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Abstract

This paper surveys the authors’ recent work on the two-variable elliptic

genus of singular varieties. The last section calculates a generating function

for the elliptic genera of symmetric products. This generalizes the classical

results of Macdonald and Zagier.

1 Introduction

Elliptic genera appeared in the mid-1980’s in several diverse problems both in topol-
ogy, e.g., circle actions on manifolds, construction of generalized cohomology theo-
ries, genera satisfying multiplicative properties, and in physics, as part of the study
of Dirac-like operators on loop spaces (cf.[35]). Elliptic genera are certain modular
functions attached to manifolds which interpolate many known genera of manifolds
e.g., Todd, L and Â-genera. Following a suggestion of E.Witten (cf. [50]), a two-
variable elliptic genus was formulated as an invariant of superconformal field theory,
and was systematically studied as a tool for comparison of N = 2 minimal models
and Landau-Ginzburg models in the work of T.Kawai,Y.Yamada and S-K. Yang
(cf. [32]). From a mathematical point of view, the two-variable elliptic genus was
studied in the work of Krichever, G.Hohn, B.Totaro and V.Gritsenko (cf. also [28]).
While various generalizations were proposed (for example to complex manifolds, cf.
section 2), the two-variable elliptic genus appears to be the most general elliptic
genus in the sense that almost all versions of elliptic genera are its specializations.

The aim of these notes is to discuss generalizations of the two-variable elliptic
genus to singular varieties from the mathematical point of view proposed in [9] and
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the manuscript.
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[10], in particular without reference to superconformal field theories (it is curious
to note, however, the resemblance of the definition of elliptic genus in terms of
the cohomology of the chiral de Rham complex and the definition of the elliptic
genus of SCFT). First, we shall discuss the definition in terms of the cohomology of
the chiral de Rham complex. Such a cohomology can be defined for hypersurfaces
in Fano toric varieties in terms of the combinatorics of the toric variety, which
allows one to define the elliptic genus in this case. Secondly, we shall discuss the
definition of elliptic genus of singular algebraic varieties in terms of their resolutions
and for singular spaces which are orbifolds X/G in terms of the action of G on X .
These definitions can be used to give mathematical proofs for results which were
previously obtained from the point of view of string theory, notably the Dijkgraaf-
Moore-Verlinde-Verlinde formula for the generating function of the orbifold elliptic
genera of symmetric groups acting on products of a fixed manifold X (cf. section
4). We shall finish with a derivation of generating functions for elliptic genera of
symmetric products and containing as special cases old calculations of generating
functions for Euler characteristics (I.Macdonald) and signatures (D.Zagier).

This subject is extremely vast and no claim to completeness is made. An excel-
lent book by F.Hirzebruch, T.Berger and R.Jung ([29]) is particularly recommended
for everybody interested in this subject.

2 Elliptic genera of manifolds.

Let ΩSO
∗ (resp. ΩU

∗ ) be the cobordism ring of oriented (resp. almost complex) mani-
folds. Recall that cobordism ring is defined as the quotient of the free abelian group
generated by manifolds (C∞, almost complex, Spin, etc.) by the subgroup gener-
ated by manifolds which are boundaries (of manifolds with the same structure); the
product is given by the product of manifolds. An R-valued genus is a ring homo-
morphism E : ΩSO

∗ ⊗Q → R. Similarly, a complex genus is a ring homomorphism
E : ΩU

∗ ⊗Q → R. The class of an almost complex manifold in ΩU
∗ ⊗Q is completely

specified by Chern numbers (cf. [25]), i.e. products of Chern classes evaluated on
the fundamental class of the manifold. In particular, for complex cobordism a genus
can be written as E(M) =

∫
M EdimM(c1, ...ck, ..) for some polynomial EdimM having

coefficients in the ring R. Similarly, in the oriented case, a class of ΩSO
∗ ⊗ Q is

determined by Pontryagin numbers and the genus is the integral of a polynomial in
the Pontryagin classes.

The collection of polynomials Ei can be specified by a characteristic series:
Q(x) = 1 + b1x + b2x2 + ... (bi ∈ R) such that for the factorized total Chern class
c(TM) = 1+c1(M)+ ...+cdimM(M) = (1+x1) · · ·(1+xr) one has E(c1, ...) =

∏
Q(xi)

(cf. [25]). This condition determines the polynomials Ei from Q(x) completely. For
example (cf. [25]), the holomorphic Euler characteristic of a trivial bundle on a com-
plex manifold extends to the complex genus and equals the Todd genus, with the
corresponding characteristic series being x

1−e−x (Hirzebruch’s Riemann-Roch theo-

rem). The corresponding polynomials in Chern classes are c1
2 ,

c21+c2
12 , c1c224 , etc. In the

case of oriented manifolds, the same methods work after replacing Chern classes by
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Pontryagin classes. The integer-valued genera which attracted the most attention,
besides the Todd genus, are the L-genus (corresponding to the series x

tanh(x) ; L-genus
is equal to the signature of the intersection form on the middle dimensional coho-
mology cf. [25]) and the Â-genus (corresponding to the series x/2

sinh(x/2) and equal to

the index of the Dirac operator cf. [2]).
In the simplest version of the elliptic genus, the ring R is the ring of modular

forms Mod∗(Γ) for a certain subgroup Γ of SL2(Z) =
(
a b
c d

)
, a, b, c, d ∈ Z, i.e. the

functions on the upper half-plane satisfying φ(γ · τ) = (cτ + d)kφ(τ), γ ∈ Γ; k is an
integer called the weight of φ and which provides the grading of the ring of modular
forms; such functions often are written in terms of the variable q = e2πiτ .

