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Abstract. In this note we show how the cohomology of a twisted deRham complex on a
complement to certain hypersurfaces in Cn is related to the invariant of hypersurfaces in
Cn+1 which we studied in [L5],[L6]. This invariant is the homotopy group of the complement
having a dimension depending on the dimension of singular locus of the hypersurface. The
first part contains the necessary definitions, discussion and examples from these papers.

1.Introduction

Let P (z1, ..., zn+1) be a polynomial and the hypersurface D ⊂ Cn+1 be its set of zeros.
Let O(∗D) be the ring of rational functions holomorphic on Cn+1 − D and let Ωi(∗D)
be the O(∗D)-module of rational i-forms holomorphic in Cn+1 − D. The corresponding
twisted deRham complex is the complex (Ω∗(∗D),∇κ) (κ ∈ R) with the differential given
by:

∇κ(ω) = dω + κ
dP

P
∧ ω (1.1)

(Ω∗(∗D),∇κ) (κ ∈ R) was an object of intense scrutiny (as well as in a more gen-
eral setting: in analytic spaces and with coefficients in bundles of an arbitrary rank, cf.
[D1],[K],[KN] selecting only references relevant to what follows). For example in [KN] the
conditions when the cohomologies of this complex vanish were worked out.

Here we shall see that in the case when P (z1, ..., zn+1) is irreducible and n ≥ 2, certain
cohomology group of the twisted deRham complex can be expressed in terms of the homo-
topy group of πn(Cn+1 −D). The latter in turn depends on the local type of singularities
of D and their position in the sense which will be described below. In the remaining case
n = 1, the same arguments reestablish the relationship between the cohomology of the
twisted deRham complex and the Alexander module of D which was described already in
[K]. The properties of the Alexander polynomials of plane curves (cf. [L1],[L2],[L3],[Di2])
are closely related to the classical work of Zariski (cf. [Z]). Actually in the case when D has
non-isolated singularities a simple argument, using Lefschetz’s hyperplane section theorem
(cf. [GM]), shows that one still can express, in a certain sense the first, non-trivial deRham
cohomology group in terms of appropriate homotopy group. This homotopy group can be
viewed as a high dimensional generalization of the Alexander polynomial of plane algebraic
curves (cf. [L1],[L2],[D2]).
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2. Homotopy groups of the complements

Let us look at the homotopy structure of the complement to hypersurfaces in Cn+1.
There are two general points one should make right away:

1.The complement is an n-dimensional affine algebraic manifold and hence has the
homotopy type of CW-complex of (real) dimension n (cf. [Mi1]).

2. The homology is given as follows:

Hi(C
n+1 −D,Z) =

⎧

⎪

⎨

⎪

⎩

Z (i = 1)
0 (i ≠ 0, 1, n, n+ 1)

Hn+1(D̄, D̄ ∩H,Z) (i = n)
ZN(P ) i = n+ 1

(2.1)

where D̄ is the projective closure of D in CPn+1, A relation between the integer N(P )
and rkHn+1(D̄, D̄∩H) can be worked out easily by finding the Euler characteristic of the
hypersurface. The latter in turn can be found using expressions for the Euler characteristic
of non-singular hypersurfaces (cf. [H]) and the Milnor numbers of the singularities using
additivity of the Euler characteristic. The proof of (2.1) can be obtained (cf. [L5]) using
exact homology sequences, excision and Poincare duality, combined with Lefschetz theorem
on hyperplane sections (cf. [GM]).

One sees from (2.1) that further simplification of the homology of the complement with
rational coefficients (i.e. Hn(Cn+1 −D,Q)) occurs if the following condition takes place:

Hn+1(D̄, D̄ ∩H,Q) = 0 (*)

The condition (∗) is satisfied in a special case when both D̄ and D̄∩H are Q-manifolds
i.e. satisfy the Poincare duality with rational coefficients. This in turn will take place if
links of all singularities of D are Q-manifolds. The latter property of a singularity occurs
if and only if the characteristic polynomial of the monodromy of a singularity does not
vanish at 1. For example, the singularity (2.8) below has as its link a Q-sphere if the
exponents pi are relatively prime to each other.

A consequence from (2.1) is that, at least when (*) is satisfied, the homologies are
insensitive to any data about singularities besides their local type.

