m over/~ and let V be the proper preimage of 
V in -~m, which we may assume is transversal to all components of E and H .  We have the following exact 
sequence: 

-+ H " + I ( E  U V U H , C )  -+ H n + 2 ( X m , E  U IS" U / t , C )  
-~ H"+2(.~m, C) --+ H " + 2 ( E  U V U ~r, C) -+ (3.2) 

The group H"+2(X,~, E U V U / t ,  C) in (3.2) is dual to H , ( X m ,  C), as follows from the excision and the 
Poincar4 duality. On the other hand, the sequence (3.2) is a sequence of mixed Hodge structures. The groups 
Hi(E O (/U f-I, C) support for i > n + 1 the Hodge structure for which 

F n + t ( g i ( E  U (/W f-I, C)) = 0. (3.3) 

To show (3.3), recall that the Hodge filtration on the cohomology of a variety E U f/" U [-I = D = U Di with 
normal crossings is obtained from the Hodge filtration on a complex AP(D [q]). The latter is the complex of 
differential p-forms on the disjoint union of q-fold intersections of components of D, and the cohomology of D 
can be interpreted as the total cohomology of this double complex (cf. [9, Sec. 4]). Because Fk(AP(D [q])) = 0 
for k >_n + 1 (n = dimDi) we obtain that  F'~+X(HP(D)) = 0. Now it follows from (3.2) and (3,3) that 
Gr~+tGrff+2( H'~+2( f f ,~ ,E  U ~" U i-I)) = Gr~+lGr~W+2( H'~+2( f(,-,, ) ) = H" + t ' t (Xm) .  Therefore the propo- 
sition is a consequence of duality. 

Propos i t ion  3.2. Let V be a hypersurface with isolated singularities, including infinity, and H be the hy- 
perplane at infinity. Then CrW(Tr~(CP "+1 - V U H))) = 0 for k r - n ,  - n  - 1. 

Proof .  The 'N(V)-fold covering fs of C P  "+1 branched over V U H is a complex space with isolated 
singularities, and therefore its cohomology groups support a pure Hodge structure in dimensions greater than 
dim-~N(V) ([26, Theorem 1.13]). 1 We are going to show that for r r k, k >_ n + 1, one has 

GrW(Hk(( r U H)) = 0, (3.4) 

where ff (resp. /-it) is the preimage of V (resp. H)  under the projection ffN(V) -+ C P n + I  of the N(V)-fold 
cover of C P  '~+t branched over V U H. If we assume the purity (3.4) of the mixed Hodge structure, then the 
sequence 

--4 Hn+I (V  U/~) -+ Hn+2(fCN(V), ~r U [I) -+ Hn+Z(XN(v))- '~ (3.5) 
implies that the relative cohomology group Hn+2(ffN(V), 1~" U/~)  supports the mixed Hodge structure of 
weights n+2  and n + l .  Hence the weights ofH'~(ffN(V) - ( V U H ) )  = Hom(H'~+2(XN(v), VUH),  Q ( - n - 1 ) )  
are n and n + 1 and the proposition follows. 

there a slightly more general situation than the one considered in [26] may occur: ffN(V) may be a V-manifold with 
isolated singularities (i.e., each singularity is a quotient of an isolated singularity by an action of a finite group). This will 
take place if one uses the model of a cyclic branched cover from Remark 1.3 rather than Remark 1.2. The proof is similar to 
that in [26, t.t3]. 
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To show (3.4), note that the restriction map Hk(f / )  -~ H k ( f  r n H) is surjective for k >_ n + 1 as a 
consequence of the isolatedaess of the singularities of f / n  H. Indeed, for k >_ n + 1 the group H k ( f  r n/t",  Z) 

is isomorphic to Z (resp. to 0) if k is even (resp. odd). To see this, let us denote by V n H a smoothing 
of the singularities of f / n  H. Let M be the union of the Mih~or fibres of all singularities of f / n /~ ' .  Then 
H k ( f / n  H) = H k ( f / n  H, Sing(f/A H)) = H k ( f / n  H , M )  and the claim, follows from the exact sequence 

I l k -1 (M)  -~ Hk( f /  n f f ,  M) ~ I l k ( f / N  [I) -~ I l k (M)  and the standard results on connectivity of the 
Milnor fibres and cohomology of nonsingular hypersurfaces. 

