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Cohomology of Local systems 

Anatoly Libgober1 and Sergey Yuzvinsky 

§1. Introduction 

This survey is intended to provide a background for the authors paper 
[23]. The latter was the subject of the talk given by the second author 
at the Arrangement Workshop. The central theme of this survey is the 
cohomology of local systems on quasi-projective varieties, especially on 
the complements to algebraic curves and arrangements of lines in P 2 . A 
few of the results of [23] are discussed in section 4 while the first part of 
this paper contains some of highlights of Deligne's theory [7] and several 
examples from the theory of Alexander invariants developed mostly by 
the first author in the series of papers [17] - [22]. We also included 
several problems indicating possible further development. The second 
author uses the opportunity to thank M. Oka and H. Terao for the hard 
labor of organizing the Arrangement Workshop. 

§2. Background on cohomology of local systems 

Local systems. A local system of rank n on a topological space X is a 
homomorphism rr1 (X) --+ GL(n, e). Such a homomorphism defines a 
vector bundle on X with discrete structure group or a locally constant 
bundle ( cf. [7], I.1). Indeed, if Xu is the universal cover of X then 
Xu X 11'1 (X) en is such a bundle ( this product is the quotient of Xu X en 
by the equivalence relation ( x, v) ~ ( x', v') if and only if there is g E 
rr1 (X) .such that x' = gx, v' = gv; this quotient has the projection onto 
Xu/rr1(X) = X with the fiber en). Vice versa, any locally constant 
bundle defines a representation of the fundamental group of the base. 

If X is a complex manifold, then there is a one-to-one correspondence 
between the local systems and pairs consisting of a holomorphic vector 
bundle on X and an integrable connection on the latter ( cf. [7] I.2, 
Theorem 2.17). If V is a vector bundle then a connection can be viewed 
as a e-linear map defined for each open set U of X and acting as follows: 
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V : V(U) --+ 0 1 (X)(U) ©o(u) V(U)). Here V(U) {resp. O(U), resp. 
n(X)(U)) is the space of sections of V {resp. the space of functions and 
the space of 1-forms) holomorphic on U. It is required from V to satisfy 
the Leibniz rule V (f • s) = df © s + f • V ( s). The integrability requirement 
is that if one extends V to the maps Vi : 0 1 (X)(U) ©o(u) V(U) --> 

0 2(X)(U) ©o(u) V(U) using the rule V1(w ©v) = dw©v-w I\ Vv then 
V1o"'v=0. 

The above correspondence can be described as follows. If V is a 
locally constant bundle, then on the holomorphic bundle V ©c O, where 
0 is the trivial bundle, one can define the connection by V (f ©v) = df ©v 
where f {resp. v) is a holomorphic function {resp. a section of a locally 
constant bundle V) on U. The sections v of V ©c O which are flat with 
respect to this connection, i.e., such that V{v) = 0, coincide with the 
sections of V. Vice versa, the sections of any holomorphic bundle with 
integrable connection form a locally constant bundle, i.e., a local system. 

Cohomology. The homology of a local system can be defined as the 
homology of chain complex: 

... --> Ci(Xu) ©1r1(X) en ---t .•. 

Here the chain complex for Xu can be the complex of singular chains, or 
chains corresponding to a triangulation, or chains with a support, etc. 

It is well known that the cohomology of X with constant coefficients 
can be calculated using the de Rham complex A*(X) of C 00-differential 
forms{the de Rham theorem). In the case where X is a non singular 
algebraic variety which is the complement to the union Y of smooth 
divisors on a projective variety X one can define a subcomplex A(Y) of 
de Rham complex A*(X) called log-complex. It consists of C 00 forms 
w on X with the property that near a point of X at which Y has local 
equation Q = 0 both Qw and Qdw admit extension to X. If the compo-
nents of Y intersect transversally then the cohomology of the complex 
A(Y) is also isomorphic to H*(X). Otherwise it is not valid in general, 
though under some conditions on the singularities of Y ( e.g. if Y is free) 
it is still true (see [4, 341). 