On the other hand, in order to describe the homotopy type of Cn+1 − D, as we shall
see below, one does need additional global geometric information about singularities of D
.

Let us first consider two basic examples.
1. Let P (z1, .., zn+1) be such that the corresponding hypersurface is non-singular and

transversal to the hyperplane at infinity. Then the complement has the homotopy type of
the wedge of spheres:

Cn+1 −D = S1 ∨ Sn+1 ∨ ... ∨ Sn+1 (2.2)

In particular the universal cover is a CW-complex homotopy equivalent to an infinite wedge
of spheres Sn+1 and the hopmotopy groups πi(Cn+1 −D) are zeros for 2 ≤ i < n .

2. Let P (z1, .., zn+1) be a weighted homogeneous polynomial which has an isolated
singularity at the origin. Then (z1, .., zn+1) → P (z1, .., zn+1) is a locally trivial fibration
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Cn+1−D → C∗ which has an affine hypersurface homotopy equivalent to the Milnor fibre
of the singularity of P as the fibre. The latter has the homotopy type of a wedge of Sn

(whose number is equal to the Milnor number of the singularity). Hence the universal
cover of Cn+1 −D is homotopy equivalent to a finite wedge of Sn’s. Note in passing that
the last example can be used to get geometric picture of decomposition (2.2). Let V 2

t be
the hypersurface given by z21 + .. + z2n+1 = t and let us compare the complements to V 2

0

and V 2
t . The Milnor number of the singularity V 2

0 is equal to 1 and the complement to V0

is S1 × Sn. On the other hand while one degenerates V 2
t into V 2

0 the vanishing cycles on
V 2
t (i.e. Sn) get collapsed into a point (singularity of V 2

0 ) as does a disk in Cn+1 which
bounds this vanishing cycle (i.e. a relative vanishing cycle). Hence the complement to
V 2
t is the complement to V 2

0 i.e. S1 × Sn with attached disk Dn+1 along a fibre of the
projection: S1 × Sn → S1. This complex is clearly equivalent to S1 ∨ Sn+1.

One of the consequences of calculations of example 1 is the following:

Proposition 2.1 (cf. [L5] lemma 1.5). Let us assume that

1. D is an irreducible hypersurface with the dimension of singular locus equal to s.
2. The hyperplane at infinity z0 = 0 is transversal to all strata of a stratification ∆ of

D in which all strata of ∆ are non singular.

Then

πi(C
n+1 −D) =

{

Z (i = 1)
0 (1 < i < s− 1)

(2.3)

This follows from the Lefschetz theorem on hyperplane sections (cf. [GM]) applied
to a section of D by a generic subspace of codimension s. The Lefshetz theorem also
reduces the calculation of the homotopy group πn−s(Cn+1 −D) to the case when D has
only isolated singularities. In any case in the situation described in the lemma we call
πn−s(Cn+1 −D) the first non-trivial homotopy group of the complement (despite the fact
that it can be trivial as in the case of nonsingular it is 0 according to example 1 and despite
that π1(Cn+1 −D) = Z).

Another interpretation of this group comes from the isomorphism:

Hn( ˜Cn+1 −D,Z) = πn(C
n+1 −D) (2.4)

where ˜Cn+1 −D is the universal cover of Cn+1 − D. The isomorphism (2.4) is a conse-
quence of (2.3) and Hurewicz’s theorem ([W]).

The group πn(Cn+1−D) (if the projective closure of D is transversal to the hyperplane
at infinity ) also is isomorphic to Hn(MP̄ ,Z) where MP̄ is the Milnor fibre of “homoge-
nization” P̄ of P (cf. [L5], Cor. 4.9). The polynomial P̄ has a non-isolated singularity
at the origin and the dependence on the position of singularities discussed here is the one
mentioned in [St1] p.164.

It will be convenient to use Q as the field of coefficients i.e. concentrate on πn(Cn+1 −
D) ⊗Q. The homology group Hn( ˜Cn+1 −D,Q) has the structure of a module over the
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group ring of the group of deck transformations of the universal cover i.e. over the group
ring of π1(Cn+1 −D) = Z. This group ring is just the ring of finite Laurent polynomials:
Λ = Q[t, t−1]. This structure of Λ-module on πn(Cn+1 −D) can also be described as the
one which comes from the Whitehead product: πi × πj → πi+j−1.

