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Abstract

This paper gives an extension of the classical Zariski-van Kampen
theorem describing the fundamental groups of the complements of
plane singular curves by generators and relations. It provides a proce-
dure for computation of the first non-trivial higher homotopy groups
of the complements of singular projective hypersurfaces in terms of
the homotopy variation operators introduced here.

1 Introduction

The classical Zariski-van Kampen theorem expresses the fundamental group
of the complement of a plane algebraic curve in CP2 as a quotient of the fun-
damental group of the intersection of this complement and a generic element
of a pencil of lines (cf. [18], [15] and [3]). The latter group is always free and
the quotient is taken by the normal closure of a set of elements described
in terms of the monodromy action arising as a result of moving the above
generic element around the special elements of the pencil. This theorem is
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the main tool for the study of the fundamental groups of the complements
of plane algebraic curves (cf. [11]).

The purpose of the present paper is to describe a high dimensional gen-
eralization of this theorem. Let V be a hypersurface of CPn+1 having de-
gree d and the dimension of its singular locus equal to k. It is shown in [12]
that, if n − k ≥ 2, π1(CPn+1 − V ) = Z/dZ and πi(CPn+1 − V ) = 0 for
2 ≤ i ≤ n − k − 1. Moreover the group πn−k(CPn+1 − V ) depends on the
local type and the position of the singularities of V . The latter homotopy
group is called the first non trivial (higher) homotopy group of the com-
plement to V in CPn+1. Since by the Zariski-Lefschetz hyperplane section
theorem (cf. [7]), for a generic linear subspace H of codimension k in CPn+1

one has πn−k(CPn+1− V ) = πn−k(H −H ∩ V ), it is enough to consider only
the key case when V has only isolated singularities. This remark reduces also
the case n− k = 1 to the Zariski-van Kampen theorem mentioned above.

An analogue of the Zariski-van Kampen theorem for higher homotopy
groups of the complement to hypersurfaces with isolated singularities inCn+1

was given in [12]. There it was shown that, for a generic hyperplane L,
the homotopy group πn(Cn+1 − V ) is the quotient of πn(L − L ∩ V ) by a
π1(L−L∩V )-submodule which depends not just on the monodromy around
the singular members of the pencil containing the hyperplane section but also
on certain “degeneration operators” on the homotopy groups of the special
members of the pencil.

The present work proposes a different approach to a high dimensional
Zariski-van Kampen theorem. It is based on the systematic use of homo-
topy variation operators introduced below. Homological variation operators
were considered in [5] for a generalization of the second Lefschetz theorem
(cf. [10, Chap. V, §8, Théorème VI], [16] and [1]). From this point of view the
main result of this paper can also be viewed as a homotopy second Lefschetz
theorem.

The main result of the paper is the following (restated as Theorem 7.1
below):

Theorem. Let V be a hypersurface in Pn+1 with n ≥ 2 having only isolated
singularities. Consider a pencil (Lt)t∈P1 of hyperplanes in Pn+1 with the base
locus M transversal to V . Denote by t1, . . . , tN the collection of those t for
which Lt ∩ V has singularities. Let t0 be different from either of t1, . . . , tN .
Let γi be a good collection (cf. Definition 3.2) of paths in P1 based in t0. Let
e ∈M−M∩V be a base point. Let Vi be the variation operator (cf. section 5)
corresponding to γi. Then inclusion induces an isomorphism:

πn(P
n+1 − V, e)

∼
←− πn(Lt0 − Lt0 ∩ V, e)

/ N∑

i=1

imVi.
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For n = 1, this statement reduces to the classical Zariski-van Kampen
theorem as we explain it in Remark 7.2 below. But our proof does not work
in the case n = 1. Thus we shall suppose n ≥ 2 in this article.

The paper is organized as follows. We start, in section 2, by describing in
detail several pencils of hyperplanes associated with a hypersurface V with
isolated singularities. We also review some vanishing results and homologi-
cal description of the homotopy groups of the complements of hypersurfaces
from [12]. In sections 3, 4 and 5 we describe the monodromies, the degen-
eration operators and homotopy variation operators. Section 6 describes the
crucial relationship between homotopy variation and degeneration operators.
The last section contains the announced theorem (theorem 7.1). Two proofs
are given, one deriving it from the quoted theorem of [5] and another from
that of [12].

Most of the work for this paper was done during several visits by the first
author to the University of Provence, to which he expresses his gratitude
for warm hospitality. Both authors would like to thank Lê Dũng Tráng,
David Trotman and Bernard Teissier for reading parts of the manuscript and
making valuable comments.

Here is some notation we shall use throughout the paper.

Notation 1.1. 1. The ground field in this paper is always C so we shall
omit ‘C’ from our notation of complex projective space which be-
comes Pn for the n-dimensional one.

2. All inclusion maps will be denoted by “incl” and any canonical sur-
jection from a set to a quotient of it by “can”. In diagrams, we shall
use the same letter for a map and any other map obtained from it by
restriction of the source or the target.

3. All homology groups will be singular homology groups with integer
coefficients. Given a continuous map f : X → Y between topological
spaces, we shall denote by f∗ the induced homomorphism Hn(X) →
Hn(Y ), whatever be the integer n, and by f• the induced homomor-
phisms Cn(X) → Cn(Y ) between chain groups. If X ′ ⊂ X and
f(X ′) ⊂ Y ′ ⊂ Y , we shall write f̄∗ for the induced homomorphisms
Hn(X,X ′) → Hn(Y, Y ′). If x ∈ X and y = f(x) ∈ Y , we shall denote
by f# the induced maps πn(X, x) → πn(Y, y) for n ≥ 0 and, if x ∈ X ′

and y = f(x) ∈ Y ′, by f̄# the induced maps πn(X,X ′, x)→ πn(Y, Y ′, y)
for n ≥ 1. All boundary operators in homology or homotopy will be
designated by ∂. All absolute Hurewicz homomorphisms will be de-
noted by χ and the relative ones by χ̄.
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4. Given an absolute cycle ξ, we shall write [ ξ ]X for its homology class in a
space X containing it and, if η is a chain contained in X with boundary
contained in X ′ ⊂ X , we shall denote by [ η ](X,X′) its homology class
in X modulo X ′. If ξ′ is an(other) absolute cycle contained in X , we
shall write ‘ξ ∼ ξ′ in X’ to mean that ξ is homologous to ξ′ in X . The
homotopy class of a loop γ will be denoted by γ̄, the space in which
this class has to be taken being made clear by the context.

5. The singular locus of the algebraic hypersurface V will be designated
by Vsing.

6. In a blow up, the total transform of a subset E of the blown up space
will be denoted by Ê and its strict transform by E♯.

2 Preliminaries

2.1 General setup

Let V be a closed algebraic hypersurface of (n+1)-dimensional complex pro-
jective space Pn+1, with only isolated singularities. Let d be its degree. We
suppose n ≥ 2 for the reasons explained in the introduction and we suppose
d ≥ 2, the case d = 1 being trivial (and appearing as a combursome excep-
tional case in what follows). Let M be a projective (n− 1)-plane transverse
to V (that is avoiding the singular points of V and transverse to the non-
singular part of V ). Let L be the pencil of hyperplanes with base locus M ,
that is, the set of projective hyperplanes of Pn+1 containing M . We want to
compute the homotopy groups of Pn+1 − V with the help of its sections by
the elements of L.

We take homogeneous coordinates (x1 : · · · : xn+1 : xn+2) on Pn+1, so
chosen that M is defined by the equations

xn+1 = xn+2 = 0.

We then have a one-to-one parametrization of the elements of pencil L by
the elements of P1 as follows. Given also homogeneous coordinates on P1,
for each t = (λ : µ) ∈ P1, the hyperplane Lt of Pn+1 with parameter t is
defined by the equation

λxn+1 + µxn+2 = 0.

We shall thus consider L as being the parametrized family (Lt)t∈P1 . The
transversality of M to V entails the following claim.
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Claim 2.1. The given choice of the axis M of pencil L = (Lt)t∈P1 is generic.
All the members of this pencil are transverse to V except a finite number of
them, say Lt1 , . . . , LtN . Each Lti is transverse to V except at a finite number
of points, which may be singular points of V or tangency points of Lti to the
non-singular part of V , and moreover none of them belongs to M .

Proof. This is a consequence of [4, Corollaire 10.18, Corollaire 10.19 com-
bined with Proposition 10.20 and Corollaire 10.17]. The quoted results apply
when stratifying V by its singular part Vsing and non-singular part V −Vsing.
This is indeed a Whitney stratification of V by Lemma 19.3 of [17], since
Vsing is 0-dimensional.

Thus, pencil (Lt)t∈P1 looks like a stratified version of the “Lefschetz pen-
cils” of [13] but each Lti ∩ V may have more than one singularity and these
singularities may be of any kind.

Our goal is to define variation and degeneration operators on homotopy.
Each of those depends on a choice of Lti for some fixed index i and a loop γi
running once around ti in the parameter space P1 and surrounding none of
the points t1, . . . , tN besides ti. The main technical tool is an interpretation of
the relevant homotopy groups as the homology groups of universal coverings
which was used in [12]. This material is discussed in the last part of this
section (cf. 2.4 below). The universal covers are obtained as restrictions of
a ramified cover of Pn+1 by a hypersurface W of Pn+2 viewed in the next
subsection. The rest describes the classical blowing up construction in our
framework which we use to get rid of the base points of the pencils as will
be needed for the definition of degeneration operators.

2.2 A ramified cover of Pn+1

In the homogeneous coordinates of Pn+1 chosen in section 2.1, let

f(x1, . . . , xn+1, xn+2) = 0

be an equation of V where f is a homogeneous reduced polynomial of de-
gree d.

Now, in Pn+2 with homogeneous coordinates (x0 : x1 : · · · : xn+1 : xn+2),
let A be the point of coordinates (1 : 0 : · · · : 0 : 0). Let us consider the
projection with center A

pr : Pn+2 − {A } −→ Pn+1

(x0 : x1 : · · · : xn+1 : xn+2) *−→ (x1 : · · · : xn+1 : xn+2).
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Let W be the hypersurface of Pn+2 given by the equation

xd
0 + f(x1, . . . , xn+2) = 0.

We have A /∈ W . Thus π = pr|W is well defined. The following is a classical
result.

Claim 2.2. The map π : W → Pn+1 is a holomorphic d-fold covering of Pn+1

totally ramified along V .