The cohomology of local systems also can be described using dif-
ferential forms. Before stating this result let us recall that, though the 
holomorphic log-de Rham complex is too small to give full cohomol-
ogy groups, there is, nevertheless, a way to reconstruct cohomology of 
X using holomorphic log-forms. Namely, one can consider a double 
complex J=-i,i of sheaves such that all p,i are acyclic and ?·* form 
a resolution of the sheaf of holomorphic log-forms ni(X)(Y). The co-
homology of the double complex r(J=-i,i), i.e., the cohomology of the 
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complex EBi+j=kr(_Fi,J), is called the hypercohomolgy of Q*(X)(Y). 
This construction of hypercohomology, applied verbatim to any complex 
of sheaves F* instead of log-complex, yields hypercohomology groups 
H*(F*). A theorem of Deligne states that the hypercohomolgy 
Hi(Q*(X)(Y)) is isomorphic to Hi(X,C) (cf. [8]). On the other hand, 
if X is affine, e.g. a complement to a hypersurface in projective space 
(cf. section 4.), then the cohomology Hi(X, C) can be found using the 
complex of rational forms (the algebraic de Rham theorem, cf. [12]). 

Hypercohomology also yields the cohomology of local systems in 
terms of differential forms, i.e., give a version of the de Rham theorem 
for local systems. The (holomorphic) de Rham complex in this case is 
formed by the sheaves of holomorphic forms with values in the holomor-
phic bundle V corresponding to the local system V, i.e., QP(V) = QP~'<'J V 
with the differential given by V p(w 0 v) = dw 0 v + (-l)deg(vlw /\ Vv 
(V 1 above is a special case of the differential in this de Rham complex). 
Note that integrability V 1 o V = 0 yields that V p+l o VP = 0, i.e., QP(V) 
form indeed a complex of sheaves. This de Rham complex is a reso-
lution of the holomorphic bundle V and it yields "de Rham theorem" 
ffP(Q(X)(V)) = HP(X, V) (if V is a trivial local system one obtains 
the standard de Rham theorem). Moreover, if Xis affine, the de Rham 
theorem with twisted coefficients still holds, i.e., the cohomology of the 
complex of rational forms with values in V is isomorphic to Hi(X, V) 
( cf. [7], II, cor.6.3) 

Calculation of cohomology of local systems using logarithmic com-
plex is more subtle (even in the case of normal crossing), i.e., hyperco-
homology of log-complex yield the cohomology of the local system only 
if certain conditions are met. Deligne describes such sufficient condi-
tions. The conditions are stated in the case where the connection V has 
logarithmic poles along Y in the following sense. One assumes that the 
bundle V on X is a restriction of a holomorphic bundle V on compactifi-
cation X of X where Y = X - X is a divisor with normal crossings. The 
logarithmic property of V means that in a sufficiently small neighbor-
hood Up of any point p E Y, such that there exists a choice of sections 
ei E f(Up, V) forming a basis of any fiber of V in Up, the matrix of 
V consists of 1-forms having logarithmic poles along Y. The entries of 
this matrix are ai,j E Q1 (Up n X 0 V) such that V(ei) = Z:,ai,j 0 e1. 
The matrix of V can be described in invariant terms as an element 
of 0 1 (X)(End V). On the other hand, near p E Y where Y is given 
by z1 • • • Zk = 0, a log-1-form w on X can be written as 'E,aidzd Zi 
where ai are holomorphic in Up and hence defines a holomorphic section 
Resy(w) = LiiailY on Y called the residue of w. If V is a connection 
with logarithmic poles then one can define Resy (V) as a matrix formed 
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by the residues of log-1-forms ai,i· This matrix can be viewed as an 
element of End(Vly ). Deligne's fundamental theorem ([7], 3.15 ) states 
that if none of the eigenvalues of matrices Resy ('v) (p) (p E Y) is a 
positive integer then one has the isomorphism of hypercohomology: 

H(X,f!g(Y)(V)) = H(X,f!x(V)) 

Rank one local systems. Rank one local systems on X are just 
the characters of fundamental group or equivalently of H 1(X,Z). We 
will assume for simplicity that the latter group is torsion free. In this 
case the "moduli space" of local systems of rank one is just the torus 
Char(X) = C*b1 where b1 = dim H 1 (X, R) (presence of torsion in 
H1 (X, Z) will yield Char(X) with several connected components, each 
being a translation of a torus). For higher rank the construction of 
moduli spaces in considerably more complicated (cf. [31]). 