The interpretation (2.4) of the homotopy groups shows that it is a high-dimensional
analog of the Alexander module, which also can be defined as the homology of an infi-
nite cyclic cover of the complement to a plane curve. The relation of the latter and the
fundamental group of the complement to a curve is the following:

H1( ˜C2 −D,Z) = π′

1/π
′′

1 (2.5)

where ′ and ′′ denotes the first and the second commutator of a group.
(2.4) also suggests that the vanishing of πn(Cn+1 − D) is a sort of an analog of com-

mutativity of the fundamental group of the complement to a plane curve or at least the
vanishing of its Alexander polynomial. There is a number of results in the theory of plane
singular curves which assure commutativity of the fundamental group (cf. [D2],[F],[N]).
For example, if a curve has nodes as the only singularities (i.e. near each singular point the
curve looks like as a transversal intersection of two smooth transversal branches) then the
fundamental group of the complement is commutative. A node of course is a singularity
of generic projections of curves into planes. In the case of surfaces, generic projections in
CP3 have non-isolated singularities along a double curve near all but finitely many points
of which the image of the generic projection looks like an intersection of two transversal
hypersurfaces. These finitely many exceptions are either triple points or pinch points. The
above mentioned theorem on commutativity implies that if π : V → CP3 is a generic
projection then π1(CP 3 − V ) = Z/degV · Z (the latter is the fundamental group of the
complement to any irreducible nodal curve of degree degV ). The next group, though one
could expect it to be non trivial, actually is always trivial at least if one disregards the
torsion.

Theorem 2.2 (cf. [L7]) Let π : V → CP 3 be a generic projection, D = π(V ) and
Cn+1 ⊂ CP 3 be the complement to a generic plane . Then

π2(C
n+1 −D ∩Cn+1)⊗Q = 0 (2.6)

Another vanishing theorem can be obtained by extending to higher dimensions the
ideas in the proof of Nori’s theorem (cf. [N]) which gives the strongest condition for the
commutativity of the fundamental groups of the complements to divisors on algebraic
surfaces.

Theorem 2.3 (cf. [L5]) Let D be a hypersurface in Cn+1 ⊂ CPn+1 with isolated
singularities and transversal to the hyperplane at infinity. Let us assume the condition
(*) . Suppose that φ : W → CPn+1 is an embedded resolution of the singularities of
D ⊂ Cn+1 i.e. a birational morphism such that the union of the strict preimage D′ of D
and the exceptional set of φ form a divisor in W with normal crossings. Assume that D′

is ample on W . Then πn(Cn+1 −D)⊗Q = 0.
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It would be interesting to find some explicit conditions which will assure ampleness
of the strict transform which is sufficient to force vanishing of the homotopy group in
question.

The study of the structure of the first non-trivial homotopy group is based on the
following observation: if all singularities of D are isolated then πn(Cn+1 − D) ⊗ Q is a
Λ-torsion module (cf. [L5]). In particular

Hn( ˜Cn+1 −D,Q) = ⊕Λ/(λi(t)) (2.7)

where λi(t) are Laurent polynomials defined up to a unit of Λ. Let ∆D(t) = Πλi be the

Λ-order of Hn( ˜Cn+1 −D,Q). The dependence of ∆D(t) on the local type of singularities
is given by the following:

Divisibility Theorem (2.4) Let Sing(D) be the collection of singular points of the
hypersurface D. For any p ∈ Sing(D) let ∆D,p be the characteristic polynomial of the
monodromy of Milnor fibration of this singularity ([Mi2]). Then

1. ∆D(t) divides the product
∏

p∈Sing(D) ∆D,p.
2.If a projective closure of D transversal to the hyperplane at infinity then all roots of

∆D are the roots of unity of degree d = degD.

A typical consequence of this theorem is a vanishing of πn(Cn+1 − D) ⊗Q if none of
the roots of ∆D,p is a root of unity of degree d = deg(D). For example this is the case
when all singularities of D locally look like

xp1

1 + ...x
pn+1

n+1 = 0 (2.8)

(i.e. near p a coordinate system can be selected so that D is given by this equation)
and g.c.d.(pi, d) = 1 for any i (one can easily formulate even stronger conditions which
follow from theorem 2.4). Indeed the characteristic polynomial of singularity (2.8) is
Π(t − ξj1 · · · ξjn+1

) where ξji(i = 1, ..., n + 1) runs through all roots of unity of degree
pi different from 1.