Landweber-Stong (cf [35]) and S.Ochanine ([45]), while studying the circle ac-
tions on manifolds and the ideals in the cobordism ring generated by the projec-
tivizations of vector bundles, considered the genus Ω∗ → Mod∗(Γ0(2)) ⊂ Q[[q]],

where Γ0(2) =
(
a b
c d

)
∈ SL(2,Z)|c even). Its characteristic series is given by

QLSO(x) =
x/2

sinh(x/2)

∞∏

n=1

[
(1− qn)2

(1− qnex)(1− qne−x)
](−1)n . (1)

E.Witten ([51]) proposed the following expression for this genus:

Â(X)ch{
R(TX)

R(1)dimX
}[X ]

where
R(TX) = ⊗l>0,l≡0(2)Sql(TX)⊗l>0,l≡1(2) Λql(TX) (2)

and the cohomology class ch(E) =
∑

exi for a bundle E for which c(E) =
∏
(1+xi)

is the Chern character of E. In the same paper he gave an interpretation of the
elliptic genus as the index of a Dirac-like (or a signature-like) operator on the loop
space LM .

Elliptic genera of complex manifolds were defined by F.Hirzebruch ([27]) and
E.Witten([51]). Such an elliptic genus takes values in the ring of modular forms for
the group

Γ1(N) = {
(
a b
c d

)
∈ SL(2,Z)|c ≡ 0(N), a ≡ d ≡ 1(N)} (3)

provided the first Chern class of the manifold satisfies c1 ≡ 0(N).
The characteristic series depends on a choice of a point of order N on an elliptic

curve with periods 2πi(1, τ), say α = 2πi( k
N τ + l

N ) ≠ 0, and is given in terms of

Φ(x, τ) = (1− e−x)
∞∏

n=1

(1− qnex)(1− qne−x)

(1− qn)2
. (4)

It is equal to:

QHW (x, τ) = xe−
k
N
x Φ(x− α)

Φ(x)Φ(−α)
. (5)
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I.Krichever ([34]) considered the complex genus with characteristic series

QK(x, z,ω1,ω2, κ) = xe−κx σω1,ω2(x− z)

σω1,ω2(x)σω1,ω2(−z)
eζω1,ω2 (z)x (6)

where z, κ ∈ C∗, σω1,ω2(z) and ζω1,ω2(z) are Weierstrass ζ (ζ ′ = −℘) and σ-functions
(ζ = σ′

σ ) corresponding to the same lattice in C. It was further studied by G.Höhn
(cf. [30]) and B.Totaro (cf.[49]). In this paper B.Totaro gives an important char-
acterization of the genus introduced by Krichever as the universal genus of Ω∗

SU

invariant under classical flops.
Note that the series QK specializes to QHW for z = α and κ = −2k

N ζ(πiτ) −
2l
N ζ(πi)+ζ(z). In addition, the Hirzebruch-Witten genus for N = 2 can be expressed
in terms of Pontrjagin classes, so that it is an invariant of SO-cobordism which up
to a factor coincides with the genus of Ochanine, Landweber and Stong.

One should mention that much of the interest in elliptic genera first come from
a conjecture by Witten later proven by Bott and Taubes (cf. [11]), Hirzebruch (cf.
[27]), Krichever (cf. [34]) and Liu (cf. [37], [39]) concerning the rigidity property
which claims the following. Suppose a compact group G acts on M and a bundle
V so that an operator P acting on V commutes with the the action of G. Let us
consider the character LM,V,P (g) = TrgKerP − TrgImP . The operator is rigid if
this character is independent of g. The above mentioned results (generalizing [1])
state that the bundles which are the coefficients of the q-expansion of (2) support
operators which are rigid. This is the case for other genera, including (5) and
(6). Another important issue in which the elliptic genus was essential is known
under the title anomaly cancellation, which yields a series of nontrivial identities
and congruences among various classical (i.e. L, Â etc.) genera (cf. [38] and survey
[40]).

In the physics literature a two-variable elliptic genus was associated with an
N = (2, 2) superconformal field theory (cf. Eguchi-Ooguri-Taormina-Yang [18],
E.Witten [50] and Kawai-Yamada-Yang cf.[32]). It is given by:

TrH(−1)FyJ0qL0−c/24q̄L̄0−c/24 (7)

where H is the Hilbert space of the SCFT, L0 (resp. L̄0) is the Virasoro generator
of left (resp. right)-movers and J0 (resp. J̄0) is the U(1) charge operator of left
(resp. right) movers, the trace is taken over Ramond sector and F = FL − FR with
FL (resp. FR) the fermion number of left (resp. right) movers. In the case when
the field theory comes from a smooth Calabi-Yau manifold M , one has the following
mathematical expression for the genus (cf. [32],[17], [9])