The torus Char(X) contains subvarieties Ef that consist of local 
systems V such that rkHk(X, V) 2: i. Ef are important invariants of 
X. They play a crucial role in several problems. 

First, these subvarieties of Char(X) are closely related to the struc-
ture of the fundamental group of X or more precisely to the Alexander 
invariants of the latter. Those can be defined as follows (cf. [22]). Let 
XA be an abelian cover of X corresponding to the kernel of a surjection 
<PA : 1r1(X) ---+ A. The group A is an abelian group of deck transfor-
mations. Though XA of course depends on <PA we shall not specify this 
dependence since in this paper this wouldn't cause a confusion. The 
group H1(XA,C) can be considered as a module over the group ring of 
the group of deck transformations of XA, i.e., over R = C[A]. The lat-
ter, after a choice of independent generators in A, can be identified with 
the ring of Laurent polynomials of rk(A) variables. This module is the 
Alexander invariant of X corresponding to A and is denoted below by 
A(X, A). A particularly important case is where A= H1(X, Z), i.e., the 
case of universal abelian cover, since in this case A(X, A) is a homotopy 
invariant of X. 

Definition 2.1. Let Rm ---+ Rn ---+ A(X, A) ---+ 0 be a presentation 
of the Alexander invariant. The i-th characteristic variety is the set 
of zeros in (C*fk(A) of the polynomials in the ideal in R generated by 
minors of order n - i + 1 (i-th Fitting ideal of A(X, A)). 

If A= H1(X,Z) then H1(.XA) = 1r1(X)/1rr(X) © C, i.e., depends 
only on the fundamental group of X. For any group G, the Alexander 
invariant of X such that 1r1(X) = G provides an invariant of a pair 
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(G, A) where A is a (free) abelian quotient of G. For any A the module 
A(X, A) can be computed directly using Fox calculus. 

It turns out ( cf. [14], [22]) that the i-th characteristic variety coin-
cides with :E} ( considered as subvariety of Char( A) of the space of rank 
one local systems which factor through A). In the case where 1r1 (X) 
is abelian and 7rj(X) = 0 for j < k one can similarly interpret :E} as 
the set of zeros of polynomials in the i-th Fitting ideal of the module 
Hk(XHi(X,z)) (cf. [20] where typical case of such situation, i.e., when X 
is a complement to a hypersurface in Ck+l, is considered). 

Second, the characteristic varieties :E} determine the one dimen-
sional cohomology of branched and unbranched covers of X ( cf. [18], 
[29] and the next section) 

Third, the varieties :E} allow one to detect dominant maps of X on 
curves. These results are going back to classical works of deFranchis 
on the existence of irrational pencils on algebraic surfaces and to more 
recent work of Green-Lazarsfeld, Beauville, Simpson, Deligne (when X 
is projective) and D. Arapura (when Xis quasiprojective). 

Theorem 2.2 ((D.Arapura) [2]). Let X be a quasiprojective vari-
ety then any irreducible component of characteristic variety is a coset of 
a subgroup of Char1r1 (X). Moreover each component having a positive 
dimension corresponds to a holomorphic map f : X ---+ C on a curve C 
such that local systems in this component have the form E 13) f* ( L) where 
L runs through the local systems on C. 

§3. Local systems on complements to algebraic curves 

Now we will restrict our attention to the case where X is a complement 
to an algebraic curve C in affine plane C 2 = P 2 - L. The case where L is 
in general position relative to the projective closure C of C is of particular 
interest since in this case 1r1 (P2 - C) is just a quotient of 1r1 ( C 2 - C) 
by an element of its center (cf. [19]) which we will assume here. A 
closely related case of local systems on complements to hypersurfaces 
with isolated singularities is considered in [21]. 