We consider also the embedding

j : Pn+1 −→ Pn+2 (x1 : · · · : xn+2) *−→ (0 : x1 : · · · : xn+2),

the image of which is the projective hyperplane j(Pn+1) ⊂ Pn+2 given by
x0 = 0. We have

W ∩ j(Pn+1) = j(V ) = π−1(V ), (2.1)

each of these subsets of Pn+2 having equations equivalent to

x0 = f(x1, . . . , xn+2) = 0.

The following claim is also easy to check from the equations.

Claim 2.3. The singular points of W are the images by j of the singular
points of V .

Hypersurface W supports a natural pencil, the elements of which are
the branched covers of the elements of pencil L and which can be explicitly
described as follows. Let M be the projective n-plane of Pn+2 defined by
the same equations as M in Pn+1, that is

xn+1 = xn+2 = 0

and let L = (Lt)t∈P1 be the pencil of hyperplanes of Pn+2 with base locusM.
Here, with the same homogeneous coordinates on P1 as in section 2.1, for
each t = (λ : µ) ∈ P1, the hyperplane Lt of Pn+2 is defined by the same
equations as Lt in Pn+1, that is

λxn+1 + µxn+2 = 0.

As a consequence we have

π−1(M) = M ∩W and π−1(Lt) = Lt ∩W for any t ∈ P1 (2.2)

and also

M ∩ j(Pn+1) = j(M) and Lt ∩ j(Pn+1) = j(Lt) for any t ∈ P1.

Unramified covers of Pn+1− V and of its sections by Lt and M are given
by Claim 2.2. They can be specified thanks to 2.1 and 2.2 as follows.
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Claim 2.4. Map π induces the following holomorphic unramified d-fold cov-
erings:

(i) W − j(V ) −→ Pn+1 − V,

(ii) Lt ∩ (W − j(V )) −→ Lt − Lt ∩ V for any t ∈ P1,

(iii) M ∩ (W − j(V )) −→M −M ∩ V.

It is worth noticing that pencil L is good with respect to W and j(V )
as L was good with respect to V . To make this precise, we first stratify W .
The following claim is proved using again [17, Lemma 19.3].

Claim 2.5. The partition

Σ = { j(Vsing), j(V − Vsing),W − j(V ) }

of W is an algebraic Whitney stratification.

The statement analogous to Claim 2.1 is then the following. It is a con-
sequence of Claim 2.1 that can be checked on the equations.

Claim 2.6. The base locusM of L is transverse to the strata of Σ and so is Lt

for all t ∈ P1 distinct from t1, . . . , tN . Each Lti is transverse to W − j(V ),
non-transverse to j(Vsing) wherever it meets this finite set and transverse
to j(V − Vsing) except at the points j(x) corresponding to the finite number
of points x where Lti is tangent to the non-singular part of V .

2.3 Blowing up the cover

The homotopical degeneration and variation operators we want will be ob-
tained by considering homological counterparts on the cover dealt with in
the preceding subsection. But the definition of the homological degeneration
operators will in turn require to blow up this cover along the base locus of
the pencil we considered. In fact we do it first for the ambient space Pn+2.
Let

P̂n+2 = { (x, τ) ∈ Pn+2 ×P1 | x ∈ Lτ }

be the blow up of Pn+2 along M. It is given by the equation

τ1xn+1 + τ2xn+2 = 0

which is separately homogeneous in the homogeneous coordinates (x0 : x1 :
· · · : xn+1 : xn+2) of x and (τ1 : τ2) of τ . This is an (n + 1)-dimensional
complex analytic compact connected submanifold of Pn+2 ×P1.
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The restrictions to P̂n+2 of the projections of Pn+2×P1 onto its first and
second factors give respectively the blowing down morphism Φ and projec-
tion P :

Pn+2 Φ
←− P̂n+2 P

−→ P1.

These are holomorphic mappings and P is submersive.
For any subset E ⊂ Pn+2, we shall, following Notation 1.1, item 6, denote

by Ê its total transform, that is

Ê = Φ−1(E).

If E ⊂M, then its total transform has a product structure:

Ê = E ×P1 for any E ⊂M (2.3)

and the restrictions of Φ and P to Ê coincide with the first and second
projections. In particular, M̂ = M × P1. The blowing down morphism
induces an analytic isomorphism from P̂n+2 − M̂ onto Pn+2 −M. We shall
be interested in the total transform Ŵ of the cover W of the preceding
subsection.

For each t ∈ P1, we consider the strict transform of Lt which we denote
by L♯

t following Notation 1.1, item 6. We have

L♯
t = Lt × { t } = P−1(t). (2.4)

The blowing down morphism induces an analytic isomorphism from L♯
t onto Lt

and hence an analytic isomorphism

L♯
t ∩ Ê

∼
−→ Lt ∩ E for any E ⊂ Pn+2. (2.5)

At this point it will be convenient to introduce some abbreviations to
save space in diagrams.

Notation 2.7. We shall designate by E ′ the intersection of a subspace E

of Pn+1 (resp. Pn+2, P̂n+2) with Pn+1−V (resp. W − j(V ), Ŵ − ĵ(V )). For

instance, L′
t = Lt−Lt∩V , M′ = M∩(W−j(V )), L♯ ′

t = L♯
t∩(Ŵ− ĵ(V )) and

even Ŵ ′ = Ŵ − ĵ(V ). We shall denote by P ′ the restriction of projection P

to Ŵ − ĵ(V ).

2.4 Homological description of homotopy groups

We obtain relevant homotopy groups of the base spaces of the covers of
Claim 2.4 as homology groups of their total spaces except in some exceptional
cases where we shall content ourselves with a morphism from a subgroup of
the fundamental group of the base space onto the first homology group of
the total space.

8



Lemma 2.8. We use Notation 2.7. Let e ∈ M ′ and ε ∈ π−1(e) ⊂ M′ be
base points.

(i) If n ≥ 2, there are isomorphisms η and αt, for t ∈ P1 − { t1, . . . , tN },
defined by composition as follows:

η : πn(P
n+1 − V, e)

π−1
#
∼
−→ πn(W − j(V ), ε)

χ
∼
−→ Hn(W − j(V )),

αt : πn(L
′
t, e)

π−1
#
∼
−→ πn(L

′
t, ε)

χ
∼
−→ Hn(L

′
t),

where the arrows labeled χ are Hurewicz isomorphisms and the arrows
labeled π−1

# are the inverses of isomorphisms induced by the projections
of the coverings of Claim 2.4 (which all are restrictions of map π).
Furthermore, for any t ∈ P1 − { t1, . . . , tN }, the following diagram is
commutative:

Hn(L′
t)

incl∗−−−→ Hn(W − j(V ))
$⏐⏐≀ αt

$⏐⏐≀ η

πn(L′
t, e)

incl#
−−−→ πn(Pn+1 − V, e)

(following Notation 1.1, item 2, all inclusion maps are denoted by incl).

(ii) If n ≥ 3, there are isomorphisms βi, for 1 ≤ i ≤ N , and γ defined by
composition as follows:

βi : πn−1(L
′
ti
, e)

π−1
#
∼
−→ πn−1(L

′
ti
, ε)

χ
∼
−→ Hn−1(L

′
ti
),

γ : πn−1(M
′, e)

π−1
#
∼
−→ πn−1(M

′, ε)
χ
∼
−→ Hn−1(M

′),

where isomorphisms χ and π−1
# are as in item (i). Furthermore, for

1 ≤ i ≤ N , the following diagram is commutative:

Hn−1(M′)
incl∗−−−→ Hn−1(L′

ti
)

$⏐⏐≀ γ

$⏐⏐≀ βi

πn−1(M ′, e)
incl#
−−−→ πn−1(L′

ti
, e).

(2.6)

(iii) When n = 2, the projections of the coverings considered in item (ii)
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induce isomorphisms

π1(L
′
ti
, ε)

π#
∼
−→ Gi ⊂ π1(L

′
ti
, e),

π1(M
′, ε)

π#
∼
−→ H ⊂ π1(M

′, e),

where Gi is, for 1 ≤ i ≤ N , a subgroup of index d of π1(L′
ti
, e) and

H a subgroup of index d of π1(M ′, e) (the latter is free of rank d − 1).
One can then define homomorphisms βi, for 1 ≤ i ≤ N , and γ by
composition as follows:

βi : Gi

π−1
#
∼
−→ π1(L

′
ti
, ε)

χ
−→ H1(L

′
ti
),

γ : H

π−1
#
∼
−→ π1(M

′, ε)
χ
−→ H1(M

′),

where the Hurewicz homomorphisms χ are here abelianizations. Ho-
momorphisms βi, for 1 ≤ i ≤ N , and γ are thus onto. Furthermore,
for 1 ≤ i ≤ N , the image of H by the natural map incl# : π1(M ′, e)→
π1(L′

ti
, e) is included in Gi and the following diagram is commutative:

H1(M′)
incl∗−−−→ H1(L′

ti
)

$⏐⏐γ

$⏐⏐βi

H
incl#
−−−→ Gi.

(2.7)

Proof. Let E → B be one of the unramified coverings of Claim 2.4. Its
projection is a restriction of map π. It induces an isomorphism from the
fundamental group of E onto a subgroup of index d of the fundamental group
of B and isomorphisms of k-th homotopy groups for k ≥ 2. But these vanish
for 2 ≤ k ≤ n− 1 (this range may be empty) if B = Pn+1 − V because V is
a hypersurface with isolated singularities (see [12, Lemma 1.5]). The same is
true if B = L′

t = Lt−Lt∩V with t ≠ ti for 1 ≤ i ≤ N because, by Claim 2.1,
Lt ∩ V is a non-singular hypersurface of Lt ≃ Pn ([12, Lemma 1.1]). On the
other hand, the k-th homotopy groups vanish for 2 ≤ k ≤ n − 2 (a range
which may be empty) if B = L′

ti
with 1 ≤ i ≤ N because then Lti ∩V is, still

by Claim 2.1, a hypersurface with isolated singularities of Lti ≃ Pn. And
the same is true if B = M ′ because M was chosen transverse to V so that
M ∩ V is a non-singular hypersurface of M ≃ Pn−1.
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If moreover E is simply connected, that is to say the cover universal, then
the Hurewicz homomorphism χ : πn(E, ε)→ Hn(E) in the first two cases and
χ : πn−1(E, ε)→ Hn−1(E) in the last two will be an isomorphism due to the
Hurewicz isomorphism theorem. By the next lemma, this indeed happens
for the values of n listed in the first two items of the statement. In the
cases of the last item, χ is an epimorphism of abelianization. Besides when
n = 2, M ′ is a projective line minus d points and its fundamental group is
free of rank d − 1. In the same case, the image of H by the natural map
from π1(M ′, e) to π1(L′

ti
, e) is contained in Gi because the projections of the

coverings commute with inclusions. As to the commutativity of the diagrams,
it results from this and the functoriality of the Hurewicz homomorphisms.