Ell(M) =
∫

M
ch(E llq,y)td(M) (8)

where

E llq,y = y−
dimM

2 ⊗n≥1 (Λ−yqn−1T̄M ⊗ Λ−y−1qnTM ⊗ Sqn T̄M ⊗ SqnTM). (9)
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The characteristic series for the genus (8) can be written in terms of the theta-
function as follows. Let

θ(z, τ) = q
1
8 (2sinπz)

l=∞∏

l=1

(1− ql)
l=∞∏

l=1

(1− qle2πiz)(1− qle−2πiz) (10)

where q = e2πiτ (the Jacobi theta-function [13] or θ1,1, the theta-function with theta-
characteristic, cf. [43]). Then the elliptic genus (8) corresponds to the characteristic
series (with y = e2πiz):

x ·
θ( x

2πi − z, τ)

θ( x
2πi , τ)

(11)

(cf. [32] and [9]). Note that the use of theta-functions in connection with elliptic
genera goes back to D.Zagier (cf. [52]) and J.L. Brylinski ([12]).

The elliptic genus K(M,ω1,ω2, z, κ) introduced by I.Krichever for a Calabi-Yau
manifold M differs from the elliptic genus (8) only by a factor which depends only
on dimension (and is independent of κ cf. [9] Sect.2):

K(2πiz, 2πi, 2πiτ, κ)(X) = Ell(z, τ)(X) · (−
θ′(0, τ)

2πi θ(z, τ)
)d. (12)

The automorphic property of the elliptic genus is central for understanding this
invariant. Recall that a weak Jacobi form of weight k and index r (k ∈ Z, r ∈ 1

2Z: we
consider forms of half-integral index) is a holomorphic function on H×C satisfying:

φ(
aτ + b

cτ + d
,

z

cτ + d
) = (cτ + d)ke2πi

rcz2

cτ+dφ(τ, z) (13)

φ(τ, z +mτ + n) = (−1)2r(λ+µ)e−2πir(m2τ+2mz)φ(τ, z) (14)

In addition, a weak Jacobi form must have a Fourier expansion with non-negative
powers of q = e2πiτ . This is weaker than the usual condition on Fourier modes,
which explains the name (cf. [19]).

Using the expression via θ-functions for the characteristic series of the elliptic
genus (11), one can show that the elliptic genus of an (almost) complex manifold
of dimension d is a weak Jacobi form of weight 0, index d

2 (cf. [9]). A description
of the space of weak Jacobi forms in [19] yields that elliptic genera of Calabi-Yau
manifolds span the space of Jacobi forms of weight 0 and index d

2 (cf. [9], theorem
2.6). Gritsenko ([23]) has calculated the Z-span of elliptic genera.

Such calculations in particular allow one to decide to what extent the elliptic
genus depends on the χy-genus. Note that the elliptic genus is a combination of
Chern numbers and there are non-trivial relations among Chern and Hodge numbers
(e.g.

∑d
p=2(−1)p

(
p
2

)
χp = 1

12{
1
2d(3d− 5)cd + cd−1c1}[X ] cf. [36]). More precisely,

Theorem 2.1 If the dimension of a Calabi-Yau manifold is less than 12 or is equal
to 13, then the numbers χp determine its elliptic genus uniquely. In all other di-
mensions there exist Calabi-Yau manifolds with the same {χp} but distinct elliptic
genera.
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For example, if e(X) (resp. χ(X)) denotes the topological (resp. holomorphic)
Euler characteristic then (cf. [44], [32]) the elliptic genus in the case of threefolds is

e(X)

2
(y−

1
2 + y

1
2 )

n=∞∏

n=1

(1− qny2)(1− qny−2)

(1− qny)(1− qny−1)
(15)

and for fourfolds is

χ(X)E4A
2 +

e(X)

144
(B2 −E4A

2). (16)

Here, A = φ10,1(τ,z)
η24(τ) , B = φ10,1(τ,z)

η24(τ) , where φ10,1 and φ12,1 are the unique cusp forms of

index 1 and weights 10 and 12, resp. (cf.[19]), η(τ) is the Dedekind η-function and
E4(τ) is the normalized Eisenstein series of weight 4.
However, as follows from the above theorem, for manifolds of high dimension the
elliptic genus contains information not available from the χy-genus. It is interesting,
therefore, to know what are the values of this invariant for concrete manifolds. For
example, the χy characteristic of toric varieties is well known (cf. [15], [46] or [21]).
For elliptic genera of smooth toric varieties we have the following:

Theorem 2.2 Let P be a smooth toric variety corresponding to a fan Σ in N ⊗R

for some lattice of rank d. Let M be the lattice dual to N . For the cone C∗ of Σ
(which is simplicial due to the smoothness of P) let ni(i = 1, ..., d) be a system of
its generators. Then:

Ell(P, y, q) = y−d/2
∑

m∈M

∑

C∗∈Σ

(−1)codimC∗

⎛

⎝
∏

i=1,...,dimC∗

1

1− yqm·ni

⎞

⎠G(y, q)d (17)

where

G(y, q) =
∏

k≥1

(1− yqk−1)(1− y−1qk)

(1− qk)2
.

We shall sketch the proof, which uses the calculation of the cohomology via a
split of the Čech complex according to characters.

