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Abstract
The notions of orbifold elliptic genus and elliptic genus of singular varieties are in-
troduced, and the relation between them is studied. The elliptic genus of singular va-
rieties is given in terms of a resolution of singularities and extends the elliptic genus
of Calabi-Yau hypersurfaces in Fano Gorenstein toric varieties introduced earlier.
The orbifold elliptic genus is given in terms of the fixed-point sets of the action. We
show that the generating function for the orbifold elliptic genus

P
Ellorb(Xn, 6n)pn

for symmetric groups 6n acting on n-fold products coincides with the one proposed
by R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde. The two notions of elliptic
genera are conjectured to coincide.

1. Introduction
This work started as an attempt to understand the beautiful formula for the generat-
ing function for the orbifold elliptic genera of symmetric products due to Dijkgraaf,
Moore, Verlinde, and Verlinde which follows (see [19]):

X

n�0
pn Ellorb(Xn/6n; y, q) =

1Y

i=1

Y

l,m

1
(1� pi ylqm)c(mi,l)

. (1.1)

Here X is a Kähler manifold,6n is the symmetric group acting on the n-fold product,
and c(m, l) are the coefficients of the elliptic genus

P
m,l c(m, l)ylqm of X . The prob-

lem is that the orbifold elliptic genus is defined in physical terms, and the arguments
given in [19] do not lend themselves to a translation into a mathematical proof.

The two-variable elliptic genus is a very compelling invariant, for the discussion
of which we refer to [12]. Here we just note that it is a holomorphic function on the
product of C and the upper half-plane which is attached to an (almost) complex man-
ifold and that it is a weak Jacobi form if the manifold is Calabi-Yau. For Calabi-Yau
manifolds of a dimension smaller than 12 or equal to 13, the elliptic genus can be
expressed in terms of the Hirzebruch �y genus, but in general the former contains
more information than the latter. In all dimensions the elliptic genus specializes into
the Hirzebruch �y genus, and in particular into the topological Euler characteristic,
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the holomorphic Euler characteristic, the signature, and so on. Special cases of for-
mula (1.1) for these invariants have been proved mathematically for some time. For
example, it was shown in [28], using the Macdonald formula (see [31]), that if a finite
group G acts on a manifold X and

eorb(X,G) := 1
|G|

X

f g=g f
e(X f,g) (1.2)

(summation is over all pairs of commuting elements; X f,g is the set of fixed points of
both f and g), then

n=1X

n=0
eorb(Xn, 6n) =

Y

i

1
(1� t i )e(X)

. (1.3)

On the other hand, in [24] (see also [21]) it was found that the generating series for
the �y genera of Hilbert schemes of a surface X is given by

n=1X

n=0
��y(X [n])pn = exp

⇣ 1X

m=1

��ym (X)

(1� (yp)m)

pm

m

⌘
. (1.4)

It was observed in [28] that in the cases when a crepant resolution for X/G does exist,
the McKay correspondence (see [33]) can be used to prove that the Euler character-
istic of such a resolution coincides with the orbifold Euler characteristic. In [7] this
idea was used in a more general case of the �y genus, with an appropriately defined
orbifold �y genus. In the case when X is a surface, the Hilbert scheme provides such
a resolution (see [22]), and hence the left-hand side of (1.4) coincides with the gener-
ating function for the orbifold �y genus of symmetric products of X . Therefore, (1.4)
can be viewed as a specialization of (1.1).