The surjectivity of this restriction map implies that the map I l"+2(V U II, Q) -~ I I ,+2(f / ,  Q)@ 
II,+2(/~,  Q) is injective. Now the mixed Hodge structures on both summands in the last direct sum are 
pure because n + 2 is bigger than the dimension of f / a n d  the dimension of H since both have at most isolat- 
ed singularities (cf. [26, Theorem 1.13]). Therefore we obtain the purity of I I , + 2 ( f / U / t ) ,  which proves the 
proposition. 

Let f ( z l , . . .  , z,~+l) be a polynomial having an isolated singularity at the origin. Suppose that f is a 
weighted homogeneous singularity of weights wl , . . .  , w,~+1 (with the convention used in Remark 2.6, recall 
that N g.c.d.(w t,--- , w ,+  1))- Note that a resolution of this singularity in the category of V-manifolds can 
be obtained as follows. Let F C C "+1 x CP~v/~ ~ ..... N/~,+l be the closure of the incidence correspondence 
of the action (t, ( z l , . . .  , z ,+i) )  --* I z l t N / ~ l , . . .  , Zn+lt N/w"+l ). In other words, set theoretically F is 

{(P, Q) I P E C "+1, Q E CP~,, ..... ~ + , ,  where P belongs to the closure in C "+1 of the orbit Q}. 
F is a V-manifold since CP~v/w t ..... N/~=+I is. If pl : I" -~ C "+t is the natural projection and V$ is the 

affme hypersurface in C "+1 given by f ( z t , . . .  , z ,+t ) ,  then p~- t(V$) --~ Vf is a resolution of the singularity of 
Vf at the origin. The exceptional set is the hypersurface in CP~v/~,.." ,N/~,,,+~ defined by f ( z l , .   9  9 , z,~+l) = 
0. We shall call this resolution the canonical resolution of the weighted homogeneous singularity Vf. 

A property of the exceptional set E of such a resolution, which we shall use in the next proposition, is 
hP'q=o u n l e s s p = q o r p + q = d i m E .  (3.6) 

This follows from a similar property of the Hodge numbers of weighted projective spaces and the weak Lef- 
schetz theorem in this context (cf. [4, (4.2.2)]). 

Proposi t ion 3.3. Let V be a hypersurface in C P  "+t  which has isolated singularities including infinity. 
Assume that all singularities of V are weighted homogeneous. 

(1) One has Gr~CrW_,~(Trs(Ce "+1 - V U Il)) = 0 for 2k # - n .  
(2) Let f t , ,  be a branched cyclic m-fold cover o f C P  n+l branched over V O H (i.e., fCm has only isolated 

weighted homogeneous or V-singularities). For p # q the Hodge numbers'h p'q ( Xm ) of the canonical resolution 
Xm of isolated weighted homogeneous singularities of fCm is equal to the sum over i of the numbers of common 
roots o f t  "~ - 1 and the orders $i,p,q(t) of all terms in the cyclic decomposition (2.2) of Lp,q(V). 

Proof .  Let ~r and/7[ be preimages of V and H respectively in the canonical resolution .~ of the cyclic 
branched covering .~m  9 First note that 

hP'q(E U (V U/~)) = 0, p # q, p + q # n + 1. (3.7) 

Indeed, EN(VUH) is a disjoint union of weighted homogeneous hypersurfaces of dimension n - 1 .  This implies 
that H k (E n (lY u/7/)) is generated by the classes which are restrictions of the cohomology classes of weighted 
projective spaces containing these hypersurfaces. Therefore the left homomorphism in the Mayer-Vietoris 
sequence 

-'+ H~:(E) (9 H k ( V  U . f - I ) .  H k ( E  n ( f / u  .f-I)) ~ Hk+I(E U V" U i-I) -+ Hk+I(E) (9 H k + I ( v  U H) (3.8) 

is surjective. Hence H k ( E  U ~" U/:/) supports a pure Hodge structure provided k > n + 1. Therefore (3.7) 
follows from the purity of the mixed Hodge structure on Hk(V U/~) for k > n + 1 (cf. (3.4)) and I.emma 1.6. 
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k W Now (3.7) implies that the map on GrFGr,+ 2 induced by Hn+2(.~'m, E O 1) O ~r) ._+ Hn+2(,~'m) for 
k ~ n + 2 - k is an isomorphism. Therefore part 2 follows from the exact sequence (3.2) and Lemma 2.7. The 
claim 1 on GrW,(Tr,(CP "+I - V U H)) follows from (3.7) as well. 