Now let us consider the coverings associated with D. Since π1(Cn+1 −D) = Z by (2.3)
for any positive integer k here is a unique unbranched covering of Cn+1 −D with Galois

group Z/kZ. Let us denote it ( ˜Cn+1 −D)k. Its homology can be calculated as follows:

Lemma 2.5 (cf. [L6]). The dimension of the Q-space Hn(( ˜Cn+1 −D)k,Q) is equal to
the sum over i of the numbers of common root of tk − 1 and the polynomials λi(t) from
the cyclic decomposition (2.7).

3. Mixed Hodge Structures on the Homotopy groups

Projective models of the cyclic covers ˜(Cn+1 −D)k can be considered as coverings of
CPn+1 with the branching locus consisting of the projective closure of D and possibly the
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hyperplane at infinity (this ramification takes place unless k is a divisor of the degree of
the hypersurface D). The Hodge number hn,0(Xk) of a smooth model Xk of a projctive

closure of ˜(Cn+1 −D)k is a birational invariant (cf.[KS]) and hence depends only on D
and the degree of the covering. Other birationally invariant Hodge numbers hi,0(Xk) of
smooth models of cyclic coverings are zeros if 0 < i < n and hn+1,0(Xk) can be calculated
using only the local data about the singularities and hn,0. It turns out that one can relate
hn,0(Xk) to πn(Cn+1−D). The relationship can be described in terms of the mixed Hodge
structure on πn(Cn+1−D)⊗C. A mixed Hodge structure was put on homotopy groups of
a quasiprojective variety in [Mo] but only in the case when the space in nilpotent which is
rarely the case for Cn+1 −D. The idea of the construction of this mixed Hodge structure
comes from the fact that the action of the generator t of π1(Cn+1−D) satisfies td = 1 and

in particular πn(Cn+1−D) can be identified with Hn( ˜(Cn+1 −D)d) with the action of t on
the latter being induced by the deck transformation. Now the mixed Hodge structure on
πn is defined to be the one corresponding to Deligne’s canonical mixed Hodge structure on
the homology of an open algebraic manifold (cf. [D2]). Note that if one does not assume
transversality of the projective closure of D to the hyperplane at infinity the situation gets
a bit more involved (i.e. one constructs the Mixed Hodge structure only on the part of πn
cf. [L6] sect. 2).

One has the following:

Lemma 3.1 The length of the weight filtration on πn(Cn+1 − D) ⊗ C is at most
2. More precisely if D has only isolated singularities and satisfies condition (*) then:
GrWk (πn(Cn+1 −D)) = 0 for k ≠ −n,−n− 1.

In the situation of example 2 from section 1 (the complement to the set of zeros of
a weighted homogeneous polynomial) the mixed Hodge structure via identification of πn
with the homology of the Milnor fibre gets identified with the Steenbrink’s mixed Hodge
structure of (co)homology of the Milnor fibre (cf. [St3]). In this case the statement of the
lemma is proven in [St2].

This mixed Hodge structure can be used to define:

Lp,q(D) = Gr−p
F GrW−p−q (3.1)

Lp,q is a C[t, t−1]-submodule of πn(Cn+1 −D)⊗C and hence has a cyclic decomposition:

Lp,q = ⊕C[t, t−1]/(λi,(p,q)) (3.2)

The C[t, t−1]-orders of this module ∆p,q = Πiλi,(p,q)(t) give a factorization of the order
of πn(Cn+1 − D) ⊗ C and one has ∆D(t) = Πp+q=n,n+1∆p,q. In the case of curves this
construction of the Mixed Hodge structure leads to the Mixed Hodge structure on π′

1/π
′′
1⊗C

which one can show is pure (cf. [L2] remark 2.5). One obtains the factorization of the
Alexander polynomial of a curve: ∆(t) = ∆1,0(t) ·∆0,1(t).

Now one can express hn,0(Xk) in terms of decomposition (3.2) as follows:
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Proposition 3.2 The Hodge number hn,0(Xk) of a smooth model of a projective model

of cyclic cover ˜(Cn+1 −D)k is equal to the sum of the numbers of common roots of tk − 1
and polynomials λi,(n,0) in decomposition (3.2).