This brings in the basic question: How are the orbifold Euler characteristic and
the orbifold �y genus (or more generally, the orbifold elliptic genus of an action on a
variety) related to the corresponding invariants of an arbitrary, not necessarily crepant,
resolution of the singularities of the orbifold? This question has been addressed in
several papers (see, e.g., [5], [7], [18]). Paper [5] contains mathematical definitions of
the orbifold E-function and of an E-function of singular varieties calculated via res-
olutions, which is called a stringy E-function. The E-function of a smooth manifold
is equivalent to the data given by the Hodge numbers of the manifold, and it spe-
cializes to the �y genus. The stringy E-function is defined for singular varieties with
log-terminal singularities and more generally for log-terminal pairs. Works [5] and
[18] show that the orbifold E-function for a pair (X,G) coincides with the stringy E-
function for the pair (X/G, image of ramification divisor). The published version of
[5] has a gap in its canonical abelianization algorithm, but it has now been corrected
by Batyrev [6].
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In this paper, two notions of the elliptic genus for singular varieties are pro-
posed. The first is called the singular elliptic genus and is defined for pairs (vari-
ety, divisor). The singular elliptic genus specializes to the �y genus derived from
the stringy E-function of [5]. The second notion of elliptic genus, called the orb-
ifold elliptic genus, is defined for any pair (X,G) of a manifold and a finite group
of its automorphisms. The orbifold elliptic genus specializes to the �y genus derived
from the orbifold E-function. We conjecture that the two elliptic genera coincide
for (X/G, image of ramification divisor) and (X,G), up to an explicit normalization
factor. The advantage of the orbifold elliptic genus is that it is well suited for the math-
ematical proof of formula (1.1). On the other hand, the singular elliptic genus provides
an interesting new invariant of singular varieties. Instead of the non-Archimedian in-
tegrals over spaces of arcs techniques of [5] and [18], we use the recent result in
factorization of birational maps into a sequence of smooth blow-ups and blow-downs
(see [1]).

The content of the paper is as follows. In Section 2 we collect some standard
definitions and results that are relevant to the subject but may not be familiar to the
reader. In Section 3 we define the singular elliptic genus of a Q-Gorenstein complex
projective variety Z as follows. If ⇡ : Y ! Z is a resolution of singularities of Z and
↵k 2 Q are defined from the relation KY = ⇡⇤KZ + P

↵k Ek , then

cEllY (Z; z, ⌧ ) :=
Z

Y

⇣Y

l

(yl/(2⇡ i))✓(yl/(2⇡ i) � z)✓ 0(0)
✓(�z)✓(yl/(2⇡ i))

⌘

⇥
⇣Y

k

✓(ek/(2⇡ i) � (↵k + 1)z)✓(�z)
✓(ek/(2⇡ i) � z)✓(�(↵k + 1)z)

⌘
,

where ✓(z, ⌧ ) is the Jacobi theta function and yl are Chern roots of Y and ek = c1(Ek).
It is shown that cEllY (Z; z, ⌧ ) depends only on Z (rather than on the desingularization
Y ). Moreover, this definition is extended to pairs (variety, divisor), and the singular
elliptic genus has the transformation properties of a Jacobi form if the pair satisfies a
natural Calabi-Yau condition. Some difficulties arise only when some ↵k equal (�1)
and we assume that the pairs are Kawamata log-terminal. One application of the sin-
gular elliptic genus is to the problem raised by M. Goreski and R. McPherson (see
[9]). They were trying to determine which Chern numbers can be defined for singular
spaces so that they are invariant under small resolutions. B. Totaro found a remark-
able connection between this problem and the elliptic genus. In [35] he showed that
such Chern numbers must be among the combinations of the coefficients of the two
variable elliptic genus by showing that these are the only Chern numbers invariant
under the classical flops. As a corollary of our definition of singular elliptic genus,
we show that the elliptic genera of any two IH-small resolutions (or, more generally,
two crepant resolutions) of a singular variety coincide, which in a sense completes
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the paper of Totaro. Unfortunately, most varieties do not admit such resolutions, and
it appears that Chern numbers may not be a good invariant to look for because sin-
gular elliptic genera generally do not lie in the span of the elliptic genera of smooth
varieties. However, coefficients of Taylor expansions of elliptic genera do provide an
analog of Chern numbers for singular varieties.