With curve C and surjection H1(C2 - C,Z)---+ A on a group A (cf. 
section 2) one can associate unbranched cover (~C)A of C2 - C and 
branched cover of P 2 branched over the projective closure of C with A 
as the group of the cover. Since the first Betti number of an algebraic 
surface is a birational invariant, the first Betti number of a resolution 
of singularities of the latter cover depends only on C and the group A. 
We shall denote a resolution of singularities of a cover of P 2 branched 
along C by Zc,A (though it depends, of course, on the surjection on 
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---H1(C2 - C) ---+ A). Moreover, the first Betti numbers of (C2 - C)A 
and Zc,A depend only on the characteristic varieties of C 2 - C. More 
precisely we have ( cf. [18]) 

rkH1((C4)A) = ExEChar(A) max{ilx E E}(C2 - C)}. 

For the branched case, for x E Char 1r1 ( C2 - C) denote by Cx the curve 
formed by the components Ci of C such that if 'Y is the boundary of a 
small 2-disk transversal to Ci then x('Yi) =/ l. Then (cf. [29]) 

rkH1(Zc,A) = ExEChar(A) max{ilx E E}(C2 - Cx)}. 

If (G, A) is a pair as in section 2 where A = Z then all ideals in 
R = C[A] are principal. A generator of the i-th Fitting ideal for the 
module A(X, A), (defined up to a unit of R) where X is a space with 
1r1 (X) = G is a polynomial called i-th Alexander polynomial ~i(C) of 
C. Its set of zeros is E}. In the case when rkA > l, Fitting ideals for 
Ker(G---+ A)/Ker(G---+ A)'® C are not principal in general, though in 
special case where G is the fundamental group of a complement to a link 
in a 3-sphere the first Fitting ideal is a product of a power of the maximal 
ideal of the identity of Char G and a principal ideal (whose generator 
is the multivariable Alexander polynomial). A special feature of the 
case where G = 1r1 ( C 2 - C) is that one can determine the characteristic 
varieties in terms of local type of singularities of C and the geometry of 
the set of singular points of C in the projective plane containing C. In 
fact, in the cyclic case, one obtains an expression for the whole Alexander 
polynomial (cf. [33]). In the rest of this section we will describe this 
calculation and give some examples only briefly indicating how this can 
be generalized to the abelian case (i.e., when rk(A) > 1) referring the 
reader to [22] for complete details. 

Let us first describe the local data which comes into the description 
of the Alexander polynomials of algebraic curves (cf. [17]). We want to 
associate with each germ of a plane curve singularity, say f (x, y) = 0 at 
the origin, a sequence of rational numbers 1,;1 , ... , 1,;l and corresponding 
ideals A"'I> .. A"', in the local ring O(o,o) • 

Recall that the adjoint ideal of an isolated singularity of a hypersur-
face Vat the origin near which Vis given by the equation g(x1 , ... , Xr) = 
0 consists of germs <pin the local ring of the origin such that <p • (dx 1 I\ 
... /\dxi I\ ... dxr) / 9x; admits a holomorphic extension over the exceptional 
set of some resolution of the singularity of V. The adjoint ideal will be 
denoted as Adj(g = 0). In the case where g(x1, ... ,xr) is generic for its 
Newton polytope, a monomial xi1 • • • x:: belongs to the adjoint ideal if 
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and only if (i1 + 1, ... , ir + 1) is strictly above the Newton polytope of g 
( cf. [25]). 

In order to define the constants K1 , ... , Kz (constants of quasiadjunc-
tion of the singularity of a germ of plane curve f ( x, y)) let us consider 
for each element ¢ in the local ring of the origin, the function 

'¥¢(P) = min{klzk • ¢ E Adj(zP = f(x, y))}. 

One can show that this function can be written for an appropriate ratio-
nal number K¢ as'¥ ¢(P) = [K¢ · p] where [·] denotes the integer part (this 
is immediate, in the case where f(x,y) is generic for its Newton poly-
tope, from the description of the adjoint ideal mentioned in the previous 
paragraph, since in this case the germ of zP = f (x, y) is generic for its 
Newton polytope). Moreover, the set of rational numbers K¢, ¢ E Oo,o, 
is finite. In fact the set of numbers -K¢ forms a subset of Arnold-
Steenbrink spectrum of f(x, y) = 0 belonging to the interval (0, 1) (cf. 
[24]). In particular exp(21riK) is a root of the local Alexander polynomial 
of the link of the singularity f(x, y) = 0. 