Lemma 2.9. (i) If n ≥ 2, the first covering of Claim 2.4 is a universal
covering and so is the second one if t ≠ ti for 1 ≤ i ≤ N .

(ii) If n ≥ 3, the third covering of Claim 2.4 is a universal covering and so
is the second covering with t = ti for 1 ≤ i ≤ N .

Proof. Let E → B be one of these coverings. According to the nature of
base space B as discussed in the proof of Lemma 2.8, it is pathwise con-
nected and its fundamental group is Z/dZ when n ≥ 2 in the first two cases
there considered and when n ≥ 3 in the last two (notice that all involved hy-
persurfaces have degree d). Thus, for the appropriate range of n, this group
has the same number of elements as the fiber. The lemma then follows once
it is verified that the total space E is pathwise connected. This can be seen
from the irreducibility of W , Lt∩W and M∩W or from the fact that, above
a neighbourhood of a regular point of V , each of the coverings has a local
model which is a product of the cover associated with z *→ zd and a disk of
appropriate dimension.

We shall also have to consider relative homotopy groups for the variation
operators.

Lemma 2.10. Let e and ε be base points as in Lemma 2.8. If n ≥ 2 and
t ∈ P1 − { t1, . . . , tN }, there are homomorphisms ᾱt defined by composition
as follows (we use Notation 2.7):

ᾱt : πn(L
′
t,M

′, e)

π̄−1
#
∼
−→ πn(L

′
t,M

′, ε)
χ̄
−→ Hn(L

′
t,M

′),

where χ̄ is the relative Hurewicz homomorphism and π̄−1
# the inverse of an

isomorphism induced by the projection of the second covering of Claim 2.4.
Homomorphisms χ̄ and ᾱt are epimorphisms if n = 2 and isomorphisms
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if n ≥ 3. Furthermore, for n ≥ 3 and t ∈ P1 − { t1, . . . , tN }, the following
diagram, where γ is the isomorphism defined in Lemma 2.8, item (ii) is
commutative:

Hn(L′
t,M

′)
∂

−−−→ Hn−1(M′)
$⏐⏐≀ ᾱt

$⏐⏐≀ γ

πn(L′
t,M

′, e)
∂

−−−→ πn−1(M ′, e).

(2.8)

When n = 2, the image of the boundary homomorphism from π2(L′
t,M

′, e)
to π1(M ′, e) is contained in the subgroup H defined in Lemma 2.8, item (iii)
and the following diagram, where γ is the homomorphism defined there, is
commutative:

H2(L′
t,M

′)
∂

−−−→ H1(M′)
$⏐⏐ᾱt

$⏐⏐γ

π2(L′
t,M

′, e)
∂

−−−→ H.

(2.9)

Proof. Map π induces the projection of the covering L′
t → L′

t and we have
π−1(M ′) = M′ by 2.1 and 2.2. That π̄# is then an isomorphism is a general
fact about pairs of fibered spaces (cf. [14, 7.2.8]). We now come to the relative
Hurewicz homomorphism χ̄. If n ≥ 2 and t ∈ P1 − { t1, . . . , tN }, spaces M′

and L′
t are path-connected as seen in the proof of Lemma 2.9. Furthermore,

the same lemma and the vanishing of higher homotopy groups stated in the
proof of Lemma 2.8 give then that πk(M′, ε) = 0 for 0 ≤ k ≤ n − 2 and
πk(L′

t, ε) = 0 for 1 ≤ k ≤ n − 1, hence πk(L′
t,M

′, ε) = 0 for 1 ≤ k ≤ n − 1
by the homotopy exact sequence. The relative Hurewicz theorem (cf. [14,
7.5.4]) then applies and gives that the Hurewicz homomorphism χ̄ induces
an isomorphism onto Hn(L′

t,M
′) from the quotient of πn(L′

t,M
′, ε) obtained

by identifying each element with its images by the action of π1(M′, ε). But,
by Lemma 2.9, this fundamental group is trivial if n ≥ 3. When n = 2,
the image of ∂ : π2(L′

t,M
′, e)→ π1(M ′, e) is contained in H because bound-

ary homomorphisms commute with those induced by π and π̄# is onto as
we have seen. As furthermore boundary operators commute with Hurewicz
homomorphisms (cf. [14, 7.4.3]), the last two diagrams are commutative.

Finally the following lemma will be useful while computing homology in
the universal coverings.

Lemma 2.11. We have the following vanishing of homology groups.

(i) Hk(W − j(V )) = 0 for 1 ≤ k ≤ n− 1.

(ii) Hk

(
Lt ∩ (W − j(V ))

)
= 0 for 1 ≤ k ≤ n− 1 if t ≠ ti for 1 ≤ i ≤ N .
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(iii) Hk

(
Lti ∩ (W − j(V ))

)
= 0 for 1 ≤ k ≤ n− 2 and 1 ≤ i ≤ N .

(iv) Hk

(
M ∩ (W − j(V ))

)
= 0 for 1 ≤ k ≤ n− 2.

Proof. This also results from Lemma 2.9, the vanishing of higher homotopy
groups stated in the proof of Lemma 2.8 and the Hurewicz isomorphism
theorem.

Note that the last two assertions are empty if n = 2.

3 Monodromies

The homological degeneration and variation operators which we must define
at the universal covering level involve monodromies around the exceptional

hyperplanes in the cover W − j(V ) and its blow up Ŵ − ĵ(V ). These in

turn are linked with a fibration structure of Ŵ − ĵ(V ) outside of the excep-
tional hyperplanes, a structure we shall also directly use for the degeneration
operator.

Claim 3.1. The restriction of P to (Ŵ − ĵ(V ))−
⋃N

i=1 L
♯
ti is the projection of

a fiber bundle over P1 − { t1, . . . , tN }. This bundle has M ∩ (W − j(V ))×
(P1 − { t1, . . . , tN }) as a trivial subbundle of it. The fibers over t ∈ P1 −

{ t1, . . . , tN } are L♯
t ∩ (Ŵ − ĵ(V )) and M ∩ (W − j(V ))× { t }.

Proof. This results from the fact that, by Claim 2.6, M is transverse to the
strata of a Whitney stratification of W for which W − j(V ) is a union of
strata: see [5, Corollary 3.12]. The quoted Corollary rests on the Thom-
Mather first isotopy theorem.

Notice however that there is not a similar fibration for W − j(V ) because
its sections by pencil (Lt)t∈P1 are pinched together along axis M . Neverthe-
less we shall obtain monodromies also there, using the isomorphisms from

L♯
t ∩ (Ŵ − ĵ(V )) to Lt ∩ (W − j(V )) that, by (2.5), the blowing down mor-

phism Φ induces.
We shall consider the monodromies above a special set of loops in the

parameter space P1. We choose a base point t0 in P1 distinct from points t1,
. . . , tN and consider a good system of generators (Γ̄i)1≤i≤N of the fundamental
group π1(P1 − { t1, . . . , tN }, t0) (cf. [11] and [12, Definition 2.1]). Recall
that in such a system each loop Γi is based at t0 and is the boundary of a
subset Di ofP1 homeomorphic to a disk with ti as an interior point. Moreover
Di ∩ Dj = { t0 } for i ≠ j. If the Di are suitably chosen, a presentation
of π1(P1 − { t1, . . . , tN }, t0) is given by these generators and the relation
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Γ̄1 . . . Γ̄N = 1. A standard method to construct such a system is to obtain
it as the homotopy classes γ̄i = Γ̄i of parametrized loops γi : [ 0, 1 ] → P1 −
{ t1, . . . , tN } as described in the following definition.

Definition 3.2. Let t0 be a base point in P1−{ t1, . . . , tN }. Let ∆1, . . . , ∆N

be closed disks about t1, . . . , tN mutually disjoint and not containing t0. For
1 ≤ i ≤ N , let δi be a path connecting t0 to a point di of the boundary ∂∆i

of ∆i. Each δi is required not to meet any of the previous disks except that
the end of δi touches ∆i. Moreover paths δ1, . . . , δN are required not to meet
together except at their origin. For 1 ≤ i ≤ N , let ωi be a loop based at di
and running once counter-clockwise around ∂∆i. Finally, for 1 ≤ i ≤ N ,
consider the loops γi = δi ∗ ωi ∗ δ

−
i , where ∗ designates concatenation and

where δ−i is the path opposite to δi. We denote by γ̄i the homotopy class
of γi in P1 − { t1, . . . , tN }.

We shall obtain the wanted monodromies with the help of some special
isotopies above these loops.

Lemma 3.3. For 1 ≤ i ≤ N , there are isotopies

Gi : Lt0 ∩ (W − j(V ))× [ 0, 1 ] −→ W − j(V ),

Ĝi : L♯
t0 ∩ (Ŵ − ĵ(V ))× [ 0, 1 ] −→ Ŵ − ĵ(V )

such that

(I) Gi(x, 0) = x for any x ∈ Lt0 ∩ (W − j(V )),

(II) Gi( . , s) is a homeomorphism from Lt0 ∩ (W − j(V )) onto Lγi(s)∩ (W −
j(V )) for any s ∈ [ 0, 1 ],

(III) Gi(y, s) = y for any y ∈M ∩ (W − j(V )) and s ∈ [ 0, 1 ],

(Î) Ĝi(v, 0) = v, for any v ∈ L♯
t0 ∩ (Ŵ − ĵ(V )),

(ÎÎ) Ĝi( . , s) is a homeomorphism from L♯
t0 ∩ (Ŵ − ĵ(V )) onto L♯

γi(s)
∩ (Ŵ −

ĵ(V )) for any s ∈ [ 0, 1 ],

(ÎÎÎ) Ĝi((y, t0), s) = (y, γi(s)) for any y ∈M ∩ (W − j(V )) and s ∈ [ 0, 1 ].

Moreover, Gi and Ĝi can be asked to fit together by making commutative the
following diagram:

L♯
t0 ∩ (Ŵ − ĵ(V ))× [ 0, 1 ]

Ĝi−−−→ Ŵ − ĵ(V )
⏐⏐)Φ×id[ 0,1 ]

⏐⏐)Φ

Lt0 ∩ (W − j(V ))× [ 0, 1 ]
Gi−−−→ W − j(V ).

(3.1)
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(recall that the blowing down morphism Φ induces an isomorphism between

L♯
t0 ∩ (Ŵ − ĵ(V )) and Lt0 ∩ (W − j(V )); following Notation 1.1, item 2, all

maps induced by Φ are denoted here by the same letter).