In Section 4 we propose a definition of an orbifold elliptic genus which does not
use the resolution of singularities but uses only information about the manifold and the
fixed-point sets. Let G be a finite group acting on a manifold X . For h 2 G, let Xh be
a connected component of the fixed-point set of h, and let T X |Xh = L

V�, � 2 Q \
[0, 1) be a decomposition into direct sum, such that h acts on V� as the multiplication
by e2⇡ i�. Let F(h, Xh ⇢ X) = P

� �(h) be the fermionic shift (see [7], [38]), and let

Vh,Xh✓X :=
O

k�1


(3•V ⇤

0 yq
k�1) ⌦ (3•V0y�1qk) ⌦ (Sym•V ⇤

0 q
k) ⌦ (Sym•V0qk)

⌦
h O

�6=0
(3•V ⇤

� yq
k�1+�(h)) ⌦ (3•V�y�1qk��(h))

⌦ (Sym•V ⇤
� q

k�1+�(h)) ⌦ (Sym•V�qk��(h))
i�

.

Then we define (see Section 4)

Ellorb(X,G; y, q) := y� dim X/2
X

{h},Xh
yF(h,Xh✓X) 1

|C(h)|
X

g2C(h)
L(g, Vh,Xh✓X ),

where {h} is a conjugacy class inG,C(h) is the centralizer of h, and L(g, Vh,Xh✓X ) =P
i (�1)i tr(g, Hi (Vh,Xh✓X )) is the holomorphic Lefschetz number. Using the

Atiyah-Singer holomorphic Lefschetz theorem, the orbifold elliptic genus can be
rewritten as follows. For a pair g, h 2 G of commuting elements, let Xg,h be a con-
nected component of the set of points in X fixed by both g and h, let x� be the Chern
roots of a subbundle V� of T X |Xg,h on which both g and h act via the multiplication
by exp(2⇡ i�(g)) and exp(2⇡ i�(h)), respectively, and let

8(g, h, �, z, ⌧, x) := ✓(x/(2⇡ i) + �(g) � ⌧�(h) � z)
✓(x/(2⇡ i) + �(g) � ⌧�(h))

e2⇡ iz�(h)z .

Then

Eorb(X,G; z, ⌧ ) = 1
|G|

X

gh=hg

⇣ Y

�(g)=�(h)=0
x�

⌘ Y

�

8(g, h, �, z, ⌧, x�)[Xg,h]. (1.5)

This formula generalizes (1.2). (As we mentioned earlier, (1.2) has as a consequence
(1.3), as was shown in [28].) For a thus-defined orbifold elliptic genus, we prove the
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formula of Dijkgraaf, Moore, Verlinde, and Verlinde (1.1). We also show that if X is
a Calabi-Yau manifold, then Eorb(X,G; z, ⌧ ) is a weak Jacobi form.

In Section 5 we conjecture (see Conjecture 5.1) that the two notions of ellip-
tic genera coincide, which would extend the results of [5] and [18]. We prove this
conjecture for the toric case and in dimension one. For Calabi-Yau hypersurfaces in
Gorenstein toric Fano varieties, the elliptic genus has already been defined in [12],
using the description of the cohomology of chiral de Rham complex M SV for such
hypersurfaces from [10] and borrowing the definition of elliptic genus via chiral de
Rham complex in the nonsingular case:

Ell(X) = ydim X/2SupertraceH⇤(M SV (X))y
J [0]qL[0].

Here M SV is the chiral de Rham complex constructed in [32] and J [0] and L[0]
are the operators of the N = 2 super-Virasoro algebra acting on H⇤(M SV (X)). We
use the combinatorial description of this genus, proved in [12], and the calculation
of [11] to show that it coincides with the singular elliptic genus, up to an explicit
normalization factor.