It follows from the definition that for each ,._ the germs ¢ such that 
K<f:, < K form an ideal called an ideal of quasiadjunction and denoted A". 
Now we are ready to describe the Alexander polynomial of C C C2 ( cf. 
[17]). For each rational K let us consider the ideal sheaf I" C Op2 such 
that Op2 /I" is supported at the singular locus of C and such that the 
stalk of I" at a singular point p of C consists of germs belonging to the 
ideal A" of the singularity of C at p. 

Theorem 3.1. The Alexander polynomial of C having degree d is 
II"[(t - exp(21riK) )(t - exp( -27riK)]dim H 1 (I"(d-3 -d·i<)) where the product 
is over all constants of quasiadjunction of all singular points of C such 
that d •KE Z. 

Examples l. Let C be given by the equation Jlk + fik = 0 where 
ft is a generic form of degree l. Then C is a curve of degree 6k having 
6k2 ordinary cusps (i.e., locally given by x 2 + y 3 = 0) located at the set 
of solutions of hk = hk = 0. Ordinary cusp has only one constant of 
quasiadjunction K = 1/6 and the corresponding ideal of quasiadjunction 
is just the maximal ideal (this follows directly from the above since the 
ordinary cusp is weighted homogeneous and hence generic for its New-
ton polytope). The corresponding sheaf I 1; 6 admits Koszul resolution 
0-+ Op2(-5k) -+ Op2(-3k) EB Op2(-2k) -+ I 1; 6 -+ 0 which yields 
dimH1(P2,I1; 6 (6k - 3 - 6k/6)) = 1. Therefore the Alexander polyno-
mial is equal to t2 - t + l. This, of course, provides complete description 
of the cohomology of local systems on the complement to this curve. 
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2. Let C be a sextic with 3 cusps and one singularity of type x 4 = y5 

(cf. [26]). We start by describing the constants of quasiadjunction of 
singularities of this curve which may contribute to the Alexander poly-
nomial. First, the constant of quasiadjunction of singularity x 4 = y5 

corresponding to¢= xi• yi is equal to Ii¢= max{(ll - 5i - 4j)/20, 0} 
as follows from the description of adjoint ideals for polynomials generic 
for their Newton polytopes mentioned earlier. We noted already that 
x2 = y3 has only one constant of quasiadjunction, i.e., 1/6. Second, 
since the degree of the curve is 6, the contributing into Alexander poly-
nomial constants of quasiadjunction 1,, should satisfy 6 • 1,, E Z. Third, it 
follows again from the description of adjoint ideals that the monomial 
xiyi belongs to the ideal of quasiadjunction corresponding to the con-
stant of quasiadjunction 1/6 in the local ring of the singularity x4 = y5 

if and only if xiyi z[P/6] belongs to the adjoint ideal of zP = x 4 - y5. 
This happens if an only if 5p(i + 1) + 4p(j + 1) + 20((p/6) + 1) ::::0: 20p 
for any positive p. This is equivalent to 5i + 4j > 7(2/3), i.e., ei-
ther i ::::0: 2 or j 2". 2 or both i, j 2". l. Hence ¢, which is a combi-
nation of xiyi, is in the ideal of quasiadjunction of 1/6 of singularity 
x 4 = y5 if and only if it is in the square of the maximal ideal. There-
fore the intersection index of the ¢ = 0 with x 4 = y5 is at least 8. 
The ideal of quasiadjunction corresponding to the constant 1/6 for the 
ordinary cusp is the maximal ideal. It follows from the Bezout theo-
rem that H 0 (I1; 6 (2)) = 0. Now x(I1; 6 (2)) = 0, because the sum of 
dimensions of stalks of Op2(2)/I1; 6 = dimH0 (P2 , Op2(2)) = 6, whence 
H 1(I1; 6 (2)) = 0 and the Alexander polynomial of this curve is l. 

§4. Local systems on the complements to arrangements of 
hyperplanes 

An interesting class of examples where cohomology of local systems and 
characteristic varieties can be often explicitly computed is formed by 
complements to hyperplane arrangements. Tools for computations are 
given by combinatorial invariants of arrangements: the intersection lat-
tice and its Orlik-Solomon algebra. 