First, let us consider the Leray spectral sequence for the cover of the toric va-
riety by open sets AC = SpecC[C] defined by the cones C∗ ∈ Σ and apply this
spectral sequence to the bundle E llq,y(P) (cf.(9)). By abuse of language, the bundle
here actually is a bigraded bundle whose components are the coefficients of yaqb in
E llq,y(P); these coefficients are bundles having finite rank. Since the cohomology of
positive dimension of the bundle E llq,y(P) vanishes over affine sets, it yields

Ell(P; y, q) = y−d/2
∑

m∈M

(
∑

C∗

0 ,...,C
∗

k

(−1)kdimmH
0(AC0 ∩ ... ∩ACk

, E llq,y(P)).

Second, over each such open set AC of maximal dimension, since AC is just an affine
space, a direct calculation shows

∑

m∈M

tmdimmH
0(AC, E llq,y(P)) =

∏

i=1,...,d

∏

k≥1

(1− tmiyqk−1)(1− t−miy−1qk)

(1− tmiqk−1)(1− t−miqk).
(18)
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where mi are generators of the cone C forming a basis in the lattice of the space
containing the cone. Third, one notices that the latter can be rewritten as

∏

i=1,...,d

∏

k≥1

(1− tmiyqk−1)(1− t−miy−1qk)

(1− tmiqk−1)(1− t−miqk)
=

∑

m∈M

tm
∏

i=1,...,d

(
1

1− yqm·ni

)

G(y, q)d

(19)
where

G(y, q) =
∏

k≥1

(1− yqk−1)(1− y−1qk)

(1− qk)2

and ni are generators of C∗.
One checks that the combined result of (18) and (19) is true for cones of arbitrary

(i.e. possibly nonmaximal) dimension since AC = CdimC∗

× (C− 0)d−dimC∗

.
Finally, a combinatorial argument shows that the total contribution of each cone

in the terms of the Čech complex, i.e.
∑

C0∩...∩Ck=C(−1)k, is equal to (−1)codimC∗

.
This yields the theorem.

Since compact toric varieties are never Calabi-Yau, the expression (17) is not ex-
pected to have automorphic properties. However, its specialization to one-variable
genera must satisfy modular relations. For example, for the Landweber-Stong-
Ochanine elliptic genus

Êll(X ; q) = (−1)d/2Ell(X ;−1, q)G(−1, q)−d

we obtain

Theorem 2.3 If P is a smooth complete toric variety, then

Êll(P; q) =
∑

m∈M

⎛

⎝
∑

C∗∈Σ

(−1)codim C∗
∏

i=1,...,dim C∗

1

1 + qm·ni

⎞

⎠ .

In particular, the series in the right hand side is a modular form.

It is interesting that neither the modular property nor the relation to previ-
ous calculations of elliptic genera are obvious but, rather, lead to interesting new
identities. For example, since

Êll(P2) = δ = −
1

8
− 3

∑

n≥1

(
∑

d|n,d odd

d)qd

we have
∑

m≥1,n≥1

qm+n

(1 + qm)(1 + qn)(1 + qm+n)
=
∑

r≥1

q2r
∑

k|r

k.

(cf. [9] for a direct proof of this identity, rather than as a consequence of two different
calculations of elliptic genera).

The next problem is how to calculate the elliptic genus of hypersurfaces in toric
varieties. To describe this, one needs a description of the elliptic genus via the chiral
de Rham complex.
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3 Elliptic genera in the singular case and the chi-

ral de Rham complex

The two-variable elliptic genus is closely related to the chiral de Rham complex
constructed by Malikov, Schechtman and Vaintrob in [41] for algebraic (analytic,
C∞ etc.) manifolds. This is a sheaf of vector spaces which has the structure of sheaf
of vertex operator algebras. In particular, it supports the action of the Virasoro
algebra, whose role in the theory of elliptic genera was anticipated from the very
beginning (cf. [47]; for another attempt to clarify the role of the Virasoro algebra
cf. [48]).

For convenience, let us recall the definition of a vertex operator algebra and
conformal vertex operator algebra (cf. for example [31]).

Definition 3.1 A vertex operator algebra is a vector space V , endowed with
1. a decomposition

V = V0 ⊕ V1 (20)

2. a vector denoted |0 >∈ V0 and called the vacuum vector
3. a linear map V → End(V )[z, z−1] called the states to fields correspondence; the
image of a ∈ V is denoted Y (a, z) =

∑
n∈Z a(n)z−n−1, a(n) ∈ End(V ). One requires

that for fixed a and b there holds a(n)b = 0 for n ≫ 0.
4. a linear map T : V → V called the infinitesimal translation operator.