We continue to discuss Conjecture 5.1 in Section 6. We show that both notions
of elliptic genera are invariant under complex cobordisms of G action. By using the
known result about cobordism classes of the action of a cyclic group of prime order
p, we prove Conjecture 5.1 for involutions.⇤

2. Preliminaries

2.1. Elliptic genus
Let X be a compact (almost complex) manifold. For a bundle V on X , we consider
the following elements in the ring of formal power series over K (X):

St (V ) =
X

i
Si (V )t i , 3t (V ) =

X

i
3i (V )t i ,

where Si (resp., 3i ) is the i th symmetric (resp., exterior) power of V .
Let TX (resp., T̄X ) be the tangent (resp., cotangent) bundle. The elliptic genus of

X can be defined as

Ell(X; y, q) =
Z

X
ch(E LLy,q) td(X),

where

E LLy,q := y�d/2 ⌦n�1
�
3�yqn�1 T̄X ⌦ 3�y�1qn TX ⌦ Sqn T̄X ⌦ Sqn TX

�
.

⇤A proof of Conjecture 5.1 is given in our paper [13].
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Clearly, this is an invariant of the cobordism class of X , and, moreover, E LLy,q(X ⇥
Y ) = E LLy,q(X) · Elly,q(Y ); that is, the elliptic genus is a genus in the sense of
[27]. If xi are the Chern roots of X , that is, for the total Chern class, we have c(X) =Q
l(1+ xl); then

Ell(X; y, q) =
Z

X

Y

l
xl

✓(xl/(2⇡ i) � z, ⌧ )

✓(xl/(2⇡ i), ⌧ )
, (2.1)

where q = e2⇡ i⌧ and y = e2⇡ iz . In (2.1)

✓(z, ⌧ ) = q1/8(2 sin⇡ z)
l=1Y

l=1
(1� ql)

l=1Y

l=1
(1� ql e2⇡ iz)(1� ql e�2⇡ iz)

is the Jacobi theta function (see [14]).
In other words, (2.1) is the genus corresponding to the series Q(x) =

x
�
✓(x/(2⇡ i) � z, ⌧ )/✓(x/(2⇡ i), ⌧ )

�
(see [27]). It is not normalized in the sense that

Q(0) = (1/(2⇡ i))(✓(�z, ⌧ )/✓ 0(0, ⌧ )) 6= 1. It is often convinient to use the normal-
ized version of the elliptic genus:

Ell(X; y, q) =
Z

X

Y

l

xl
2⇡ i

✓(xl/(2⇡ i) � z, ⌧ )✓ 0(0, ⌧ )

✓(xl/(2⇡ i), ⌧ )✓(�z, ⌧ )
. (2.2)

For q = 0 we have Ell(X; y, q = 0) = y�d/2��y(X), where

�y(X) =
X

p,q
(�1)q dim Hq(X, �

p
X )y p

is Hirzebruch �y-genus (see [27]). In particular, Ell(X; y = 1, q = 0) is the topo-
logical Euler characteristic, (�1)d/2 Ell(X; y = �1, q = 0) is the signature, and so
on.

If X is a Calabi-Yau, that is, if KX ⇠ 0, then Ell(X; y, q) is a weak Jacobi form.
Recall (see [20], [25]) that a weak Jacobi form of weight k 2 Z and index r 2 Z/2 is
a function on H ⇥ C that satisfies

�
⇣a⌧ + b
c⌧ + d

,
z

c⌧ + d

⌘
= (c⌧ + d)ke2⇡ i(rcz

2/(c⌧+d))�(⌧, z),

�(⌧, z + m⌧ + n) = (�1)2r(�+µ)e�2⇡ ir(m
2⌧+2mz)�(⌧, z)

and has a Fourier expansion
P

l,m cm,l ylqm with nonnegative m.