Proof. This follows in a standard manner from Claim 3.1, starting from Ĝi

and then going down to Gi thanks to the isomorphism between L♯
t ∩ (Ŵ −

ĵ(V )) and Lt ∩ (W − j(V )): cf. [5, Lemmas 4.1 and 4.2]. The statements for
points (II) and (̂ÎI) in [5] are weaker than here but the proof given in [5] is
valid for the stronger form.

It must be noticed that isotopies Gi and Ĝi are not uniquely determined
by loop γi. But, if diagram (3.1) is commutative, one of them determines the
other.

The ending stage of these isotopies will be the geometric monodromies
we want. Lemma 3.3 implies the following.

Lemma 3.4. For 1 ≤ i ≤ N , we have homeomorphisms

Hi : Lt0 ∩ (W − j(V )) −→ Lt0 ∩ (W − j(V )),

Ĥi : L♯
t0 ∩ (Ŵ − ĵ(V )) −→ L♯

t0 ∩ (Ŵ − ĵ(V )),

defined by setting

Hi(x) = Gi(x, 1) and Ĥi(v) = Ĝi(v, 1).

These homeomorphisms leave fixed the points of M ∩ (W − j(V )) and M ∩
(W − j(V ))× { t0 } respectively. Moreover, if diagram (3.1) is commutative,
so is the following:

L♯
t0 ∩ (Ŵ − ĵ(V ))

Ĥi−−−→ L♯
t0 ∩ (Ŵ − ĵ(V ))

⏐⏐)≀ Φ

⏐⏐)≀ Φ

Lt0 ∩ (W − j(V ))
Hi−−−→ Lt0 ∩ (W − j(V )).

(3.2)

Definition 3.5. We shall call Hi a geometric monodromy of Lt0∩(W−j(V ))
relative to M ∩ (W − j(V )) above γi. Similarly for Ĥi.

Notice that, like the isotopies giving rise to them, these geometric mon-
odromies are not uniquely determined by the choice of loop γi. However we
have the following invariance property.
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Lemma 3.6. Given an index i with 1 ≤ i ≤ N , another choice of loop γi
within the same homotopy class γ̄i in P1 − { t1, . . . , tN } and another choice
of isotopies Gi and Ĝi above γi, provided they satisfy conditions (I)-(III) and
(Î)-(ÎÎÎ) respectively, would lead to geometric monodromies which are isotopic

to Hi and Ĥi through isotopies in Lt0 ∩ (W − j(V )) and L♯
t0 ∩ (Ŵ − ĵ(V ))

leaving pointwise fixed the subsets M ∩ (W − j(V )) and M ∩ (W − j(V ))×
{ t0 } respectively. This is true even if the new loop has not the special form
described in Definition 3.2.

Proof. Concerning Ĝi, this is the classical invariance property of geometric
monodromies with an enhancement about fixed points given by the trivial
subbundle of Claim 3.1. A similar property holds for Gi since it can be
associated to an isotopy Ĝi making diagram (3.1) commutative.

Thus, though geometric monodromy Hi is not uniquely defined, its iso-
topy class in Lt0 ∩ (W − j(V )) relative to M ∩ (W − j(V )) is unique and
wholly determined by homotopy class γ̄i. This isotopy class can be called
the geometric monodromy of Lt0 ∩ (W − j(V )) relative to M ∩ (W − j(V ))
associated to γ̄i. Similarly for Ĥi.

The isomorphisms Hi ∗ and H̄i ∗ of Hk(Lt0 ∩ (W − j(V )) and Hk

(
Lt0 ∩

(W − j(V )),M ∩ (W − j(V ))
)
induced by Hi depend only on this isotopy

class. Similarly for the algebraic monodromies induced by Ĥi. In particular,
to obtain them, we could use geometric monodromies arising from maps Gi

and Ĝi satisfying to the looser requirements of Lemma 3.6. For instance
monodromies above the loops Γi described before Definition 3.2. Or even
geometric monodromies not satisfying to the commutativity of diagram (3.2);
the corresponding diagrams at the homology and relative homology levels
would still be commutative.

Nevertheless, for convenience in our forthcoming constructions, we shall
henceforth use special geometric monodromies Hi and Ĥi as we have con-
structed above, which are associated with a special set of loops as given
in Definition 3.2 and which are linked together by the commutative dia-
gram (3.2).

4 The degeneration operator

In [12, section 2], homotopical degeneration operators are introduced for
generic pencils of hyperplane sections of the complement in Cn+1 of a hyper-
surface with isolated singularities (including at infinity).

The purpose of this section is to define projective analogs of these for
pencil (Lt)t∈P1 , acting on the (n−1)-th homotopy group of each Lti−Lti∩V
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when n ≥ 3 and on some subgroup of the fundamental group of each when
n = 2. According to section 2.4, these homotopy groups are, when n ≥ 3,
canonically identified with the homology groups of d-fold covers introduced
there and hence it is enough to define a homological degeneration operator on
these homology groups. This also works when n = 2 thanks to the morphisms
of Lemma 2.8, item (iii) and still the isomorphisms of item (i).

4.1 Homological degeneration operator on the cover

Suppose n ≥ 2. For each i, with 1 ≤ i ≤ N , we define such an operator Di

so that the following diagram is commutative, where ∆i is a disk about ti as
described in Definition 3.2, and where arrows labeled τi, wni and Φ∗ are to
be defined in the remainder of this section:

Hn

(
P−1(∂∆i) ∩ (Ŵ − ĵ(V ))

) wni
∼
−−−→ Hn

(
L♯

t0 ∩ (Ŵ − ĵ(V ))
)
/ im(Ĥi ∗ − id)

$⏐⏐τi

⏐⏐)≀ Φ∗

Hn−1

(
Lti ∩ (W − j(V ))

) Di−−−→ Hn

(
Lt0 ∩ (W − j(V ))

)
/ im(Hi ∗ − id).

(4.1)
The arrow labeled Φ∗ is easily defined as follows. The blowing down

morphism Φ induces an isomorphism between L♯
t0∩(Ŵ−ĵ(V )) and Lt0∩(W−

j(V )) (by (2.5)) which gives an isomorphism Φ∗ between the n-th homology
groups of these spaces. This in turn factorizes into an isomorphism Φ∗ as
indicated on the diagram thanks to the commutativity of diagram (3.2).
Recall that, by the invariance property of Lemma 3.6, isomorphisms Hi ∗

and Ĥi ∗ depend only on the homotopy class γ̄i of Definition 3.2.
The arrow labeled wni arises from the Wang sequence of the fibration of

Claim 3.1 restricted to the part above the circle ∂∆i. This is detailed below.
The arrow labeled τi is essentially a tube map in the Poincaré residue

sequence for the complement of L♯
ti ∩ (Ŵ − ĵ(V )) in Ŵ − ĵ(V ). Details are

also given below.
Operator Di depends only on homotopy class γ̄i. This will be easy to see

after the comparison between the degeneration and variation operators made
in section 6 (see Corollary 6.4).

Definition of isomorphism wni

To define wni, we use the Wang sequence of the fibration indicated above. In
this sequence we want to use the fiber above t0 of the fibration of Claim 3.1,
though t0 is outside of ∂∆i, and the monodromy Ĥi above the loop γi of
Definition 3.2 instead of the monodromy above ∂∆i.
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For this purpose, let us get monodromy Ĥi in three steps, following the
decomposition γi = δi ∗ ωi ∗ δ

−
i given in Definition 3.2. Let Ĥ ′

i : L
♯
di
∩ (Ŵ −

ĵ(V )) → L♯
di
∩ (Ŵ − ĵ(V )) be a geometric monodromy above ωi defined in

the same way as Ĥi, using Lemmas 3.4 and 3.3 but replacing parameter t0
by the base point di of ωi and loop γi by loop ωi wherever they occur.

Also let Ĥ ′′
i : L

♯
t0 ∩ (Ŵ − ĵ(V )) → L♯

di
∩ (Ŵ − ĵ(V )) be a homeomorphism

obtained with the same definitions, this time replacing γi by δi. If Ĥ ′
i is

constructed using isotopy Ĝ′
i and Ĥ ′′

i using Ĝ′′
i , we can build Ĥi from Ĝi =

Ĝ′′
i ∗ Ĝ

′
i ∗ Ĝ

′′−
i , where operations on isotopies parallel those on paths, each

isotopy taking the fiber up in the place it was left by the former. This
is a legal choice for Ĝi since it can easily been verified that it satisfies to
the conditions of Lemma 3.3. With this setting for Ĝi, the corresponding
geometric monodromy Ĥi is decomposed as

Ĥi = Ĥ ′′−1
i ◦ Ĥ ′

i ◦ Ĥ
′′
i . (4.2)

As loop ωi runs once around ∆i, the monodromy Ĥ ′
i above ωi fits into

the Wang sequence of the fibration above ∂∆i we consider. We embed this
sequence into the following diagram where it appears as the upper line (we
use Notation 2.7):

Hn(L
♯ ′
di
)

Ĥ′

i ∗−id
−−−−→ Hn(L

♯ ′
di
)

incl∗−−−→ Hn(P ′−1(∂∆i)) −−−→ Hn−1(L
♯ ′
di
).

$⏐⏐≀ Ĥ′′

i ∗

$⏐⏐≀ Ĥ′′

i ∗

Hn(L
♯ ′
t0)

Ĥi ∗−id
−−−−→ Hn(L

♯ ′
t0)

(4.3)

It is commutative by (4.2). But Hn−1(L
♯ ′
di
) = 0 because this group is isomor-

phic to Hn−1(Ldi ∩ (W − j(V )) which vanishes when n ≥ 2 (cf. (2.5) and
Lemma 2.11). Thus the inclusion map induces an isomorphism

Hn(L
♯ ′
di
)/ im(Ĥ ′

i ∗ − id)
∼
−→ Hn(P

′−1(∂∆i)).

Then, by commutativity of diagram (4.3), homeomorphism Ĥ ′′
i followed by

inclusion induces also an isomorphism

Hn(L
♯ ′
t0)/ im(Ĥi ∗ − id)

∼
−→ Hn(P

′−1(∂∆i)). (4.4)

The isomorphism wni appearing in diagram (4.1) is the inverse of this one.
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Definition of homomorphism τi

Homomorphism τi is defined as a tube map in a Poincaré residue sequence
(also named Leray or Thom-Gysin sequence) through the following diagram
where we still use Notation 2.7:

Hn−1(L′
ti
)

$⏐⏐≀ Φ∗

Hn−1(L
♯ ′
ti )

Ti
∼
−−−→ Hn+1(Ŵ ′, Ŵ ′ − L♯ ′

ti )$⏐⏐≀ incl∗

Hn+1(P ′−1(∆i), P ′−1(∆i)− L♯ ′
ti )$⏐⏐≀ incl∗

Hn+1(P ′−1(∆i), P ′−1(∂∆i))
∂

−−−→ Hn(P ′−1(∂∆i)).