R emarks  3.4. 1. This proof gives an alternative argument to the one used in Proposition 3.1, albeit in 
the case where the singularities are weighted homogeneous. It also shows that the dimension h a,~ ) of the 
space of holomorphic forms on a (nonsingular) resolution of J{m is equal to the sum over i of the numbers of 
common roots of t m - 1 and the orders Ai,(,,o)(t ) of all terms of the cyclic decomposition (2.2) of L , , o ( V ) .  
Indeed, it suffices to note that the singularities of Xm are all rational. Hence, the isomorphism of ~r and 

the direct image of ~)~,,, (cf. [24. Lemma 1.1t_]~, combined with the Leray spectral sequence ap_plied to the 

resolution map, gives h"'~ = h " ' ~  ), which implies the claim. 
2. In the case n = 1, this proof actually works without any assumptions on the singularities of a branch 

locus. Indeed, the vanishing of the Hodge numbers (which restricted our proof to the weighted homogeneous 
case (cf. (3.7))) is valid for n = 1, s~nce the cohomology group H2(E U (V U/~r)) supports a pure Hodge 
structure of weight 2 as follows from (3.8) for k = 1 since dim(Z U V" U H) = 0. 

4. The  Pos i t ion  of  Singulari t ies  of Branch ing  Loci 
and Hodge  Numbers  of  Cyclic Coverings 

In this section, we shall calculate the Hodge number h" '~ of a cyclic covering, branched over the union of 
a hypersurface with isolated singularities and the hyperplane at infinity, in terms of the cohomology of ideals 
of quaziadjunction, introduced in Sec. 1. As a part of the proof we show the regularity of certain linear systems 
of hypersurfaces having base points at the singularities of the branching locus (cf. Corollary 4.2). This allows 
us, in some cases, to detect the nontriviMity of the modules L,,0 from Sec. 2 and hence the nonvanishing of 
7r.(CP "+t - V U H). 

Theorem 4.1. Let fgm be a Z-equivariant resolution of the m-fold cyclic covering of C P  "+1 branched over a 
hypersurface of degree d with isolated singularities. Let ~ be a root of unity of degree m. Let H"'~ f(m )r be the 
eigenspace of the linear map induced by the deck transformation acting on the space of holomorphic n-forms 
on f(m corresponding to the eigenvalue ~. Then dim H"'~162 equal to sr = ~ dim H t ( C P  "+ t ,  A~(d - 

t g  

n - 2 - tc  9 d)), where the summation is over all constants of quasiadjunction of all singularities such that 
exp(2rritr = ( and t: . m 6 Z. 

Proof.  We shall work with the model of Xm which is the hypersurface in the weighted projective space 
C P ~  +2 where the weights are w = (1, m , . . .  , m, d). The weight of z0 is 1, the weight of zn+2 is d, and the 
weight of each of the variables z , , . . .  , Zn+t is m (cf. Remark 1.3). The degree of Xm is equal to D = d- m. 
Let Q = d + (n + I)- m + I, and so in these notations we have f~.+t = Ox,~(D - Q). Xm 

t-~,p n+ t Step 1. Let us consider the ideal sheaf Adj (Xm) ( - k  d) sections of which over an open set in ----w 
are the sections of Adj(Xm) having the order of vanishing aloxig the hyperplane z,+2 = 0 equal at least to k. 
The multiplication of z,+2 by a fixed primitive root of unity (say exp(2~ri/d)) defines the action of the group 

dzl A . . .  A dz ,+t  
Z/d .  Z on the sheaf Adj(Xm)(-k)  because the condition (1.4~ in the case of Xm and r = r r t - -1  

Zn+2 
is clearly invariant under this action. We claim that there is an equivariant isomorphism: H"  (Xm, Ok~  ) = 
Ht(Adj(Xm)(D - Q)). 

Indeed, 

H ' ( A d j ( X m ) ( D - Q - k ' d ) ) = H '  ( f * ( f ~ + ' ) |  = Ht (fY'-+l\ x~  | f* (Ox ,~( -k  -d))) . (4.1) 
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This is a result of the degeneration of  the Leray spectral sequence: 

Hp | ox,(-k, d)) H , + ,  +'  )) xm |  d) . 

The degeneration in turn is a consequence of the Grauert-Riemenschneider  vanishing theorem: R q f .  ( f i x  +l )  = 

by the Serre duality. Clearly 
all isomorphisms are equivariant. This proves our claim. 

Step 2. One has the following vanishing: H t ( A d j ( X m ) ( D  - Q - k. d)) = 0 for l _> 2 for any k and if I = 1 
for k sufficiently large. 