This data are required to satisfy the following axioms:
a)Translation covariance: {T, Y (a, z)}− = ∂Y (a, z).
b)Vacuum: |0 > satisfies: Y (|0 >, z) = IdV , Y (a, z)|0 > |z=0 = a, T |0 >= 0
c)Locality: (z − w)NY (a, z)Y (b, z) = (−1)p(a)p(b)(z − w)NY (b, z)Y (a, z) for N ≫ 0

Definition 3.2 A conformal vertex algebra is a pair (V, L), where V is a vertex
algebra and L is a field that corresponds to an even element with the following
properties:
1. The components of L(z) =

∑
n Lnz−n−2 satisfy the Virasoro commutation rela-

tions:

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
· c · δn−m

2. L−1 = T is an infinitesimal translation operator.
3. L0 is diagonalizable.

In [41] the authors prove the following:

Theorem 3.3 Let X be a nonsingular compact complex manifold. There exists a
sheaf Ωch

X of vector spaces on X with the properties:
a) For each Zariski open set U , Γ(U,Ωch

X ) has a structure of conformal vertex
algebra, with the restriction maps being morphisms of vertex algebras.

b) Ωch
X has two gradings with degrees called fermionic charge and conformal

weight.
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c) Ωch
X has de Rham differential dchDR of (fermionic) degree 1, (dchDR)

2 = 0.
d) The usual de Rham complex Ω•

X is isomorphic to the conformal weight zero
component of Ωch

DR.
e)The complex (Ωch

X , dchDR) is quasi-isomorphic to (Ω•
X , dDR).

f) Each component of fixed conformal weight has a canonical filtration with grF
isomorphic to the tensor product of exterior powers of the tangent and cotangent
bundles, so that the corresponding generating function is

⊗n≥1(Λyqn−1T̄X ⊗ Λy−1qnTX ⊗ SqnT̄X ⊗ SqnTX)

Recall that the supertrace of an operator S acting on a space (20) is trS|V0 − trS|V1 .
By the Riemann-Roch theorem, the integral in (8) is just

∑
i(−1)idimH i(E llq,y(M)).

If one considers the bigraded sheaf with components being the coefficients of (8),
the parity given by the parity of the exponent of y and endowed with the operators
A and B acting on the coefficient of of yaqb as multiplication by a and b respectively,
then we see that elliptic genus can be written as y

−dimM
2 SupertraceH∗(Ellq,y(M))y

AqB.
Since the Euler characteristics of a filtered sheaf and its associated graded sheaf are
the same, this suggests the following:

Definition 3.4 Let X be a variety for which one can define a chiral de Rham
complex Ωch

X = MSV(X) with properties a)-f) as above. The elliptic genus of X is
then defined as

y−
dimX

2 SuperTraceH∗(MSV(X))y
J [0]qL[0].

The usefulness of this definition stems from the following: the first-named author
did construct such a complex MSV(X) in the case when X is a hypersurface in a
toric varieties with Gorenstein singularities (cf. [7]) or for toric varieties themselves.
In [7], a purely combinatorial construction of the cohomology of MSV(X) is given
in these cases. It contains a description of the latter as the BRST cohomology of
Fock spaces with an explicit description of those in terms of combinatorics. This
yields the following explicit formulas for elliptic genera.

Theorem 3.5 Let X be a generic hypersurface in a Gorenstein toric Fano variety
corresponding to a reflexive polytope ∆ in a lattice M1, rkM1 = d + 1. Let M =
M1 ⊕ Z, N1 and N be the lattices dual to M1 and M respectively and ∆∗ be the
polytope dual to ∆. Denote the elements (0, 1) ∈ M, (0, 1) ∈ N as deg and deg∗

respectively. Let K (resp. K∗) be the cone in M (resp. N) over (∆, 1) (resp.
(∆∗, 1)) with the vertex at (0, 0)M (resp. (0, 0)N). Then

Ell(X, y, q) = y−
d
2

∑

m∈M

(
∑

n∈K∗

yn·deg−m·deg∗qm·n+m·deg∗G(y, q)d+2

)

where

G(y, q) =
∏

k≥1

(1− yqk−1)(1− y−1qk)

(1− qk)2
.
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On the other hand, in the toric case one obtains:

Theorem 3.6 For a toric Gorenstein variety P

Ell(P, y, q) = y−d/2
∑

m∈M

∑

C∗∈Σ

(−1)codimC∗

(
∑

n∈C∗

qm·nydeg·n)G(y, q)d.

The Gorenstein property is needed since P has Gorenstein singularities if and only
if the function of n given by n · deg takes integer values. Inspection of the formulas
in these theorems yields the following:

Corollary 3.7 If X admits a crepant toric desingularization X̂ , then

Ell(X, y, q) = Ell(X̂, y, q).

Similarly to the non singular case we have:

Theorem 3.8 The elliptic genus of a generic Calabi-Yau hypersurface in a any toric
Gorenstein Fano variety is a weak Jacobi form of weight 0 and index d

2 .

The proof uses an extension of the elliptic genus to a three-variable function and
expression of the latter via theta functions, which reduces to the Bott formula in
the smooth case. (cf. lemma 5.3 in [9])
An explicit description of the Fock spaces for which BRST cohomology yields the
cohomology of the chiral de Rham complex MSV(X) in the case of theorem 3.5
and use of the Jacobi property of their elliptic genus provides the following relation:

Theorem 3.9 Let X,X∗ be Calabi-Yau hypersurfaces in toric Gorenstein Fano
varieties corresponding to dual reflexive polytopes ∆ and ∆∗. Then:

Ell(X ; y, q) = (−1)dEll(X∗; y, q).

Such a result certainly is expected from physics considerations and assuming that
Calabi-Yau hypersurfaces corresponding to dual polytopes form a mirror pair in
the strong sense of correspondence between CFT’s. Also, one can check it in small
dimensions when the elliptic genus is a combination of Hodge numbers (cf. 2.1 and
[44] for explicit formulas). But in higher dimensions the relation in theorem 3.9 can
be viewed as a test for deciding if two Calabi-Yau manifolds form a mirror pair.