(4.5)

Homomorphism τi is obtained by overall composition from the upper left
to the lower right end of the diagram (reversing isomorphisms when nec-
essary). The arrow labeled Φ∗ is an isomorphism induced by the blowing
down morphism Φ (see (2.5)). Following our general convention, arrows
labeled incl∗ are induced by inclusion. The upper one is an excision isomor-
phism. The lower one is also an isomorphism because ∂∆i is a strong defor-
mation retract of ∆i−{ ti } and the spaces P ′−1(∂∆i) and P ′−1(∆i)−L♯ ′

ti are
the parts over ∂∆i and ∆i−{ ti } of the locally trivial fibration of Claim 3.1,
so that the inclusion of the former into the latter is a homotopy equivalence
(see [4, proof of Lemme 4.4]).

The significant arrow is the one labeled Ti which is a Leray (or Thom-
Gysin) isomorphism. Such an isomorphism arises whenever one removes a
closed submanifold P from a Hausdorff paracompact complex manifold N .
If P has pure complex codimension c in N , this is an isomorphism from
Hk−2c(P ) onto Hk(N,N − P ) holding for any k, with the convention that
Hk−2c(P ) = 0 for k < 2c (cf. [4, Annexe]). Here we apply it with N = Ŵ ′,
P = L♯ ′

ti , c = 1 and k = n+1. We must verify that these settings satisfy the
above conditions on N , P and c.

First, Ŵ ′ = Ŵ − ĵ(V ) is the total transform of W − j(V ) when blow-
ing Pn+2 up (cf. section 2.3). But W − j(V ) is a submanifold of Pn+2 by
Claim 2.3 and the n-plane M along which Pn+2 is blown up is, by Claim 2.6,
transverse to W − j(V ). It follows that the total transform Ŵ ′ of W − j(V )
is a submanifold of P̂n+2 (cf. [4, (5.5.1)]). It is Hausdorff paracompact since
P̂n+2 is a subspace of Pn+2 ×P1 which is metrizable.
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Second, we have L♯ ′
ti = L♯

ti ∩ Ŵ ′ and L♯
ti is the strict transform of Lti ,

a member of the pencil L with base locus M introduced in section 2.3.
As Lti is, by Claim 2.6, also transverse to W − j(V ), it follows that L♯

ti is

transverse in P̂n+2 to the total transform Ŵ ′ of W − j(V ) (cf. [4, (5.5.2)]).
But L♯

ti is a closed submanifold of P̂n+2 of pure complex codimension 1 as

it follows from (2.4) and the fact that P is a submersion. Hence L♯ ′
ti is a

closed submanifold of Ŵ ′ of pure complex codimension 1. The conditions of
validity of the Leray isomorphism are thus checked.

This completes the definition of homomorphism τi and hence of the ho-
mological degeneration operator Di at the d-fold cover level.

4.2 Homotopical degeneration operator

For each i, with 1 ≤ i ≤ N , the isomorphism αt0 and the homomorphisms βi

of Lemma 2.8 will allow us, if n ≥ 2, to define a homotopical degeneration
operator Di from the homology operator Di constructed at the d-fold level
in the preceding subsection.

We first define monodromies on πn(Lt0 − Lt0 ∩ V, e) as the pull-backs of
the monodromies on Hn

(
Lt0 ∩ (W − j(V ))

)
by isomorphism αt0 .

Definition 4.1. Let e be a base point in M − M ∩ V as in Lemma 2.8.
If n ≥ 2 and for 1 ≤ i ≤ N , monodromy hi# is defined by the commutativity
of the following diagram:

Hn

(
Lt0 ∩ (W − j(V ))

) Hi ∗
∼
−−−→ Hn

(
Lt0 ∩ (W − j(V ))

)
$⏐⏐≀ αt0

$⏐⏐≀ αt0

πn(Lt0 − Lt0 ∩ V, e)
hi#
∼
−−−→ πn(Lt0 − Lt0 ∩ V, e).

(4.6)

As Hi ∗ depends only on the homotopy class γ̄i of Definition 3.2, so does
monodromy hi#.

Remark 4.2. In fact hi# is indeed induced on the n-th homotopy group by a
geometric monodromy hi of Lt0 − Lt0 ∩ V as the notation suggests. Such a
monodromy is obtained in the same way as Hi was defined from isotopy Gi,
by using an isotopy gi satisfying to conditions similar to those given for Gi in
Lemma 3.3. This exists by [5, Lemma 4.1]. Then hi satisfies to an invariance
property similar to that of Lemma 3.6 and induces an automorphism of
πn(Lt0 − Lt0 ∩ V, e) depending only on γ̄i. But hi and Hi can be chosen so
that they commute with the covering projection π. To do this, one starts
from gi and defines Gi as a lift of gi by π satisfying to the initial condition (I)
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of Lemma 3.3. Then one can see that Gi satisfies also automatically to
conditions (II) and (III) thanks to the similar conditions satisfied by gi. The
corresponding geometric monodromies hi and Hi commute with π as desired.
This fact together with the functoriality of the Hurewicz homomorphisms
entail that the induced automorphism hi# of πn(Lt0 − Lt0 ∩ V, e) makes
diagram (4.6) commutative (recall the definition of αt0 in Lemma 2.8). Hence
this hi# coincides with the one of Definition 4.1.

If n ≥ 2 and for 1 ≤ i ≤ N , commutative diagram (4.6) allows to define
in turn an isomorphism αt0 making commutative the following diagram:

Hn

(
Lt0 ∩ (W − j(V ))

) can
−−−→ Hn

(
Lt0 ∩ (W − j(V ))

)
/ im(Hi ∗ − id)

$⏐⏐≀ αt0

$⏐⏐≀ αt0

πn(Lt0 − Lt0 ∩ V, e)
can
−−−→ πn(Lt0 − Lt0 ∩ V, e)/ im(hi# − id).

(4.7)

Then, if n ≥ 3 and for 1 ≤ i ≤ N , isomorphism βi of Lemma 2.8, item (ii)
together with this isomorphism αt0 lead from homological operator Di to the
homotopical degeneration operator Di we are looking for. This is done by
asking the following diagram to be commutative:

Hn−1

(
Lti ∩ (W − j(V ))

) Di−−−→ Hn

(
Lt0 ∩ (W − j(V ))

)
/ im(Hi ∗ − id)

$⏐⏐≀ βi

$⏐⏐≀ αt0

πn−1(Lti − Lti ∩ V, e)
Di−−−→ πn(Lt0 − Lt0 ∩ V, e)/ im(hi# − id).

(4.8)
When n = 2, isomorphism αt0 and this time homomorphism βi of Lemma 2.8,
item (iii) lead to an operator Di defined on the subgroup Gi introduced there,
by asking the following diagram to be commutative:

H1

(
Lti ∩ (W − j(V ))

) Di−−−→ H2

(
Lt0 ∩ (W − j(V ))

)
/ im(Hi ∗ − id)

$⏐⏐βi

$⏐⏐≀ αt0

Gi
Di−−−→ π2(Lt0 − Lt0 ∩ V, e)/ im(hi# − id).

(4.9)

Like Di, operator Di depends only on the homotopy class γ̄i of Definition 3.2.

5 The variation operator

In [5, section 4] homological variation operators are defined for generic pen-
cils of hyperplane sections of a quasi-projective variety. They are analogous
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to the classical variation operator associated with the Milnor fibration of an
isolated singularity (see [2, chapter 2]). In our situation they give homo-
logical variation operators for pencil (Lt)t∈P1 , defined on the n-th relative
homology group of Lt0 − Lt0 ∩ V modulo M −M ∩ V and associated with
each special member Lti of the pencil, more precisely with the homotopy
class γ̄i in P1 − { t1, . . . , tN } of a loop γi surrounding ti in the parameter
space as in Definition 3.2.

In this section we want to define, when n ≥ 2, homotopical analogs of
these,

Vi : πn(Lt0 − Lt0 ∩ V,M −M ∩ V, e) −→ πn(Lt0 − Lt0 ∩ V, e)

associated with γ̄i for 1 ≤ i ≤ N , where e is a base point in M −M ∩ V .
As for the degeneration operators, we shall go to the d-fold cover level

and use homological variation operators defined there,

Vi : Hn

(
Lt0 ∩ (W − j(V )),M ∩ (W − j(V ))

)
−→ Hn

(
Lt0 ∩ (W − j(V ))

)

associated, for 1 ≤ i ≤ N , with the homotopy classes γ̄i of Definition 3.2.
We recall the definition and properties of operator Vi as given in [5, sec-

tion 4], which in fact hold with n ≥ 1.
For any relative n-cycle Ξ on Lt0 ∩ (W − j(V )) modulo M∩ (W − j(V )),

one defines

Vi([Ξ ](Lt0∩(W−j(V )),M∩(W−j(V )))) = [Hi •(Ξ)− Ξ ]Lt0∩(W−j(V )) (5.1)

using Notation 1.1, items 3 and 4. Due to the fact that Hi leaves the points
of M ∩ (W − j(V )) fixed (Lemma 3.4), the chain Hi •(Ξ)− Ξ is actually an
absolute cycle and the correspondence Ξ *→ Hi •(Ξ)−Ξ induces a homomor-
phism Vi at the homology level ([5, Lemmas 4.6 and 4.8]). Thanks to the
invariance property expressed by Lemma 3.6, this homomorphism depends
only on homotopy class γ̄i ([5, Lemma 4.8]).

Now, if n ≥ 2 and for 1 ≤ i ≤ N , isomorphism αt0 of Lemma 2.8 and
homomorphism ᾱt0 of Lemma 2.10 lead from Vi to the wanted homotopical
variation operator Vi by asking the following diagram to be commutative:

Hn

(
Lt0 ∩ (W − j(V )),M ∩ (W − j(V ))

) Vi−−−→ Hn

(
Lt0 ∩ (W − j(V ))

)
$⏐⏐ᾱt0

$⏐⏐≀ αt0

πn(Lt0 − Lt0 ∩ V,M −M ∩ V, e)
Vi−−−→ πn(Lt0 − Lt0 ∩ V, e).