2.2. Log-terminal singularities
We recall basic definitions related to singular varieties. Let Z be a normal irreducible
projective variety. The Q-Weil (resp., Q-Cartier) divisor is a linear combination with
rational coefficients of codimension one subvarieties (resp., Cartier divisors) on Z .
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The canonical divisor KZ of Z is a Weil divisor div(s), where s = d f1 ^ · · · ^
d fdim Z ( fi are meromorphic functions) is a nonzero rational differential on Z . We
call Z Gorenstein (resp., Q-Gorenstein) if KZ is Cartier (resp., Q-Cartier).

A resolution of singularities of a variety Z is a proper birational morphism f :
Y ! Z , where Y is smooth.

Definition 2.1
An IH-small resolution of Z is a regular map Y ! Z such that for every i � 1 the
set of points z 2 Z such that dim( f �1(z)) � i has codimension greater than 2i in Z
(see [9]).

Definition 2.2
Z has at worst log-terminal singularities if the following two conditions hold.
(i) Z is Q-Gorenstein.
(ii) For a resolution f : X ! Z whose exceptional set is a divisor with simple

normal crossings, one has ↵i > �1 for all i in the relation KX = f ⇤KZ +P
↵i Ei .

A well-known result of birational geometry (see, e.g., [15]) states that for any resolu-
tion of a log-terminal variety Z , the coefficients ↵i (called discrepancies) are bigger
than (�1). A similar definition of log-terminality exists for pairs (Z , D), where D is
a Q-Weil divisor on a normal variety Z such that (KZ + D) is Q-Cartier.

2.3. G-bundles
Let X be a complex manifold, and let G be a finite group of holomorphic transforma-
tions acting on X . Let V be a holomorphic G-bundle on X ; that is, the action of G on
X is extended to the action on V . The holomorphic Lefschetz number of g 2 G is

L(g, V ) =
X

i
(�1)i tr

�
g, Hi (X, V )

�
.

Let VG be the sheaf whose sections over open sets are the G-invariants of the sections
of V . We have (see [26], spectral sequences degenerate due to finiteness of G)

�(VG) = 1
|G|

X

g2G
L(g, V ).

The Lefschetz numbers are given by the data around the fixed-point sets (see [2]) as
follows. Let Ng be the normal bundle to the fixed-point set Xg of g, and let Ng⇤ be
its dual. In the case when the action of G on a space Y is trivial, we have KG(Y ) =
K (Y ) ⌦ R(G) (see [2]), and hence one can define W (g) 2 K (Y ) corresponding to
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W 2 KG(Y ). In this notation,

L(g, V ) = ch V |Xg (g) td(TXg )
ch3�1(Ng)⇤(g)

[Xg]. (2.3)

For g 2 G, the normal bundle NXg to the fixed-point set Xg can be decomposed into
the direct sum NXg = L

i N (✓i ), ✓i 2 Q, where each N (✓i ) is the subbundle on
which g acts as multiplication by e2⇡ i✓i . If x✓i , j are the Chern roots of N (✓i ), that is,
if c(N (✓i )) = Q

j (1+ x✓i , j ), then (2.3) can be rewritten as

L(g, V ) = ch(V |Xg )Q
i, j (1� e�x j�✓i, j )

td(Xg)[Xg].

3. Singular elliptic genus
In this section we define singular elliptic genus for a large class of singular varieties
and more generally for pairs consisting of a variety and a Q-Cartier divisor on it.
This is by far the most general definition of the elliptic genus for singular varieties
constructed to date. All varieties are assumed to be proper over Spec(C).

Definition 3.1
Let Z be a Q-Gorenstein variety with log-terminal singularities, and let ⇡ : Y ! Z
be a desingularization of Z whose exceptional divisor E = P

k Ek has simple normal
crossings. The discrepancies ↵k of the components Ek are determined by the formula

KY = ⇡⇤KZ +
X

k
↵k Ek .