4 Elliptic genus of singular varieties via resolution

of singularities and orbifold elliptic genera.

The definition of elliptic genus for special singular varieties in the last section sug-
gests the following problem: find an expression for the elliptic genus of singular
varieties in terms of a resolution and define the elliptic genus for varieties more
general than hypersurfaces in singular toric spaces. These problems were addressed
in [10], where the following approach was proposed.
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Definition 4.1 Let Z be a complex space with Q-Gorenstein singularities and let
Y → Z be a resolution of singularities. Let αk ∈ Q be the discrepancies, i.e. rational
numbers defined from the relation: KY = π∗KZ +

∑
αkEk. Then

Ellsing(Z; z, τ) :=
∫

Y

(∏

l

( yl
2πi)θ(

yl
2πi − z, τ)θ′(0, τ)

θ(−z, τ)θ( yl
2πi , τ)

)
×
(∏

k

θ( ek
2πi − (αk + 1)z, τ)θ(−z, τ)

θ( ek
2πi − z, τ)θ(−(αk + 1)z, τ)

)

(This definition can be generalized to define the elliptic genus of log-terminal pairs;
cf. [10] for details).

It turns out that Ellsing(Z; z, τ) is independent of Y and hence defines an in-
variant of Z. Several results make this invariant interesting.

1. It does specialize to the normalized version of the elliptic genus discussed earlier
in the case when Z is non-singular, i.e.

Ellsing(Z, z, τ) = Ell(Z, z, τ)(−
θ′(0, τ)

2πi θ(z, τ)
)d (21)

2. If Z admits a crepant resolution, i.e. such that all discrepancies are zero, the
singular elliptic genus coincides with the elliptic genus of a crepant resolution (up
to the same factor as in (21)).

3. In the case when Z is a Calabi-Yau, the singular elliptic genus has the transfor-
mation properties of a Jacobi form.

4. For Calabi-Yau hypersurfaces in Fano Gorenstein toric varieties, the elliptic genus
in 4.1 coincides with the elliptic genus considered in the last section (again up to
the factor in (21)).

5. If q → 0 then the singular elliptic genus specializes (up to a factor) to the χy

genus that is a specialization of the E-function studied by Batyrev ([6]).
Finally, in many situations Ellsing is related to the elliptic genus of orbifolds,

also introduced in [10]. Let X be a complex manifold on which a finite group G is
acting via holomorphic transformations. Let Xh will be the fixed point set of h ∈ G
and Xg,h = Xg ∩Xh(g, h ∈ G). Let

TX|Xh = ⊕λ(h)∈Q∩[0,1)Vλ. (22)

where the bundle Vλ on Xh is determined by the requirement that h acts on Vλ via
multiplication by e2πiλ(h). For a connected component of Xh (which by abuse of
notation we also will denote Xh), the fermionic shift is defined as F (h,Xh ⊆ X) =∑

λ λ(h) (cf. [53], [5]). Let us consider the bundle:

Vh,Xh⊆X := ⊗k≥1

[
(Λ•V ∗

0 yq
k−1)⊗ (Λ•V0y

−1qk)⊗ (Sym•V ∗
0 q

k)⊗ (Sym•V0q
k)⊗

⊗[⊗λ≠0(Λ
•V ∗

λ yq
k−1+λ(h))⊗(Λ•Vλy

−1qk−λ(h))⊗(Sym•V ∗
λ q

k−1+λ(h))⊗(Sym•Vλq
k−λ(h))]

]

(23)
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Definition 4.2 The orbifold elliptic genus of a G-manifold X is the function on
H ×C given by:

Ellorb(X,G; y, q) := y−dim/X/2
∑

{h},Xh

yF (h,Xh⊆X) 1

|C(h)|

∑

g∈C(h)

L(g, Vh,Xh⊆X)

where the summation in the first sum is over all conjugacy classes inG and connected
components Xh of an element h ∈ {h}, C(h) is the centralizer of h ∈ G and
L(g, Vh,Xh⊆X) =

∑
i(−1)itr(g,H i(Vh,Xh⊆X)) is the holomorphic Lefschetz number.

Using the holomorphic Lefschetz formula ([2]) one can rewrite this definition as
follows.

Theorem 4.3 Let TX|Xg,f = ⊕Wλ and let xλ be the collection of Chern roots of
Wλ. Let

Φ(g, h,λ, z, τ, x) =
θ( x

2πi + λ(g)− τλ(h)− z)

θ( x
2πi + λ(g)− τλ(h))

e2πizλ(h).

Then:

Eorb(X,G, z, τ) =
1

|G|

∑

gh=hg

∏

λ(g)=λ(h)=0

xλ

∏

λ

Φ(g, h,λ, z, τ, xλ)[X
g,h].

An orbifold elliptic genus so defined specializes for q = 0, y = −1 to the orbifold
Euler characteristic: eorb(X,G) = 1

|G|

∑
fg=gf e(X

f,g) (cf. [26] and [3] where such an
orbifold Euler characteristic is interpreted as the Euler characteristic of equivariant
K-theory: rkK0

G(X) − rkK1
G(X)). Such an orbifold elliptic genus also can be spe-

cialized to the orbifold E-function studied by Batyrev-Dais ([5]). Moreover, one can
show that Ellorb(X,G) is an invariant of cobordisms of G-actions.