(5.2)
As Vi depends only on the homotopy class γ̄i of Definition 3.2, so does oper-
ator Vi.
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Remark 5.1. The homological variation operators

vi : Hn(Lt0 − Lt0 ∩ V,M −M ∩ V ) −→ Hn(Lt0 − Lt0 ∩ V )

we talked about at the beginning of the section are given by a formula similar
to 5.1 using the monodromies hi considered in Remark 4.2. The homotopical
variation operators Vi we have defined here are linked to those by Hurewicz
homomorphisms as is shown in the following diagram:

πn(Lt0 − Lt0 ∩ V,M −M ∩ V, e)
Vi−−−→ πn(Lt0 − Lt0 ∩ V, e)

⏐⏐)χ̄

⏐⏐)χ

Hn(Lt0 − Lt0 ∩ V,M −M ∩ V )
vi−−−→ Hn(Lt0 − Lt0 ∩ V ).

The commutativity of this diagram is a consequence of the commutativity
of the diagram (5.2) defining Vi, of the definitions of homomorphisms αt0

and ᾱt0 occurring there (see Lemmas 2.8 and 2.10), of the functoriality of
Hurewicz homomorphisms and of the commutation of monodromies hi andHi

with the covering projection π as stated in Remark 4.2.

We end this section by noticing that the homotopical variation operator Vi

when restricted to absolute cycles acts like the variation hi# − id of the
homotopical monodromy associated with γ̄i. This is specified by the following
lemma.

Lemma 5.2. If n ≥ 2 then, for 1 ≤ i ≤ N , the following diagram is com-
mutative:

πn(Lt0 − Lt0 ∩ V, e)
incl#
−−−→ πn(Lt0 − Lt0 ∩ V,M −M ∩ V, e)

⏐⏐)Vi

−−−−−−−−−−−−−−→

hi#−id

πn(Lt0 − Lt0 ∩ V, e).

(5.3)

Proof. This will follow from the commutativity of the corresponding homol-
ogy diagram at the d-fold covering level:

Hn

(
Lt0 ∩ (W − j(V ))

) incl∗−−−→ Hn

(
Lt0 ∩ (W − j(V )),M ∩ (W − j(V ))

)
⏐⏐)Vi

−−−−−−−−−−−−−−−−−→

Hi ∗−id

Hn

(
Lt0 ∩ (W − j(V ))

)
.

(5.4)
Indeed, diagrams (5.3) and (5.4) are linked together by homomorphisms
αt0 and ᾱt0 and one can use the commutativity of diagrams (2.8), (5.2)
and (4.6) and the injectivity of αt0 . The commutativity of diagram (5.4)
can be checked in turn by a straightforward computation at the chain level
using formula (5.1).
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6 The link between degeneration and varia-

tion operators

In this section we make the link between the degeneration operators Di de-
fined in section 4 and the variation operators Vi defined in section 5. As a side
result, we shall obtain the invariance property for degeneration operators Di

and hence Di, stated in section 4.
The main result is the following.

Proposition 6.1. Using Notation 2.7, we have, for 1 ≤ i ≤ N , the following
commutative diagram if n ≥ 3:

πn−1(M ′, e)
incl#
−−−→ πn−1(L′

ti
, e)

Di−−−→ πn(L′
t0
, e)/ im(hi# − id)

$⏐⏐∂

$⏐⏐can

πn(L′
t0
,M ′, e)

Vi−−−−−−−−−−−−−−−−−−−−→ πn(L′
t0
, e).

If n = 2, then:

H
incl#
−−−→ Gi

Di−−−→ π2(L′
t0
, e)/ im(hi# − id)

$⏐⏐∂

$⏐⏐can

π2(L′
t0 ,M

′, e)
Vi−−−−−−−−−−−−−−−→ π2(L′

t0 , e),

where groups H and Gi are defined in Lemma 2.8, item (iii) and homomor-
phisms incl# and ∂ are well defined by the same reference and Lemma 2.10.

Before proving this result, we state a corollary relating the images of the
considered operators.

Corollary 6.2. If n ≥ 2, then, for 1 ≤ i ≤ N ,

imDi = imVi / im(hi# − id).

This makes sense since Di takes its values in πn(Lt0−Lt0∩V, e)/ im(hi#−
id) while Vi takes its values in πn(Lt0 −Lt0 ∩ V, e) with an image containing
im(hi# − id) by Lemma 5.2.

Proof of Corollary 6.2. The inclusion imDi ⊃ imVi / im(hi# − id) is clear
from the diagrams of Proposition 6.1. The reverse inclusion will also be clear
from it, once proved the following lemma.

Lemma 6.3. The homomorphisms ∂ and incl# in the diagrams of Proposi-
tion 6.1 are surjective.
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Proof. The case n = 2 forces us to go into the d-fold covers. It is then more
economical to treat the general case thus. Covering projection π induces
an isomorphism from πn(L′

t0 ,M
′, ε) onto πn(L′

t0 ,M
′, e) (see Lemma 2.10)

and isomorphisms from πn−1(M′, ε) and πn−1(L′
ti
, ε) onto πn−1(M ′, e) when

n ≥ 3 (resp. H when n = 2) and πn−1(L′
ti
, e) (resp. Gi when n = 2)

(see Lemma 2.8). It will then be enough to prove that homomorphisms
∂ : πn(L′

t0
,M′, ε) → πn−1(M′, ε) and incl# : πn−1(M′, ε) → πn−1(L′

ti
, ε) are

surjective. This is the case for homomorphism ∂ due to the homotopy ex-
act sequence of the pair (L′

t0
,M′) and to the fact that πn−1(L′

t0
, ε) is trivial

if n ≥ 3 as noticed in the proof of Lemma 2.8 and also when n = 2 by
Lemma 2.9. As to homomorphism incl#, it is surjective due to the Lefschetz
hyperplane section theorem for non-singular quasi-projective varieties (cf. [8,
1.1.3] or [6, II.5.1]) when applied to hyperplane M ⊂ Lti cutting the quasi-
projective variety L′

ti
= Lti ∩ (W − j(V )) which is non-singular and of pure

dimension n by Claim 2.3 and Claim 2.6. For the validity of the quoted the-
orem, hyperplane M must fulfill some condition of genericity. By [9, Lemma
of the Appendix], or [6, the remark ending the proof of II.5.1], it is enough
that M be transverse to all the strata of a Whitney stratification of Lti ∩W
having Lti ∩ j(V ) as a union of strata. But, thanks to the transversality
of M to the strata of the stratification Σ of W defined in Claim 2.5, the
trace of Σ on Lti can be refined into such a stratification of Lti ∩W (cf. [4,
lemme 11.3]).

The sequel of this section will be devoted to the proof of Proposition 6.1
and to the result on the invariance of operator Di mentioned above.

Proof of Proposition 6.1

We shall go up to the homology of d-fold coverings and consider for n ≥ 2 the
following homology diagram which corresponds at this level to the diagrams
of Proposition 6.1. It also uses Notation 2.7.

Hn−1(M′)
incl∗−−−→ Hn−1(L′

ti
)

Di−−−→ Hn(L′
t0
)/ im(Hi ∗ − id)

$⏐⏐∂

$⏐⏐can

Hn(L′
t0
,M′)

Vi−−−−−−−−−−−−−−−−−−−→ Hn(L′
t0
).

(6.1)

It will be enough to show that this diagram is commutative since it is linked to
the first or second diagram of Proposition 6.1, according to whether n ≥ 3 or
n = 2, by the commutative diagrams (2.8) or (2.9) (right-hand parts), (2.6)
or (2.7), (4.8) or (4.9), (5.2) and (4.7), and since the homomorphism αt0
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(defined by (4.7)) linking the upper right corners of these two diagrams is
injective.

Before proving the commutativity of diagram 6.1, we first treat the in-
variance property for operators Di mentioned in section 4.1.

Corollary 6.4. For n ≥ 2 and 1 ≤ i ≤ N , operator Di depends only on the
homotopy class γ̄i of Definition 3.2.

Proof. As we saw in section 5, the same invariance property holds for opera-
tor Vi. Then, the commutativity of diagram (6.1) implies the assertion for Di

because, as we shall see, the arrows labeled ∂ and incl∗ are surjective. The
surjectivity of homomorphism ∂ results from the homology exact sequence of
the pair (L′

t0 ,M
′) and the fact that Hn−1(L′

t0) = 0 if n ≥ 2 by Lemma 2.11.
The homomorphism induced by inclusion incl∗ is surjective due to the Lef-
schetz hyperplane section theorem for non-singular quasi-projective varieties
with the same justification as in the proof of Lemma 6.3 but this time applied
to homology.

The commutativity of diagram 6.1 is a consequence of the following. On
one hand, the bundle of Claim 3.1 has a trivial subbundle preserved by
the isotopy built in section 3 which has a trivial form on it, allowing thus
the very definition of the homological variation operators. On the other
hand, this subbundle extends to a product M′ × P1 which is transverse to
each L♯ ′

ti , so that the tube maps entering in the definition of the homological
degeneration operators have also a trivial form when restricted to M′ ×P1.
These two facts lead to the link between operators Vi and Di expressed by
the commutativity of diagram 6.1. In fact similar considerations come up in
the proof of Proposition 4.13 of [5] and our assertion will be obtained along
the same lines.

More precisely, we imbed diagram (6.1) in a larger one, putting the fol-
lowing diagram on its top (we still use Notation 2.7):

Hn(M′ × ∂∆i)
incl∗−−−→ Hn(P ′−1(∂∆i))

wni
∼
−−−→ Hn(L

♯ ′
t0)/ im(Ĥi ∗ − id)

$⏐⏐κi

$⏐⏐τi

⏐⏐)≀ Φ∗

Hn−1(M′)
incl∗−−−→ Hn−1(L′

ti
)

Di−−−→ Hn(L′
t0
)/ im(Hi ∗ − id).

(6.2)

The right-hand square is just diagram (4.1), which defines Di, and homo-
morphism κi is given by the formula

κi(z) = (−1)n−1z × [ωi ]∂∆i
for z ∈ Hn−1(M

′), (6.3)

26



using the cross-product by the fundamental class [ωi ]∂∆i
of ∂∆i, the loop ωi

of Definition 3.2 being this time considered as a 1-cycle.
Now, to prove the commutativity of diagram 6.1, it will be enough to

show that diagram (6.2) is commutative as well as the following diagram
which is the outer square of the big diagram obtained by putting diagrams
(6.1) and (6.2) on top of each other:

Hn(M′ × ∂∆i)
incl∗−−−→ Hn(P ′−1(∂∆i))

wni
∼
−−−→ Hn(L

♯ ′
t0)/ im(Ĥi ∗ − id)

$⏐⏐κi

⏐⏐)≀ Φ∗

Hn−1(M′) Hn(L′
t0)/ im(Hi ∗ − id)

$⏐⏐∂

$⏐⏐can

Hn(L′
t0
,M′)

Vi−−−−−−−−−−−−−−−−−−−−−−−−→ Hn(L′
t0
).