The invariant hn,0(Xk) provides the link between the homotopy group and the projective
geometry of the set of singularities of D. Namely this Hodge number can be related to the
dimensions of certain linear systems of hypersurfaces defined by the singular points.

To describe how this comes about let us start by description of the ideals defining
these linear systems. To this end we shall define the sequence of ideals in the local ring
of a points in Cn+1 associated with a germ of a function f(z1, .., zn+1) which has an
isolated singularity at this point (which we assume is the origin). The construction is
based on the theory of adjoints (cf. [BL],[MT]). For a germ G of an isolated hypersurface
singularity g(z1, .., zN) = 0 at the origin one can define the adjunction ideal as the stalk
at the origin of the sheaf π∗(ΩG̃). Here π : G̃ → G is a resolution of the singularity
of G. This is indeed an ideal in the local ring of the origin and is independent of the
chosen resolution. Let us denote it Ag. Now the singularity of f defines the sequence
of singularities gm(z1, ....zn+2) = zmn+2 + f(z1, .., zn+1) (cyclic branched covers of Cn+1

branched over f = 0). We have the following:

Lemma 3.3. Let φ(z1, .., zn+1) be a germ of a holomorphic function at the origin. Then
there exist a rational number κφ such that:

[κm ·m] = min{l|zln+2 · φ ∈ Agm} (3.3)

The collection of rational numbers κφ (we call them the constants of quasiadjunction)
is a finite set Θf . It can be explicitly determined from the collection of multiplicities of
exceptional divisors in a resolution of the germ G (cf.[L6]). The number of constants of
quasiadjunction cardΘf does not exceed the Milnor number of the singularity g.

If g(z1, .., zn+1) is a weighted homogeneous the description of the adjoint ideals in [MT]
allows one to determine the constants of quasiadjunction explicitly. Indeed each monomial
zi11 · · · zin+2

n+2 defines the point (i1, ..., in+2) in Rn+2. A monomial zi11 · · · zin+2

n+2 belongs to the
adjoint ideal of a weighted homogeneous polynomial if and only if (i1 + 1, ..., in+2 + 1) is
strictly above the hyperplane defined by the monomials sum of which is g (cf. [MT]). This
description of the adjoint ideal makes the lemma 3.3 obvious in this case. One can readily
see that the constant of quasiadjunction of the singularity zq11 + ....z

qn+1

n+1 = 0 corresponding

to monomial zi11 · · · zin+2

n+2 is equal to max(1− Σk
ik+1

qk
, 0).

The constants of quasiadjunction of f(z1, .., zn+1) now define the filtration of the local
ring O0,Cn+1 (the ideals of quasiadjunction). We put Af,κ,0 = {φ ∈ O0,Cn+1 |κ = minλ ∈
Θf , κφ < λ ∈ Θ}. Particularly noteworthy is the ideal of the constant of quasiadjunction
corresponding to the monomial 1. In this case the ideal corresponding to this constant
quasiadjunction is the maximal ideal i.e. a germ φ belongs to this ideal of quasiadjunction
iff the hypersurface given by φ = 0 contains the singular point of g i.e. the origin. In
general the condition on φ of belonging to an ideal of quasiadjunction is an interesting
geometric condition on the germ of hypersurface φ = 0.
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Using the ideals of quasiadjunction of singular points one can attach to the hypersurface
D the ideals sheafs on CPn+1 (which by an abuse of notation will denoted Aκ) consisting
of germs of holomorphic functions on CPn+1 which belong to the ideal of quasiadjunction
corresponding to the constant quasiadjunction κ at each point ofCPn+1 which is a singular
point of the hypersurface D. With all this set we have the following:

Theorem 3.4 Let X̃m be a Zm-equivariant resolution of a smooth model of a projective

closure of ( ˜Cn+1 −D)m. Let ζ be a root of unity of degree m and d is the degree of D. Let
Hn,0(X̃m)ζ be the eigenspace of the linear map induced by the deck transformation acting
on the space of holomorphic n-forms on X̃m corresponding to the eigenvalue ζ. Then

dimHn,0(X̃m)ζ = ΣκdimH1(CPn+1,Aκ(d− n− 2− κ · d)) (3.4)

where the summation is over all constants of quasiadjunction of all singularities such that
exp(2πiκ) = ζ and κ ·m ∈ Z.