One of the consequences of 4.3 is the Jacobi property of Ellorb(X,G) in the
case when X is Calabi-Yau and the action of G preserves a holomorphic volume
form (for more general actions, Ellorb still has the Jacobi property but only for a
subgroup of the Jacobi group described in terms of the order of the image of G
inAutH0(X,Ωd(X))).

In the case when X → X/G does not have ramification we have the following
conjecture.

Conjecture 4.4 Let X be a complex manifold equipped with an effective action of
a finite group G. Then

Ellorb(X,G; y, q) =

(
2πiθ(−z, τ)

θ′(0, τ)

)dimX

Êll(X/G, ; y, q)

(for a more general statement, which allows ramification, cf. [10]). This conjecture
is proven in [10] in the case when X is a smooth toric variety and G is a subgroup
of the big torus and also for arbitrary X in the case when G = Z/2Z (using the
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description of generators of the cobordisms of Z/2Z-actions given in [33]). Assuming

this conjecture in the case when X/G admits a crepant resolution X̃/G, the orbifold
ellptic genus is just the elliptic genus of such a resolution. So it is natural to think
about Ellorb(X,G) as a substitute for the elliptic genus of crepant resolution in the
cases when it does not exist.

The most interesting property of Eorb(X,G) is that it yields the remarkable
formula due to R. Dijkgraaf, G. Moore, E. Verlinde and H. Verlinde (cf. [17], also cf.
[16]) obtained as part of the identification of the elliptic genus of the supersymmetric
sigma model of the N -symmetric product of a manifold X and the partition function
of a second quantized string theory on X×S1. Namely, in [10] a mathematical proof
is given for the following.

Theorem 4.5 Let X be a smooth variety X with elliptic genus
∑

m,l c(m, l)ylqm.
Then

∑

n≥0

pnEllorb(X
n,Σn; y, q) =

∞∏

i=1

1

(1− piylqm)c(mi,l)
.

Note that since the elliptic genus can be specialized to χy-genus and the Hilbert
schemes for surfaces give a crepant resolution of the symmetric product, the results
of [20] and [22] can be viewed as special cases of this theorem (cf. also [55]).

5 Generating functions for elliptic genera of sym-

metric products.

Another interesting question is about a generating function similar to 4.5 but con-
structed for ordinary elliptic genus of the quotient which we define as

1

|G|

∑

g

L(g, E llq,y(X)) (24)

where E llq,y(X) is the bundle (9). We remark that this represents a “naive” version
of an elliptic genus of the quotient, and is different from the orbifold genus considered
in the last section. In particular, one cannot expect it to satisfy the formula of [17].
On the other hand, such an elliptic genus of the quotient specializes to the χy-genus
of the quotient (cf. [52]) and in particular determines the Euler characteristic and
the signature of the quotient. Generating functions for these classical invariants of
symmetric products of manifolds were obtained earlier: for the Euler characteristic
(cf. (5.4) and [42]) and for the signature (cf. [52], [54],[55], and 5.5). The analog of
4.5 is the following:

Theorem 5.1 Let Ell(X) = Σc(m, l)qmyl. Then

∑

n

Ell(Xn/Σn)t
n =

∏

m,l

1

(1− tqmyl)c(m,l)
.
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The proof is based on the following expression of holomorphic Lefschetz numbers of
(9) via theta functions.

Lemma 5.2

L(g, y−d/2Λ−yqk−1T ∗ ⊗ Λ−y−1qkT ⊗ Sqk(T
∗)⊗ Sqk(T ))

=

∏
i,r,s yiθ(

yi
2πi − z, τ)θ(xr,s+θr

2πi − z, τ)
∏

r,s,i θ(
yi
2πi , τ)θ(

xr,s+θr
2πi , τ)

Proof. We shall use the Atiyah-Singer holomorphic Lefschetz formula:

L(g, V ) =
[ch V |Xg ](g)td(TXg)

ch λ−1(Ng)∗(g)
[Xg]

If Ng = ⊕Ng(θr) has Chern roots xr,s then ch λ−1((Ng)∗)(g) =
∏

r,s(1 − e−xr,s−θr)
Let yi be the Chern roots of TXg . Then we have:

chE llq,y(X)|Xgtd(Xg)

chλ−1((Ng)∗)(g)
=

y−d/2

∏
i,r,s yi(1− yqk−1e−yi)(1− yqk−1e−xr,s−θr)(1− y−1qkeyi)(1− y−1qkexr,s+θr)

∏
i,r,s(1− qke−yi)(1− qke−xr,s−θr)(1− qkeyi)(1− qkexr,s+θr,s)(1− e−yi)

∏
r,s(1− e−xr,s−θr)

The latter can be written as

y−d/2

∏
i,r,s yi(1− yqke−yi)(1− yqke−xr,s−θr)(1− y−1qkeyi)(1− y−1qkexr,s+θr)(1− ye−yi)(1− ye−xr,s−θr)
∏

i,r,s(1− qke−yi)(1− qke−xr,s−θr)(1− qkeyi)(1− qkexr,s+θr,s)(1− e−yi)
∏

r,s(1− e−xr,s−θr)