(6.4)

Proof of the commutativity of diagram (6.2) The right-hand square
of this diagram is commutative since it is the commutative diagram (4.1)
defining Di. To see the commutativity of the left-hand square, let us consider
again diagram (4.5) through which homomorphism τi was defined. There is
an analogous diagram obtained by restricting to M or M̂ in order to take
advantage of the product structure M̂ = M×P1. Here is this diagram:

Hn−1(M′)
$⏐⏐≀ Φ∗

Hn−1(M′ × { ti })
T ′

i
∼
−−−→ Hn+1

(
M′ ×P1,M′ × (P1 − { ti })

)
$⏐⏐≀ incl∗

Hn+1

(
M′ ×∆i,M′ × (∆i − { ti })

)
$⏐⏐≀ incl∗

Hn+1(M′ ×∆i,M′ × ∂∆i)
∂

−−−→ Hn(M′ × ∂∆i).
(6.5)

As in dagram (4.5), the top isomorphism is induced by the blowing down
morphism Φ (see (2.3)), the upper arrow labeled incl∗ is an excision iso-
morphism and the lower one is an isomorphism since ∂∆i is a deformation
retract of ∆i − { ti }. The arrow labeled T ′

i is again a Leray isomorphism.
The conditions of validity would be easy to check directly but they will also
follow from a naturality property we shall consider in a moment.
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Each space occurring in diagram (6.5) is contained in the corresponding
space of diagram (4.5). This is clear for M′ ⊂ L′

ti
since M ⊂ Lti and it

can be seen, using (2.3) and (2.4), that all other spaces of (6.5) are the in-
tersections of the corresponding spaces of (4.5) with M̂ = M × P1. Thus
diagram (6.5) is linked to diagram (4.5) by homomorphisms induced by in-
clusions. All resulting squares are commutative. This simply follows from
the commutativity of the corresponding diagrams of maps or from the func-
toriality of the boundary homomorphism, except for the commutativity of
the following diagram which deserves to be commented on:

Hn−1(L
♯ ′
ti )

Ti
∼
−−−→ Hn+1(Ŵ ′, Ŵ ′ − L♯ ′

ti )$⏐⏐incl∗

$⏐⏐incl∗

Hn−1(M′ × { ti })
T ′

i
∼
−−−→ Hn+1

(
M′ ×P1,M′ × (P1 − { ti })

)
.

(6.6)

The commmutativity of this diagram results from the following naturality
property for the Leray isomorphism. With the same notation and hypothe-
ses as in the exposition we gave of it two paragraphs after diagram (4.5),
suppose that N ′ is a closed complex submanifold of N transverse to P and
let P ′ = N ′ ∩ P . Then the validity conditions are also satisfied for a Leray
isomorphism from Hk−2c(P ′) onto Hk(N ′, N ′ − P ′) and the diagram formed
by the two Leray isomorphisms and the homomorphisms induced by inclu-
sions is commutative (cf. [4, Annexe]). Applying these facts with N = Ŵ ′,
P = L♯ ′

ti , c = 1, k = n+1 as before and N ′ = M′×P1, we find diagram (6.6)

since M′ × { ti } = (M′ × P1) ∩ L♯ ′
ti (still by (2.3) and (2.4). But we must

verify that this setting for N ′ satisfies the conditions above.
Let us come back to the third paragraph after diagram (4.5) where we

checked the conditions of validity of the Leray isomorphism Ti. The proper-
ties which gave us that Ŵ ′ is a submanifold of P̂n+2 give also, by the same
reference, that Ŵ ′ is transverse to M̂ in P̂n+2. Hence M̂ ∩ Ŵ ′ = M′ × P1

is a submanifold of Ŵ ′. It is closed since M̂ is closed in P̂n+2. Next, the
properties which gave us that L♯

ti is transverse to Ŵ ′ in P̂n+2 give in fact, by

the same reference, that L♯
ti is transverse to M̂∩Ŵ ′ in P̂n+2. As Ŵ ′ contains

M̂ ∩ Ŵ ′, it follows that M̂ ∩ Ŵ ′ = M′ ×P1 is transverse to L♯
ti ∩ Ŵ

′ = L♯ ′
ti

in Ŵ ′ (cf. [4, proof of Lemme 9.2 (iii)]). The conditions for the natural
behavior of the Leray isomorphisms Ti and T ′

i are thus checked and the com-
mutativity of diagram (6.6) is proved.

Thus diagrams (6.5) and (4.5) are linked in a commutative diagram by
homomorphisms induced by inclusions. Let τ ′i be the homomorphism ob-
tained by overall composition from the upper left to the lower right end of
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diagram (6.5). As homomorphism τi is obtained in the same manner in dia-
gram (4.5), we get the commutativity of the left square of diagram (6.2) but
with κi replaced by τ ′i . The commutativity of the original diagram will then
follow from the next lemma.

Lemma 6.5. The homomorphism τ ′i defined above is equal to the homomor-
phism κi defined in (6.3).

Proof. This is due to the product structure of the spaces in diagram (6.5),
especially to the behavior of the Leray isomorphism in such a case. With the
same notation as in the presentation of this isomorphism two paragraphs after
diagram (4.5), suppose thatN = Q×R whereQ andR are complex Hausdorff
paracompact manifolds with R of pure complex dimension c and suppose that
P = Q × { r } with r ∈ R. Then the conditions of validity hold for a Leray
isomorphism T from Hk−2c(Q×{ r }) onto Hk(Q×R,Q×R−Q×{ r }) and
this isomorphism takes the following special form. If z♯ ∈ Hk−2c(Q × { r })
corresponds to z ∈ Hk−2c(Q) by the canonical identification of Q to Q×{ r },
then T (z♯) = z × w where w ∈ H2c(R,R − { r }) is the fundamental class
defining the canonical orientation of R about r (cf. [4, Annexe]). Here we
are in this special case for T ′

i , with Q = M′, R = P1, r = ti, c = 1 and
k = n + 1. Remember indeed that M is transverse to W − j(V ) in Pn+2

so that M′ = M ∩ (W − j(V )) is a submanifold of Pn+2. Thus the Leray
isomorphism T ′

i has the explicit expression

T ′
i (z

♯) = z × ui for z ∈ Hn−1(M
′) (6.7)

where z♯ corresponds to z by the canonical identification of M′ to M′×{ ti }
and where ui ∈ H2(P1,P1 − { ti }) is the fundamental class defining the
canonical orientation of P1 about ti.

Now Φ∗(z♯) = z by the remark following (2.3). Besides, we can take a
representative Ωi of ui which is a relative 2-cycle of ∆i modulo ∂∆i. Then,
by functoriality of the cross-product, the composition of the two incl∗ iso-
morphisms of diagram (6.5) gives an isomorphism, we still denote by incl∗,
such that

incl∗(z × [Ωi ](∆i,∂∆i)
) = z × ui.

Combining these facts with (6.7), we find that, for z ∈ Hn−1(M′),

τ ′i(z) = ∂(z × [Ωi ](∆i,∂∆i)
) = (−1)n−1z × ∂[Ωi ](∆i,∂∆i)

.

But, by the special choice of ωi in Definition 3.2,

∂[Ωi ](∆i,∂∆i)
= [ωi ]∂∆i

and the equality τ ′i = κi follows.
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This concludes the proof of the commutativity of the left part and hence
of the whole of diagram (6.2).

Proof of the commutativity of diagram (6.4) It will be convenient to
concentrate our work to the bundle P ′−1(∂∆i) which already was used to
define isomorphism wni in section 4.1. We hence shall express variation Vi

by means of a variation operator V ′
i above the loop ωi of Definition 3.2 which

runs once counter-clockwise around ∂∆i. Recal that di is the base point of ωi.
We still use Notation 2.7.

Definition 6.6. We define a homological variation operator

V ′
i : Hn(L

′
di
,M′) −→ Hn(L

′
di
)

in the same way as Vi was defined in formula (5.1) but replacing L′
t0
by L′

di

and monodromy Hi by a monodromy H ′
i above ωi.

Just as Vi depends only on the homotopy class of γi in P1−{ t1, . . . , tN },
operator V ′

i depends only on the homotopy class of ωi. Therefore opera-
tor V ′

i is specified by the requirement that ωi runs once counter-clockwise
around ∂∆i. The monodromy H ′

i : L
′
di
→ L′

di
must of course be defined in

the same way as monodromy Hi, using Lemmas 3.4 and 3.3 but replacing
parameter t0 by the base point di of ωi and loop γi by loop ωi wherever
they occur (just as we did for the monodromy Ĥ ′

i at the blow up level in the
definition of isomorphism wni in section 4.1). It will be moreover convenient
to have H ′

i and Ĥ ′
i linked together by the analog of diagram (3.2). This

is obtained by asking the commutativity of the analog of diagram (3.1) in
Lemma 3.3 when building the isotopies leading to H ′

i and Ĥ ′
i. Now, to make

the link with Vi, we choose the monodromy Hi defining Vi by following the
same process as we did for Ĥ ′

i in the definition of isomorphism wni, so that
we obtain a formula analogous to (4.2),

Hi = H ′′−1
i ◦H ′

i ◦H
′′
i , (6.8)

where H ′′
i is a homeomorphism from L′

t0
onto L′

di
arising from an isotopy

above the path δi of Definition 3.2. As above, we shall ask H ′′
i to be linked

to the homeomorphism Ĥ ′′
i of formula (4.2) by a diagram similar to dia-

gram (3.2). We notice that H ′′
i leaves fixed the points of M′ since the isotopy

above δi giving rise to it satisfies condition (III) of Lemma 3.3. Following No-
tation 1.1, item 3, we denote by H̄ ′′

i ∗ the isomorphism induced by H ′′
i between

Hn(L′
t0
,M′) and Hn(L′

di
,M′) to distinguish it from the isomorphism H ′′

i ∗ in-
duced between Hn(L′

t0) and Hn(L′
di
). The link between Vi and V ′

i is then
given by the next lemma.
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Lemma 6.7. The following diagram is commutative:

Hn(L′
di
,M′)

V ′

i−−−→ Hn(L′
di
)

$⏐⏐≀ H̄′′

i ∗

$⏐⏐≀ H′′

i ∗

Hn(L′
t0
,M′)

Vi−−−→ Hn(L′
t0
).

Proof. This is a straightforward check using the definitions of Vi and V ′
i and

formula (6.8).