Let B be an arrangement { H 1 , ... , Hn} of hyperplanes in a com-
plex projective space P and L its intersection lattice (i.e., the set of 
all intersections of the hyperplanes ordered opposite to inclusion and 
augmented by the maximum element 1). Fix some homogeneous lin-
ear forms 0:1, ... , an such that the zero locus of ai is Hi . Recall that 
the Orlik-Solomon algebra S of B ( or of L) is the factor of the exterior 
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algebra over eon generators e1 , ... , en by the ideal generated by 
p 

~(-l)Je ···e ···e· L....t i1 'l,J 'l.p 

j=l 
for all linearly dependent sets { ai1 , .•• , ai,,}. Algebra S is graded and 
generated in degree one. Denote by S the subalgebra of S generated by 
the elements L~=l aiei (ai E C) with L~=l ai = 0. According to the 
projective version of the Brieskorn-Orlik-Solomon theorem ([3, 27]), S 
is isomorphic to the algebra H*(M, e) where M is the complement of 
the divisor D = LJi Hi. The isomorphism is given by sending each ei to 
the closed 1-form Wi = dai/ai and taking the cohomology class of the 
latter. 

The forms Wi can be used to produce matrix-valued logarithmic 
forms and local systems of higher rank on M. For a positive integer r, 
let Pi (i = 1, ... , n) be r x r-matrices over e such that Li Pi = 0 and 
w E H 0 (P,D. 1 (B) ® or) be defined as 

n 

w = LWi ®Pi. 
i=l 

Via the construction mentioned in section 2, the form w defines a connec-
tion on OM which is integrable if an only if w I\ w = 0. This connection 
defines the local system of rank r on M and since M is affine the co-
homology of this system is the cohomology of the complex of rational 
forms: 

r = r(M, nM ® er) 
with differential d + w/\ (cf. section 2). The correspondence ei ....+ Wi 
defines also an embedding 

</>: S* 0er Cr 
where S* ® er is the complex on S ® er whose differential is the (left) 
multiplication by the element a E S1 corresponding to the form w. In 
the rank one case which is of the main interest in this note we denote 
the cohomology of that complex by H*(S, a). 

For the arrangement of hyperplanes in general position or for a gen-
eral position a the embedding </> is a quasi-isomorphism. More precise 
sufficient conditions were obtained in [9, 30] by blowing up at non-normal 
crossings and applying Deligne's theorem (see section 2). To state the 
stronger version from [30] note that each X E L defines the subarrange-
ment Bx = {H E BIX C H} of B. We put Px = LHiEBx Pi and 
call the subspace X dense if Bx is not the product of two non-empty 
arrangements. 
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Theorem 4.1 (Schechtman-Terao-Varchenko). 
subspace X E L none of the eigenvalues of Px is 
then <p is a quasi-isomorphism. 

If for any dense 
a positive integer 

Theorem 4.1 brings up the combinatorial problem of computing 
H*(8,a) for various a E 81. In particular an important question for 
applications ( e.g. to hypergeometric functions, see (1]) is when this co-
homology vanishes in all but the maximum dimensions. This question 
was studied in (35] (cf. also (16]) using sheaves on posets. In particular 
it was proved there that a sufficient condition for the vanishing is 

for every dense XE L. This work was continued in (11] where a basis of 
cohomology of the maximum dimension was found that is independent 
of w. 

Another interesting problem is to investigate connections between 
the two types of cohomology ( of rank 1 local system and of the com-
plex 8*) when the conditions of Theorem 4.1 cease to hold (so called 
resonance case). There are at least two related but different ways to do 
that. One way is to relate the characteristic varieties of an arrangement 
with the respective subvarieties of 81 . Let us define the latter. The first 
relevant definition was given by Falk (10] who studied invariants of S. 

For an arrangement B define the resonance variety 

Clearly each Rf is an algebraic subvariety of the linear space 81 and the 
easiest one to study is Rl. The studies of these varieties were started in 
(10]. Their relations with the characteristic varieties were first investi-
gated in (22] and then in (5]. 