We introduce Chern roots yl of Y by c(TY ) = Q
l(1 + yl) and define cohomology

classes ek := c1(Ek). The singular elliptic genus of Z is then defined as a function of
two variables z, ⌧ given by

cEllY (Z; z, ⌧ ) :=
Z

Y

⇣Y

l

(yl/(2⇡ i))✓(yl/(2⇡ i) � z)✓ 0(0)
✓(�z)✓(yl/(2⇡ i))

⌘

⇥
⇣Y

k

✓(ek/(2⇡ i) � (↵k + 1)z)✓(�z)
✓(ek/(2⇡ i) � z)✓(�(↵k + 1)z)

⌘
,

where ✓(z, ⌧ ) is the Jacobi theta function (see [14]). We often suppress the ⌧ -
dependence in our formulas.

We usually abuse notation and consider cEll to be a function of y = e2⇡ iz and q =
e2⇡ i⌧ . Strictly speaking, this function is multivalued because rational powers of y may
occur.

The key result of this section is the following theorem.
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THEOREM 3.2
The above-defined cEllY (Z; y, q) does not depend on the choice of desingularization
Y and therefore defines an invariant of Z, which we denote simply by cEll(Z; y, q).

Proof
Because of the weak factorization theorem of [1], it suffices to show that
cEllY (Z; y, q) = cEllỸ (Z; y, q) when Ỹ is obtained from Y by a blow-up along a
nonsingular subvariety X . We remark that the algorithm of [1] is compatible with the
normal crossing condition (see [1, Theorem 0.3.1]), so we may assume that X has
normal crossings with the components of the exceptional divisor of ⇡ : Y ! Z .

We use the notation of Fulton [23] for the blow-up diagram

X̃
j����! Ỹ

g
??y

??y f

X ����!
i

Y

where X̃ is the exceptional divisor of the blow-down morphism. We also have ⇡ :
Y ! Z and ⇡ � f : Ỹ ! Z . The discrepancies of the exceptional divisors of these
morphisms are related by

KY = ⇡⇤KZ +
X

k
↵k Ek,

KỸ = f ⇤⇡⇤KZ +
X

k
↵k E 0

k +
⇣ X

k
↵k�k + r � 1

⌘
X̃ ,

where �k is the multiplicity of Ek along X and r is the codimension of X in Y .
We use for a while the following technical assumption:

The normal bundle N to X inside Y is a pullback under i
of some rank r bundle M on Y.

(3.1)

We have the following exact sequences of coherent sheaves on Ỹ (see [23, Section
15.4]):

0 ! T Ỹ ! f ⇤TY ! j⇤F ! 0,
0 ! j⇤OX̃ (�1) ! j⇤g⇤i⇤M ! j⇤F ! 0,

0 ! O ! O(X̃) ! j⇤OX̃ (�1) ! 0,

0 ! f ⇤M(�X̃) ! f ⇤(M) ! j⇤g⇤i⇤M ! 0.
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Here F is the tautological quotient bundle on X̃ . This implies

c(T Ỹ ) = c( f ⇤TY ) · (1+ x̃) ·
Y

l

(1+ f ⇤ml � x̃)
(1+ f ⇤ml)

,

where c(M) = Q
l(1+mi ) and x̃ = c1(O(X̃)). Note also that c1(E 0

k) = f ⇤ek ��k x̃ .
Therefore,

cEllỸ (Z; y, q)

=
Z

Ỹ

⇣Y

l

( f ⇤yl/(2⇡ i))✓( f ⇤yl/(2⇡ i) � z)✓ 0(0)
✓(�z)✓( f ⇤yl/(2⇡ i))

⌘

⇥
⇣ (x̃/(2⇡ i))✓(x̃/(2⇡ i) � z)✓ 0(0)

✓(�z)✓(x̃/(2⇡ i))

⌘

⇥
⇣Y

l

✓(( f ⇤ml � x̃)/(2⇡ i) � z)(( f ⇤ml � x̃)/(2⇡ i))✓( f ⇤ml/(2⇡ i))
✓(( f ⇤ml � x̃)/(2⇡ i))( f ⇤ml/(2⇡ i))✓( f ⇤ml/(2⇡ i) � z)