Next, we make, as earlier, a reduction to the bundle P ′−1(∂∆i) for the
right-hand side of diagram (6.4), this time by going back to the definition of
isomorphism wni. We consider the following diagram:

Hn(P ′−1(∂∆i))
∼

−−−−−−−−−−−−−−−−−−−−→

wni$⏐⏐incl∗

Hn(L
♯ ′
di
)

Ĥ′′

i ∗
∼
←−−− Hn(L

♯ ′
t0)

can
−−−→ Hn(L

♯ ′
t0)/ im(Ĥi ∗ − id)

⏐⏐)≀ Φ∗

⏐⏐)≀ Φ∗

⏐⏐)≀ Φ∗

Hn(L′
di
)

H′′

i ∗
∼
←−−− Hn(L′

t0
)

can
−−−→ Hn(L′

t0
)/ im(Hi ∗ − id).

(6.9)

The upper triangle is commutative by the very definition of isomorphism wni

(cf. (4.3) and (4.4)). The right-hand square is commutative by the defini-
tion of Φ∗ given after diagram (4.1). Finally, the left-hand square is also
commutative, since we took care of defining H ′′

i and Ĥ ′′
i coherently.

Finally, we come to the left side of diagram (6.4). We have the following
diagram:

−−−
−−−
−−→∂

Hn−1(M′)
$⏐⏐∂

Hn(L′
t0
,M′)

H̄′′

i ∗
∼
−−−→ Hn(L′

di
,M′).

(6.10)

It is commutative due to the fact that H ′′
i leaves fixed the points of M′ as

already pointed out.
Using now the commutativity of the diagram of Lemma 6.7 and of di-

agrams (6.9) and (6.10) and taking into account that some of the arrows,
as indicated, are isomorphisms, we see that we only need to prove that the
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following diagram commutes once reversed the isomorphism labeled Φ∗:

Hn(M′ × ∂∆i)
incl∗−−−→ Hn(P ′−1(∂∆i))$⏐⏐κi

$⏐⏐incl∗

Hn−1(M′) Hn(L
♯ ′
di
)

$⏐⏐∂

⏐⏐)≀ Φ∗

Hn(L′
di
,M′)

V ′

i−−−→ Hn(L′
di
).

(6.11)

To show this, we shall work at the chain level and use a cross-product
defined at this level as in [5, Notation 4.5]. Let ci : L′

di
→ L♯ ′

di
be the inverse

isomorphism of the one induced by Φ. It will be convenient to denote ci •(Γ)
by Γ♯ for any singular chain Γ of L′

di
. Then using Notation 1.1, items 4 and 3,

the commutativity of diagram (6.11), with arrow Φ∗ reversed, amounts to the
following homology: for any relative n-cycle Γ on L′

di
modulo M′,

(−1)n−1∂Γ× ωi ∼ (H ′
i •(Γ)− Γ)♯ in P ′−1(∂∆i). (6.12)

To prove this homology, first observe that

(H ′
i •(Γ)− Γ)♯ = H ′

i •(Γ)
♯ − Γ♯ = Ĥ ′

i •(Γ
♯)− Γ♯

since we have ensured that H ′
i and Ĥ ′

i commute with the blowing down
morphism. Homology (6.12) will then be given by the isotopy Ĝ′

i giving rise
to Ĥ ′

i. More precisely, if ι is the 1-simplex of [ 0, 1 ] consisting of the identity
map, then Γ♯×ι is a chain of L♯ ′

di
× [ 0, 1 ] to which we can apply Ĝ′

i, obtaining

a chain of Ŵ ′, in fact of P ′−1(∂∆i) by condition (̂ÎI) of Lemma 3.3 (where
t0 must be replaced by di and γi by ωi). We shall show that

∂Ĝ′
i •(Γ

♯ × ι) = ∂Γ× ωi − (−1)n−1(Ĥ ′
i •(Γ

♯)− Γ♯). (6.13)

Here is the computation; it can already be found in [5, p. 540] in the
course of the proof of [5, Proposition 4.13] but no result is stated there which
we could refer to. We have

∂Ĝ′
i •(Γ

♯ × ι) = Ĝ′
i •(∂Γ

♯ × ι) + (−1)nĜ′
i •(Γ

♯ × ∂ι).

Concerning the first term of this sum, observe that ∂Γ♯ is a chain ofM′×{ di }
and that the restriction of Ĝ′

i to (M′× { di })× [ 0, 1 ] coincides with that of
Φ× ωi by condition (̂ÎÎI) of Lemma 3.3. Then

Ĝ′
i •(∂Γ

♯ × ι) = (Φ× ωi)•(∂Γ
♯ × ι) = Φ•(∂Γ

♯)× ωi •(ι)

= ∂Γ× ωi.
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As to the second term of the sum above, let 0̂ and 1̂ be the 0-simplices of [ 0, 1 ]
with respective values 0 and 1. Then Γ♯×∂ι = Γ♯× 1̂−Γ♯× 0̂, a difference of
chains of L♯ ′

di
×{ 1 } and L♯ ′

di
×{ 0 }. But, if ϖ is the projection of L♯ ′

di
× [ 0, 1 ]

onto the first factor, the restriction of Ĝ′
i to L♯ ′

di
× { 0 } is the same as the

restriction of ϖ to the same space, by condition (̂I) of Lemma 3.3. And the
restriction of Ĝ′

i to L♯ ′
di
× { 1 } is the same as the restriction of Ĥ ′

i ◦ϖ, by the

definition of Ĥ ′
i in Lemma 3.4. Hence

Ĝ′
i •(Γ

♯ × ∂ι) = Ĝ′
i •(Γ

♯ × 1̂)− Ĝ′
i •(Γ

♯ × 0̂)

= Ĥ ′
i •(ϖ•(Γ

♯ × 1̂))−ϖ•(Γ
♯ × 0̂)

= Ĥ ′
i •(Γ

♯)− Γ♯

since the chain cross-product we have considered has the property that, for
any spaces E and F , the projection ϖ : E × F → E acts as ϖ•(γ × σ) = γ
for every chain γ of E and every 0-simplex σ of F (cf. [5, Notation 4.5]).

This shows equality (6.13), proving homology (6.12) and hence the com-
mutativity of diagram (6.11). The commutativity of diagram (6.4), which
was reduced to the former, follows.

The commutativity of diagrams (6.2) and (6.4) implies that of diagram (6.1)
and hence proves Proposition 6.1.

7 A generalization of the Zariski-van Kam-

pen theorem to higher homotopy

We give here a projective version of the van Kampen type theorem of [12,
Theorem 2.4] using the above defined homotopy variation operators (see sec-
tion 5) instead of the degeneration operators of [12]. In fact we shall give
two proofs of this result. One is based on an affine version of the Zariski-
van Kampen type theorem from [12] and the other depends on Theorem 5.1
from [5].

Theorem 7.1. Let V be a hypersurface in Pn+1 with n ≥ 2 having only
isolated singularities. Consider a pencil (Lt)t∈P1 of hyperplanes in Pn+1 with
the base locus M transversal to V . Denote by t1, . . . , tN the collection of
those t for which Lt ∩ V has singularities. Let t0 be different from either of
t1, . . . , tN . Let γi be a good collection, in the sense of Definition 3.2, of paths
in P1 based in t0. Let e ∈M−M∩V be a base point. Let Vi be the variation
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operator corresponding to γi. Then inclusion induces an isomorphism:

πn(P
n+1 − V, e)

∼
←− πn(Lt0 − Lt0 ∩ V, e)

/ N∑

i=1

imVi.

First Proof. We apply Theorem 5.1 of [5] to the non-singular quasi-pro-
jective variety W − j(V ) in Pn+2 (cf. section 2.2). The base locus M of the
pencil (Lt)t∈P1 is transversal to the Whitney stratification Σ of W adapted
to j(V ) (cf. Claim 2.6). Hence [5] gives the following isomorphism induced
by inclusion:

Hn(W − j(V ))
∼
←− Hn

(
Lt0 ∩ (W − j(V ))

)/ N∑

i=1

imVi

where the Vi are the homological variation operators defined in section 5.
Recall (Lemma 2.8) that we have an isomorphism η:

Hn(W − j(V ))
∼
←− πn(P

n+1 − V, e).

Now the result follows using the isomorphism αt0 and the commutative di-
agrams of Lemma 2.8, and the definition of Vi by means of Vi from sec-
tion 5.

Second Proof. Let Cn
t0

denote the affine part of Lt0 (that is Lt0 −M).
The group πn(Cn

t0
−Cn

t0
∩V ), as in [12, section 1], will be viewed as a module

over Z[π1(Cn
t0 −Cn

t0 ∩ V )] = Z[s, s−1]. We can use the affine monodromy of
Cn

t0
− Cn

t0
∩ V which is a restriction of the projective one. For 1 ≤ i ≤ N ,

there is a commutative diagram:

πn(Cn
t0
−Cn

t0
∩ V )

hi−−−→ πn(Cn
t0
−Cn

t0
∩ V )

⏐⏐)sd−1

⏐⏐)sd−1

πn(Cn
t0 −Cn

t0 ∩ V )
hi−−−→ πn(Cn

t0 −Cn
t0 ∩ V )

⏐⏐)
⏐⏐)

coker(sd − 1)
hi−−−→ coker(sd − 1)

⏐⏐)a∗

⏐⏐)a∗

πn(Lt0 − Lt0 ∩ V )
hi−−−→ πn(Lt0 − Lt0 ∩ V ),
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where a∗ is an isomorphism of Z[s, s−1]-modules (cf. Lemma 1.13 in [12]).
Hence a∗ identifies the image of the affine monodromy with the image of
the projective one. A similar diagram yields the equality of the images of
degeneration operators. Now the theorem follows from Proposition 6.1.

Remark 7.2. We presented Theorem 7.1 as a generalization of the classical
Zariski-van Kampen theorem. However the latter concerns the case n = 1
and our definition of the homotopy variation operators does not make sense
in this case. But, as M is then reduced to a point, Lemma 5.2 makes it
natural to consider that in this case Vi should be nothing more than hi#− id.
This in turn does not make sense since π1(Lt0−Lt0∩V, e) is not commutative
but amounts to saying that the only identifications to make are of each x of
π1(Lt0 − Lt0 ∩ V, e) with each hi#(x). Our theorem then actually reduces to
the classical Zariski-van Kampen theorem. Nevertheless our proof does not
work in the case n = 1. The statements generalize, but not the proofs.
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pen sur le groupe fondamental du complémentaire d’une courbe projec-
tive plane. Compositio Math. 27 (1973), 141–158.

[4] D. Chéniot, Topologie du complémentaire d’un ensemble algébrique pro-
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