This theorem in fact gives a complete calculation of the module Ln,0 which is part
of the C[t, t−1] module πn(Cn+1 − D). To make this theorem useful for the study of
the latter one needs to calculate dimH1(CPn+1,Aκ(d − n − 2 − κ · d)). This of course
is contingent on exact information on the local ideals and information on the geometry
of positions of singularities of D. However in the case of Aκ1

where κ1 is the constant
of quasiadjunction of the monomial 1 this sheaf is just the ideal sheaf of the (reduced)
subscheme Sing(D) ⊂ CPn+1. The following classical result is useful in some cases:

Theorem 3.5 (Cayley -Bacharach. cf. [Seg] p.120) Let V1, .., Vn+1 be a generic hyper-
surfaces of degrees e1, .., en+1 and let S be the set of (e1 · · · en+1) points which form a
complete intersection these hypersurfaces. Then H1(CPn+1, IS(Σi=n+1

i=1 ei − n− 2)) = C.

The dimension of the cohomology group in the statement of theorem 3.5 classically is
called the superabundance of the linear system of hypersurfaces of degree Σei−n−2 passing
through the points of the set S (i.e. the difference between the actual and ”expected”
dimensions of this linear system).

Example 3.6 Let fd(z0, .., zn+1) be a generic form of degree d, di ∈ Z (i = 1, ..., n+1)
such that Σ 1

di
< 1 , D0 = Πj=n+1

j=1 di, and Di =
D0

di
. Let

P = fd1

Di
+ ...f

dn+1

Dn+1
(3.5)

Then the singularities of P (z0, .., zn+1) = 0 are the points satisfying fD1
= ...fDn+1

= 0. If
we let ζ = exp(−2πi(Σ 1

di
) then according to theorem 3.4 we can calculate dimHn,0(XD0

)ζ
as dimH1(CPn+1, I(D0− (1−Σ 1

di
)D0−n− 2). By the Cayley-Bacharach theorem above

the latter is equal to 1. In particular πn(Cn+1 − D) ⊗ C ≠ 0. Using different methods
one can actually calculate πn(Cn=1 −D)⊗Q completely. It turns out that this module is
isomorphic to the Milnor fibre of a local singularity of P with the module structure given by
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the action of the monodromy operator. In particular the order is equal to Π(t−ξj1 · · ·ξjn+1
)

where ξji(i = 1, .., n+ 1) runs through all primitive roots of unity of degree di (cf. [L5]).

Example 3.7 Similar use of the Cayley Bacharach theorem shows nonvanishing of
πn(Cn+1 −D) where D is the affine portion of the hypersurface given by:

Pl = fd1

Di·l
+ ...fdn+1

Dn+1·l
(3.6)

with l a positive integer and other notation as in example 3.6 above. The family of
hypersurfaces (3.6) is a high dimensional counterpart of the family of curves studied in
[T].

4. Twisted DeRham complex

Now we can show how the first non-vanishing homotopy group can be used to calculate
the homology of the complement Cn+1 − D with twisted coefficients. This can be done
using the following:

Lemma 4.1 Let A be a cyclic group, t one of its generators and Λ the group ring of A
over Q. Let X be a CW-complex for which there exists an integer n such that if n > 1
then the cyclic cover X̃φ corresponding to a homomorphism φ : π1(X) → A is acyclic
below dimension n (i.e. Hi(X̃φ,Q) = 0). Let χ be a character of A and Lχ be the local
system on X corresponding to homomorphism χ ◦ φ. Let Hn(X̃) = Λk ⊕ Λ/(∆i) be a
cyclic decomposition of Hn(X̃) viewed as a Λ-module. Let l = #{i|∆(χ) = 0}. Then
rkHn(X,Lχ) = k + l.