Since we focus on the cohomology of dimension 1 it suffices to con-
sider arrangements of lines in the projective plane since by twisted ver-
sion of Lefschetz theorem (32] the fundamental group of the comple-
ment to an arrangement is the same as the one for the intersection of 
this arrangement with a generic plane. For this case, the irreducible 
components of Rl are linear and there is a bijection W - W between 
the set of these components and the set of all the positive dimension 
components of El passing through 1. The exponentiation defines the 
universal covering of W by W (22, 23] and Rl is the tangent cone of El 
at the point 1 (5]. Characteristic varieties also yield a different sufficient 
condition for the conclusion of Theorem 4.1 (22] to be true. Namely¢ 
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is a quasi-isomorphism if 

(exp(21ria1), ... ,exp(21rian)) r/. Char1 . 

The other way to relate the two kinds of cohomology is for individual 
elements a E 81. This is the main theme of [23]. It starts with the 
following inequality 

dimHP(M, V(a)) 2: dimHP(8,a + N) 

for every panda E 8 1 where V(a) is the rank 1 local system defined by 
the 1-form corresponding to a and N is an arbitrary element of 81 with 
integer coordinates in the canonical basis (e1, ... , en)- This inequality 
follows immediately from the two observations. First, by multiplying a 
by 1 + t with ltl small one makes it satisfy the conditions of Theorem 
4.1 and does not change HP(8,a). Now the upper semicontinuity of the 
dimension of cohomology gives ( *) with N = 0. Second, adding N to the 
right hand side of ( *) does not change its left hand side since the local 
system V(a) is defined by the character of S1 given by ek f----, exp(21riak)-
(Note that the differentials d + Wal\ and d + Wa+N I\ are different though 
isomorphic via multiplication by a rational function.) 

The main result of [23] is the following theorem. 

Theorem 4.2. The left-hand side of ( *) is the supremum of its 
right-hand side while N is running through zn for all but finitely many 
cosets mod zn of elements of R 1 . 

The proof of this theorem required certain further resutls about ir-
reducible components of both the characteristic and resonance varieties. 
With every a E Rk one can associate the set X(a) of multiple points of 
intersection of lines such that the vector (ailHi => X) is not zero but 
LHox ai = 0. The set X(a) defines the collection of subsets of B of 
lines passing through a point XE X. The incidence matrix J(a) of the 
collection defines the symmetric matrix Q(a) = Jt J - E, where Eis the 
matrix whose every entry is 1, that satisfies the conditions of a theo-
rem of Vinberg's ([15], p.48) except that it is decomposable in general. 
An application of this theorem to the indecomposable components of Q 
shows that they should be either affine or finite with at least three affine 
ones. In particular this implies that if Wis an irreducible component of 
Rk and a is an arbitrary nonzero vector form W then W is the k + 1-
dimensional subspace of 8 1 given by the linear system LH;:JX Xi = 0 
for all X E X (a). In particular W is defined by X (a). In the ring 
8, W is the annihilator of a in degree one whence any two irreducible 
components intersect at 0. 
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On the other hand, let W be a positive dimension component of 
El containing I with the universal cover W. Suppose W is essential, 
i.e., it is not the image of a component for a proper subarrangement 
B' of B under the inclusion map H 1 (M',CC*)---+ H 1 (M,CC*). Then one 
can associate with W a pencil of curves whose fibers do not have a 
common component. Some degenerate fibers are the unions of lines from 
B passing through a point from X(a) where a E W. If P' is the blow 
up of the projective plane at X(a) then matrix Q can be recovered as 
the minus intersection form on P'. Using the pencil of curves, the Euler 
characteristic of P' can be computed in two different ways that gives 
strong restrictions on the size and amount of indecomposable blocks of 
Q. Combining this with the condition on the blocks of being affine one 
obtains strong restrictions on arrangements of lines with characteristic 
varieties of positive dimension. For instance, if each line has precisely 
three multiple points then the arrangement can be embedded .into the 
Hesse arrangement consisting of 12 lines passing each through 3 of 9 
inflection points of a smooth cubic. 

The following example from [5] can be used to show that the ex-
ceptional finitely many cosets of elements of R 1 from Theorem 4.2 can 
indeed exist. 