⌘

⇥
⇣Y

k

✓(( f ⇤ek � �k x̃)/(2⇡ i) � (↵k + 1)z)✓(�z)
✓(( f ⇤ek � �k x̃)/(2⇡ i) � z)✓(�(↵k + 1)z)

⌘

⇥
⇣✓(x̃/(2⇡ i) � (↵X̃ + 1)z)✓(�z)
✓(x̃/(2⇡ i) � z)✓(�(↵X̃ + 1)z)

⌘
,

where ↵x̃ = r � 1+ P
k ↵k�k .

We now use
R
Ỹ a =

R
Y f⇤(a). We write the Taylor expansion

P
n Rn(y, q)x̃n of

the expression under
R
Ỹ in the above identity. Observe that f⇤R0(y, q) is exactly the

class in A(Y )whose integral iscEllY (Z; y, q); so we need to show that the contribution
of the rest of the terms vanishes. Notice that f⇤ x̃n = 0 for 1  n  r � 1 and that
f⇤ x̃r+n = i⇤(sn(i⇤M))(�1)n+r�1, where P

n�0 sntn is the Segre polynomial of a
vector bundle (see [23]). Hence, one needs to calculate
Z

Y

X

n�0
i⇤sn(i⇤M)(�1)n+r�1

⇥ (Coeff. at tr+n)
h⇣Y

l

(yl/(2⇡ i))✓(yl/(2⇡ i) � z)✓ 0(0)
✓(�z)✓(yl/(2⇡ i))

⌘

⇥
⇣ (t/(2⇡ i))✓(t/(2⇡ i) � (↵X̃ + 1)z)✓ 0(0)

✓(t/(2⇡ i))✓(�(↵X̃ + 1)z)

⌘

⇥
⇣Y

l

✓((ml � t)/(2⇡ i) � z)((ml � t)/(2⇡ i))✓(ml/(2⇡ i))
✓((ml � t)/(2⇡ i))(ml/(2⇡ i))✓(ml/(2⇡ i) � z)

⌘

⇥
⇣Y

k

✓((ek � �k t)/(2⇡ i) � (↵k + 1)z)✓(�z)
✓((ek � �k t)/(2⇡ i) � z)✓(�(↵k + 1)z)

⌘i
. (3.2)
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We denote nl = i⇤ml , fk = i⇤ek and use the fact that

X

n�0
sn(i⇤M)(�1)nt�n = trQ

l(t � nl)

to rewrite (3.2) as

const.
Z

X
(Coeff. at t�1)

h⇣Y

l

(xl/(2⇡ i))✓(xl/(2⇡ i) � z)✓ 0(0)
✓(�z)✓(xl/(2⇡ i))

⌘

⇥
⇣✓(t/(2⇡ i) � (↵X̃ + 1)z)✓ 0(0)

✓(t/(2⇡ i))✓(�(↵X̃ + 1)z)

⌘

⇥
⇣Y

l

✓((nl � t)/(2⇡ i) � z)✓(nl/(2⇡ i))
✓((nl � t)/(2⇡ i))(nl/(2⇡ i))✓(nl/(2⇡ i) � z)

⌘

⇥
⇣Y

k

✓(( fk � �k t)/(2⇡ i) � (↵k + 1)z)✓(�z)
✓(( fk � �k t)/(2⇡ i) � z)✓(�(↵k + 1)z)

⌘i
. (3.3)