Indeed, using (4.1) we need to show that  H i ( f * ( O ( k   9 d)) = 0 for any k and 1 _< i < (n - 1) as well 
as for i = n and k sufficiently large. To obtain the first part ,  note that f . (Ofr ) = O x , ,  (normality of 
X,.,,) and Rqf . (Oyr  = 0 for q _< (n - 1) (a consequence of the fact that X , ,  is Cohen-Macauley) .  At the 
same time, the Leray spectral  sequence HP( Rq f . (OR, , ,  )) :=). HP+q(OIr ) implies that  H i ( f  *(OR, ,  (k :d)) = 
H~(Oxd(k   9 d)) for i < (n - 1). The lat ter  cohomology groups are trivial, as follows from the cohomology 
sequence corresponding to 0 --+ O c p ~ + ~ ( , D  + k d) -~ Ocp~+2(k  ) --+ Ox,~ -'+ O. The  second par t  follows 
from the Kawamata-Viehweg vanishing theorem because f*  (Ox,,, (k.  m)) | f~x +t is big and nef for a large k. 

Step 3. We will work with the cohomology sequence corresponding to the exact sequence of sheaves: 

0 ~ Adjx,~(D - O -  k - d -  d) -~ A d j x , . ( D -  Q -  k - d )  
4-4 Adjx ,~(D - Q - k-  d) | Ocp~+2 -+ 0 (4.2) (1,,,, ..... ,,,) 

where CP~I+m2 ' is the hyperplane given by Zn+2 = 0. Note that the map ( .... -,) 

H ~  H ~  d ) ~ O c p [ l +  ~ ... . . .  ) )  

is surjective. Indeed, if r  , z, ,+l) is a form such that  there exist ~1 (z l , . . .  , z i , . . .  , zn+l )  for which 
~b(zl,... , z i , . . .  , z,,+l,Z,,+~_) = r  , z i , . . .  , z , ,§ q- z~+2  9 r  : . ,  z i , . . .  , zn+x) belongs to the 
adjoint ideal of X , ,  in a neighborhood of a point p E X,,, n C P ~ , . . .  ,,,) (i.e., it satisfies condition (1.4)), 
then r belongs to the adjoint ideal of Xm in this neighborhood ofp.  Geometrically, this means that  the cone 
over a set of zeros of a section from H~ - Q - k .  d) | O c p [ + ~  ...... ) is a set of zeroes of a global 

section of the adjoint ideal of Xm.  This is implied by the inequality (1.5) describing the adjoint  ideal since 
mult(f*~b) <_ mul t ( f*r  as follows from a local calculation. The fact that r is an adjoint  ideal of X,n in 
the case where a singularity of the branching locus is weighted homogeneous follows immedia te ly  from the 
description of the adjoint ideal in the case in Example 1.9. 

Hence, using Step 2 we obtain  

0 -~ HI (Ad jx , , , (D  - Q - k .  d - d)) -~ H I ( A d j x ~ ( D  - Q - k .  d)) 

(  9 ) - + 0 .  (4.3) -+ H 1 Adjx .~(D - Q - k d) | Ocp[,+~ ..... ) 

Step 4..We are going to express the cohomology of the sheaf Adjx.~(D - Q - k-  d) | Ocp~,+~ ... . . .  ) on 

C P  "+1 as the cohomology of a sheaf of ideals of quasiadjunction on C P  n+l .  Secondly, using (4.3) we (L,m,... ,m) 
shall express dim H~(Adjx , ,  (D - Q)) via dimensions of the cohomology of the sheafs of ideals of quasiad- 
junction on C P  n+l.  

Before we proceed, let us define, for a positive integer k, the integer #m,d,n(k)  as the solution of the 
equation 

tJ 4" I.trn,d,n(k)" rn = d .  m - (n + 1).  m - d - 1 - k- d(= D - Q - k- d), (4.4) 
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where 0 _< v < m (i.e., as the result of division of the right-hand side of (4.4) by m with remainder u). Note 
that  

d . m - ( n +  l ) . r n - d -  1 - k . d =  D - Q - k . d  
(el. the remark before Step 1). Let us also order the constants of quasiadjunction in an increasing fashion: 
. . .  tr i > t ~ i - - 1  . . . .  