Proof. Let C∗(X̃,Q) = C∗(X̃,Q) ⊗Q[π1(X)] and C∗(X,Lχ) be the chain complexes
of X̃ and of the local system Lχ respectively. Recall that a chain complex of a local system
L with the fibre V and corresponding to a homomorphsm ψ : π1(X) → Aut(V ) is defined
as:

Ci(X,L) = Ci(X̃)⊗Q[π1(X)] V =

= Ci(X)⊗Q Q[π1(X)]⊗Q V/{g ⊗ c− ψ(g)(c)|c ∈ C[π1(X)]⊗ V } (4.1)

Here V is given the structure of π1(X) module using the homomorphism ψ. This implies
that we have the following exact sequence of chain complexes:

0 → C∗(X̃) → C∗(X̃) → C∗(X,Lχ) → 0 (4.2)

in which the first homomorphism is the multiplication by t−χ(t) ∈ Q[A]. The correspond-
ing homology sequence yields:

Hn(X̃,Q) → Hn(X̃,Q) → Hn(X,Lχ) → 0 (4.3)

since the assumption of acyclicity and the claim follows.
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Theorem 4.2 Let P be a polynomial satisfying conditions 1 and 2 of Proposition 2.1.
Then the rank of Hn((Ω∗(∗D),∇κ)) is equal #{i|λi(exp(2π

√
−1κ)) = 0}.

In the case n = 1 this reduces to the algebraic computation of the Alexander polynomial
(cf. [K]).

Proof. It is standard by now (cf. [K],[KN]) to identify the cohomology of a local system
with the cohomology of the twisted deRham complex: the local system corresponding to
the complex with the differential ∇κ is defined by the homomorphism of π1(Cn+1 −D)
into C∗ sending the generator of the fundamental group to exp(2π

√
−1κ) (cf. [D1], lemma

II.5.6). Hence the theorem follows.

Combining the theorem with the results of [L2] one obtains the following:

Corollary 4.3 Let D be a hypersurface in Cn+1 satisfying 1. and 2. such that all
singularities of D are locally isomorphic to xd1

1 + ...x
dn+1

n+1 and such that d = degD. Then
the rank of Hn(Ω∗(∗D),∇κ) is zero unless κ · d1 · · · dn+1 ∈ Z In the latter case it is bigger
than the superabundance of the linear system of hypersurfaces of degree d(Σ 1

di
) − n − 2

passing through the singularities of D.

Examples 4.4. 1. Let P (z0, ..., zn+1) be a polynomial such that the corresponding
hypersurface is non singular and transversal to the hyperplane z0 = 0.

Then Hn(Ω∗(∗D),∇κ) = 0

2. Let p(z1, ..., zn+1) be a weighted homogeneous polynomial of degree 1 and weights
w1, ..., wn+1 which has an isolated singularity at the origin.

Then the rank of Hn(Ω∗(∗D),∇κ) is one if κ
wi

∈ Z for some i and zero otherwise. For

example if P (z1, ..., zn+1) = z31+z22+...z2n+1 then the twisted deRham cohomology vanishes
unless 6κ ∈ Z. Indeed the homology of the universal cyclic cover of the complement to
p = 0 can be identified with the Milnor fibre of the singularity of p The action on homology
of the operator given by the deck transformation of the cover coincides with the action of
the monodromy operator. Hence the claim here follows from the calculations in [M] ch 9.

3.Let fd(z0, .., zn+1) be a generic form of degree d, di ∈ Z (i = 1, ..., n + 1), Di =
Πj=n+1

j=1
dj

di
. Let

Pd1,...,dn+1
= fd1

Di
+ ...fdn+1

Dn+1
(4.4)

Then the cohomology Hs(ΩCPn+1(∗V ),∇κ) = 0 for s ≤ n−1 (any κ) and for s = n unless
di ·κ ∈ Z for one of di. In the latter case Hs(ΩCPn+1(∗V ),∇κ) ≠ 0. Indeed the order of the
first non vanishing homology group (which has dimension n) is Π(t−ξj1 · · ·ξjn+1

) where ξji
runs through all primitive roots of unity of degree di, (i = 1, ..., n+ 1) (cf. [L] Ch.5). The
nonvanishing also follows from the results of example 3.6 i.e the use of Caley-Bacharach
theorem.
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4. The same conclusion is valid for the affine portion of the hypersurface:

Pd1,..,dn+1,l = fd1

Di·l
+ ...f

dn+1

Dn+1·l
(4.5)

which has degree d1 · · · dn+1 · l. This follows from the discussion in example 3.7.
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