Example [5]. The arrangement consists of 7 lines that are the zero 
loci of the following forms ai ( ordered from left to right): x, x + y + z, 
x + y - z, y, x - y - z, x - y + z, z. These lines define 3 double and 6 
triple points of intersection with the latter (viewed as the sets of indices 
of lines passing through them) being 

X1 = {1, 2, 5}, X2 = {1, 3, 6}, X3 = {2, 3, 7}, 
X4 = {2, 4, 6}, Xs = {3, 4, 5}, X6 = {5, 6, 7}. 

The resonance variety R 1 = R} has 3 irreducible components W1 , W2, 
and W3 of dimension 2 defined by the collections 

respectively. The pencil of quadrics corresponding to, say W1 , is gener-
ated by x 2 - y2 - z2 and yz. 

Consider a= 1/2(-e2 + e3 - e5 + e6) E W1. Then a+ N1 E W2 and 
a+N2 E W3 with N1 = e2-e6 and N2 = e3-e6. Thus V(a) = V(a+Ni)-
It is not hard to see that dimH1(M, V(a)) = 2, i.e., V(a) EE½. In fact, 
V(a) together with the constant system forms a discrete component of 
E½ that is a group of order 2. 
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§5. Problems 

The emerging picture of the cohomology of rank one local systems is 
far from being complete. We suggest several problems as an attempt to 
clarify it. 

The case of arrangements of lines in the projective plane seems to 
be the most promising and a majority of our problems is devoted to this 
case. In them, M is the complement of the union of lines ( cf. section 4). 

Problem 5.1. Is it true that every positive dimensional irreducible 
component of Char1 ( M) contains I ( whence is covered by a component 
of the resonance variety R1)? The above example shows that it is not 
true for discrete components. 

Problem 5.2. For a E 81 , is it possible to compute H 1 (M, V(a)) 
knowing H 1 ( 8, a + N) for all vectors N E zn ? 

Theorem 4.2 gives the positive answer for almost all a E R 1. Even 
for the exceptional a in the above example the cocycles with coefficients 
in V(a) are generated by differential forms corresponding to cocycles for 
a+N in 81. 

This problem may split depending on which a one considers, from 
R 1 or not. In particular the following particular case of the problem 
might be easier. 

Problem 5.3. Can there exist a E 81 such that H 1(8, a+N) = 0 
for all NE zn but H 1 (X, V(a))-/- 0? 

Problem 5.4 (Combinatorial irivariance of characteristic varieties). 
Are the characteristic varieties combinatorial invariants of arrangements, 
i.e., can one reconstruct them from the lattice of an arrangement? 
It is known that the fundamental groups of the complements to arrange-
ments are not invariants of the lattice ([28]). On the other hand, the 
results of [5], [22], and [23] show that components of positive dimension 
containing the identity character are. For algebraic curves, Alexander 
polynomials can not be determined just from the degrees of the curve 
and the local type of singularities. This follows from seminal example 
of two sextics with six cusps on and not on a conic. Recent results on 
Zariski's pairs and triples are discussed in [26]. 

Problem 5.5 (Realization and classification). How many compo-
nents can the characteristic variety have? Can this number be arbitrary 
large? Can one bound dimensions and the number of components in 
terms of lattice of arrangement? Can one classify arrangements for 
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which the characteristic varieties have components with positive dimen-
sion or sufficiently large dimension? 

Results of [23] show that the dimension of the characteristic variety 
imposes a bound on the number of lines in the arrangement. Similar re-
alization problem for characteristic varieties and Alexander polynomials 
of algebraic curves ( e.g. which polynomials can appear as the Alexan-
der polynomials of algebraic curves or algebraic curves of given degree) 
seems to be also open. More concretly: how large can the degree of the 
Alexander polynomial be for a curve with nodes and cusps? For the 
sextic dual to a non singular plane cubic the Alexander polynomial is 
equal to (t2 - t + 1)3 . Are there the curves, with nodes and cusps only, 
for which the degree of Alexander polynomial is bigger than 6? The 
Alexander polynomial of the complement to an algebraic curve divides 
the product of local Alexander polynomials and the Alexander polyno-
mial at infinity ( cf. [17] and references there). This gives a bound for the 
degree of the Alexander polynomial in terms of the degree of the curve. 
For example for a curve with singularities not worse than ordinary cusps 
we obtain 2(d- 2). For calculations of Alexander polynomials for curves 
with more complicated singularites we refer to [6]. 
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