The weighted projective space C P n t ~ ,  ,rn Can be identified with C P  n+l  (cf. [4, 1.3.1]), We claim that  { . . .  } 
under this identification: 

where 

Adjx.~(D - O - k -d )  | O o p , + ,  = A,,k.,,,(it,r,,a,,,(k)), 
{ l ,m, . . .  ,m}  

(4.5) 

~k,,~ = { minx  E OIk < [~ 'm]}  (4.6) 

Here, as above, 19 is the set of constants of quasiadjunction of singularities of the branching locus. 
Both sheaves in (4.5) are twisted sheaves of ideals quotients by which the corresponding structure sheaves 

have 0-dimensional support. Moreover, the twisting sheaves are invertible and correspond to each other under 
the aforementioned identification of C P  "+1 and C P  n+l  (compare the dimensions of the spaces of (1,,- ..... m} 
global sections). The following identity follows from repeated use of (4.3) and (4.5): 

dimHl(Adjx , , , (D - O)) = Eu,is(m,a,n,#m,d,-(k),  ~i)" dimH'(A, , , ( i tm,a, ,(k))) .  (4.7) 

Here the summation is over all integers i and # which are solutions of (4.4) for those k for which the dimension 
of the cohomology group in (4.7) is nonzero (in particular this sum is finite). The constant s(m, d, n, #, '~i) in 
(4.7) is the number of solutions of Eq. (4.4) (for which 0 < v < m) which also satisfy 

m] ___ k < (4.8) 

Clearly it is enough to check (4.5) locally. We have zt~r E P(U, Adjx,~(D - Q - k .  d)) (U an open set in 
C ,~+2 F C ,~+1  9  9 m]. This takes place iff [~k.,~" m] > [x~- m], where P,,, , r  E (U, P((~,m ..... m)}) f f a n d ~  > [xd 
t~k.,~ is defined in (4.6) and therefore r E .A~k.,, ,. 

Moreover, the sections in H ~ ( O c p ~ + = ( D - Q - k . d ) )  cut on the zerolocus ofz,,+2 E H~ 
the hypersurfaces F,,,t, ..... t , (zo,z l , . . .  , z ,+l)  for which the defining equation has degree u in z0 and g in 
z l , . . .  , zn+x, where tt and u satisfy the relation (4.4). The degree of the projective closure in the s tandard 
C P  "+ t  of the portion of such a hypersurface F,,,u ..... u in. C " + t  C CP~,  +1 given by z0 # 0 is the maximal/~ 
satisfying (4.4). The maximal g occurs if 0 < u < m. The local equations of these hypersurfaces are such that  
z t'- r E Adj(z~'+2 = f ( z l , . . . ,  z ,+ l ) ) ,  i.e., they belong to the ideal .A,q, where ni defined by the inequality 
(4.6). Therefore, repeated use of the sequence (4.3) expresses dim H 1 (Adjx,~ (D - Q)) as the sum of terms of 
the form dimHl(.A,~(it)), where It and x are determined from (4.4) and (4.6). Hence our claim follows. 

Step 5. We have the following: if m is sufficiently large, then s(rn, d, n, #(k), ~) can be arbitrarily large 
unless # = d ,  (n + 2) - ~i  9 d. In this case, s(m, d, n, #, to) is zero unless ~  9 rn is an integer, and then 
s(m,d ,n ,# ,~)  = 1. 

Indeed, the solutions to the inequality 0 _< u < m pictured in the (m, k)-plane represent the angle with 

n + 2 + # and I n + 1 + It The solutions of the inequality (4.8) are solutions slopes of the sides equal to 1 d d " 
of the inequality xi -1   9 m < k < xi  9 m - 1. The latter are represented by the angle with slopes ~i-1  and xi. 
If m is sufficiently large, then the number of points in both angles for fixed m is either 0, infinitely large, or 

n + 2 + #  
equal to 1 (if two angles have a common side). The last possibility takes place if and only if d = x, 

i.e., # = d - (n + 2) - ~- d. The existence of the solution implies that  x- m is an integer. 
Step 6. Since, according to Proposition 3.1, the sequence of integers h" ( X ~ ) , . . . ,  hn (X,n), .... is bounded, 

we obtain that  the only nonzero terms in (4.7) are those for which It = d - (n + 2) - ~.  d provided x~- m are 
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integers for all i. In this case we obtain the following expression for the Hodge number  in question: 

h n ' ~  = E d imHl (c4 , , (d  - (n + 2) - ~ - d )  (4.9) 

provided m is sufficiently large. 
Moreover, we see that  dim H~ (.A,cl (p)) = 0 if s (m,  d, n, p, xi) can be  arbitrarily large. Therefore we have: 

Corollary 4.2. I f  F is a hypersurface with isolated singularities in C P  n+t ,  then for  k < ted one has 
H t ( A ~ ( d  - n - 2 - k))  = O. 