Since sinπ(a−z) = eπi(a−z) (1−e−2πi(a−z))
2i = y−

1
2 eπia(1−ye−2πia)( 1

2i) this can be written
as:

∏

i,r,s

2sinπ( yi
2πi − z)(1− e2πizqke−yi)(1− e−2πizqkeyi)2sinπ(xr,s+θr

2πi − z)(1 − e2πizqke−xr,s+θr+2πiz)

2sinπyi(1− qkeyi)(1− qke−yi)2sinπ(xr,s + θr)(1− qkexr,s+θr)(1− qke−xr,s−θr,s)

(1− e2πizqke−xr,s+θr)
=

∏
i,r,s yiθ(

yi
2πi − z, τ)θ(xr,s+θr

2πi − z, τ)
∏

r,s,i θ(
yi
2πi , τ)θ(

xr,s+θr
2πi , τ)

.

✷

We also shall use the following two identities:

k=r−1∏

k=0

sinπ(x+
k

r
) =

1

2r−1
sinπrx

and
k=r−1∏

k=0

(1− qle2πiz+2πi k
r ) = (1− qrle2πizr)

which follow from (1− tr) =
∏
(1− tζkr ).
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They yield:

∏

k

θ(x+
r

r
−z) =

∏

k

q
1
82sinπ(x+

k

r
−z)

∏

l

(1−ql)
∏

l

(1−qle2πi(x+
k
r
−z))(1−qle2πi−(x+ k

r
−z))

= q
r
82r

1

2r−1
sinπr(x− z)(

∏

l

(1− ql))r
∏

l

(1− qrle2πir(x−z))(1− qle2πir(x−z))

=

∏
l(1− ql))r
∏

l(1− qlr)
θ(rτ, r(x− z)).

If σr is a cyclic permutation of Xr then the fixed point set is the diagonal, the
representation of σr in the normal bundle is the quotient of the regular representation
by the trivial representation and each isotrivial component isomorphic to the tangent
bundle of X . Therefore:

L(σr, X
r) =

∏

i

r−1∏

k=0

yi
θ( yi

2πi +
k
r − z)

θ( yi
2πi +

k
r )

[X ] =
∏

i

yi
θ(rτ, ryi − rz))

θ(rτ, ryi)
[X ] =

1

rd
∏

i

ryi
θ(rτ, ryi − rz))

θ(rτ, ryi)
[X ] = Ell(rτ, yr)

(the latter equality follows since replacing yi → ryi multiplies the degree d compo-
nent of the cohomology class evaluated on [X ] by rd).

We can use arguments similar to those used in [42],[52] and [26] to conclude the
proof of 5.1. We have

∑
Elln(X

n/Σn)t
n =

∑

n

[
1

|Σn|

∑

g∈Σn

L(g,Xn)]tn

where L(g,Xn) is the holomorphic Lefschetz number of g acting on the bundle
E ll(X) As usual, one can replace the summation with the summation over the set of
conjugacy classes since conjugate g have isomorphic fixed point sets. The number
of elements in a conjugacy class is |G|

|C(g)| , where C(g) is the centralizer of g. Hence

the latter sum can be replaced by
∑

n
∑

{g}∈Σn

L(g,Xn)
|C(g)| t

n. Each conjugacy class is
specified by a partition of n which has ai cycles of length i, so that

∑
iai = n. Let

ga1,...,ar be an element in such a conjugacy class. Change of the order of summation
yields

∑

a1,...,an,...

L(ga1,..,an, X
n)

1

(a1)! · · · an! · 2a2 · · · nan
ta1+2a2+...+nan

since the number of elements in the conjugacy class corresponding to (a1, .., an) is
n!

a1!...an!2a2 ...nan . Next, the fixed point set of ga1,..,an is Xa1 × ... × Xan . Using the
multiplicativity of Lefschetz numbers we obtain

∑

a1,...an,...

∏
i L(σi, X i)aita1+2a2+...nan

a1!...an!2a2 ...nan
=
∏

i

∑

k

L(σi, X i)ktki

k!ik
.
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The latter can be simplified to

∏

k

exp(
L(σi, X)ti

i
) = exp(

∑

i,m,l

c(m, l)qimyilti

i
) =

∏

m,l

exp(−c(m, l)log(1− tqmyl)) =
∏

m,n

1

(1− tqmyl)c(m,l)
.

✷

We shall mention the following special cases of 5.1:

Corollary 5.3 Let χy(X) =
∑

p χ
pyp. Then

∑

n

χy(X
n/Σn)t

n =
∏

p

1

(1− t(−y)p)(−1)pχp .

This follows from 5.1 since χy(X) = Ell(X, q = 0,−y)(−y)
d
2 and in particular if

l + d
2 = p then c(0, l) = (−1)pχp. Generating series for χy were also considered in

[54], [55].

Corollary 5.4 (Macdonald, [42]) Let e denote the topological Euler characteristic.
Then

∑

n

e(Xn/Σn)t
n =

1

(1− t)e(X)
.

Corollary 5.5 (D.Zagier, [52]) Let σ denote the signature of the intersection form
in the middle dimension. Then

∑

n

σ(Xn/Σn)t
n =

(1 + t)
σ(X)−e(X)

2

(1− t)
σ(X)+e(X)

2

.
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