Step 7. Now in order to identify the summands in (4.9) as the dimensions of the eigenspaces of  the au- 
tomorphism induced by the deck transformation, let us calculate the Hodge number  h n (Xa )  by applying the 
sequence (4.3) for rn = d in the s tandard projective space, using the fact that Xd C C P  "+2 is a hypersur- 
face with isolated singularities corresponding to singularities of the branching locus V. Note that  any element 
in F(U, Adjxa(d  - (n + 2) - k)) can be represented as a combination of zt~+2  9 a t ( . . .  , z i , . . .  ) (i ~ n + 2) 
with k _< l < d using the defining equation of Xa to lower degree in z,+2.  I n  particular,  this implies that  
the eigenvalues of the action on H n ( X d )  induced by multiphcation of zn+2 by exp(2  9 ~r. i /d )  have the form 
exp(2  9 rr  9 i  9 s /d )  with d > s _> k. Therefore, if dt is the dimension of the eigenspace corresponding to the 
eigenvalue exp(2  9 7r  9 i  9 l /d) ,  then we have the inequality 

dt > E d i m H I ( A " ( d  - (n + 2) - ~:-d). (4.10) 
~>tl,t 

However, the sum of the terms on the left in (4.10) is equal to the sum of the terms on the right. Hence, dt = 0 
for l i d  # ~ for x E O and de = E dimHX( CPn+~ ,  A~(d - (n + 2) - ~;. d), where the summat ion  is over all 

~; for which ( = exp(27ri~). The eigenspaces in H'~(-~m)r are independent of m (cf. Sec. 3)' which concludes 
the proof of the theorem. 

T h e o r e m  4.3. The module L~,o is isomorphic to 

r 
where sr is defined in Theorem 4.1. 

P r o o f .  This follows immediately from the theorem above and Proposition 3.1. 

Corollary 4.4. Let V be a hypersurface of degree d in C P  n+t  and ~ be the smallest among the constants of 
quasiadjunction of all singularities corresponding to 1. Then the rank of Ln,o (and hence of 7r , (CP  "+x - V t0 
H)  ) is not smaller than the difference between the actual and expected dimensions of hypersurfaces of degree 
d - n - 2 - ~ . d  passing through the singularities o[ V which have x as a constant quasiadjunction corresponding 
to 1. 

P r o o f .  This follows from the theorem above and Example 1.9. 

Example 4.5. 
n+t 
I-I qi 

and pi ----- j= l  
qi 

Let f ,  denote a homogeneous form of degree s of n + 2 variables. Let q l . . . .  , q -+  1 be integers 

~ .  The hypersurface 

aqn+l = 0 (4.11) 
for generic forms [q~ is a hypersurface of degree Q = I I  qi with isolated singularities which is a collection of 
points in C P  "+1 forming a complete intersection of hypersurfaces fr,1 . . . . .  fp ,+l  = O. Each singulari- 

-q~+l = O, and the ty is locally isomorphic to a weighted homogeneous singularity of the type z ql + . . .  + ~,,+1 
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n+l ) 
constant of quasiadjunction corresponding to 1 is 1 - ~ ~ (el. Example 1.9). According to the gener- 

i = 1  
alized Cayley-Bacharach theorem ([23, p. 120]), the difference between the actual and expected dimensions 

- 2 - (1-  aving as  ocus aset of points fo= a of hypersurfaces of degree Q 
complete intersection of hypersurfaces fl,1 = 0, . . .  , fp,+t = 0 equals 1. Hence rk L,,o > 1 for this hypersur- 
face, In fact, in [16] it was shown that 7r, @ Q of the complement to this hypersurface is isomorphic to the 

- -  q n + l  middle-dimensional homology of the Milnor fibre of a singular point of the hypersurface z~ 1 + . . .  ~ x , +  t = 0. 

In Particular' it is a cyclic Q[t' t-1]-m~ and has ~ equal t~ t<i<n+tI'I ( t -  l<Ji<qi - l r I  w ~ )  (cf. [20]). 

Example 4.6. The family of hypersurfaces (4.11) cart be extended to the family 
r - 0, fg:.l +""  + J P n . + l  "[ - -  

Ichere I is a positive integer. A similar use of the Cayley-Bacharach theorem as in the previous example (the 
fingularities again positioned at the complete intersection of hypersurfaces f~. l)  shows the nonvanishing of 
r ,  | C in this case. 
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