Here we denote c(T X) = Q
l(1 + xl) and use c(T X) = i⇤c(TY )/ i⇤c(M). To show

that (3.3) is zero, observe that the function whose coefficient at t�1 is measured is
elliptic in t . Really, t ! t + 2⇡ i obviously keeps it unchanged, and t ! t + 2⇡ i⌧
does not change it because ↵X̃ = P

k ↵k�k + r � 1. Here we have used the fact
that none of the ↵’s is equal to (�1), which follows from the condition that Z is log-
terminal (see, e.g., [15]). It remains to show that t = 0 is the only pole of this function
up to the lattice 2⇡ i(Z+Z⌧ ), such that the residue is zero. To do so, observe that the
normal crossing condition implies �k 2 {0, 1}, and, moreover, whenever �k = 1, the
corresponding factor ✓(( fk � t)/(2⇡ i) � z) in the denominator of the last product is
offset by a factor ✓((nl � t)/(2⇡ i) � z) in the numerator of the second product.

We now get rid of assumption (3.1). Indeed, it is easy to see that the difference
between cEllY (Z; y, q) and cEllỸ (Z; y, q) can be written as a degree of an element of
A(X̃) which is preserved when one deforms i : X ! Y to the embedding of X into
the normal cone for which assumption (3.1) is satisfied.

We have not significantly used the log-terminality condition, except for the fact that
we did not have to divide by ✓(0 · z). We now extend our definition of the singular el-
liptic genus to the category of pairs that consist of an algebraic variety and aQ-Cartier
divisor on it. To avoid (�1) discrepancies, we assume that the pair is Kawamata log-
terminal.

Definition 3.3
Let Z be a projective variety, and let D be an arbitraryQ-Weil divisor such that KZ +
D is aQ-Cartier divisor on Z . Let ⇡ : Y ! Z be a desingularization of Z . We denote
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by E = P
k Ek the exceptional divisor of ⇡ plus the sum of the proper preimages

of the components of D, and we assume that it has simple normal crossings. The
discrepancies ↵k of the components Ek are determined by the formula

KY = ⇡⇤(KZ + D) +
X

k
↵k Ek

and the requirement that the discrepancy of the proper transform of a component of D
be the opposite of the coefficient of D at that component. In what follows, we assume
that (Z , D) is a Kawamata log-terminal pair, which means that all discrepancies are
greater than (�1).

We introduce Chern roots yl of Y by c(TY ) = Q
l(1+ yl) and define

cEllY (Z , D; y, q) :=
Z

Y

⇣Y

l

(yl/(2⇡ i))✓(yl/(2⇡ i) � z)✓ 0(0)
✓(�z)✓(yl/(2⇡ i))

⌘

⇥
⇣Y

k

✓(ek/(2⇡ i) � (↵k + 1)z)✓(�z)
✓(ek/(2⇡ i) � z)✓(�(↵k + 1)z)

⌘
,

where, as usual, y = e2⇡ iz , q = e2⇡ i⌧ , the ⌧ -dependence is suppressed, and ek =
c1(O(Ek)).

THEOREM 3.4
The above-defined elliptic genus does not depend on the choice of the desingulariza-
tion ⇡ : Y ! Z. We therefore denote it simply by cEll(Z , D; y, q).

Proof
Any two resolutions of singularities of Z can be connected by a sequence of blow-ups
and blow-downs, and the argument of Theorem 3.2 works. Kawamata log-terminality
implies that all discrepancies on all intermediate varieties are different from (�1).

PROPOSITION 3.5
The elliptic genera of two different crepant resolutions of a Gorenstein projective
variety coincide.

Proof
We show that the elliptic genus of a crepant resolution Y of a variety X equals the
singular elliptic genus of X . If the exceptional set of the morphism ⇡ : Y ! X is a
divisor with simple normal crossings, then it is enough to observe that in Definition
3.1 the second product is trivial. In general, we can further blow up Y to get µ : Z !
Y so that the exceptional sets of µ and ⇡ � µ : Z ! X are divisors with simple
normal crossings. Then the singular elliptic genera of Y and X calculated via Z are
given by the same formula because the discrepancies coincide.
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Remark 3.6
In particular, the above proposition shows that the statement of [35, Theorem 8.1] can
be extended to the full elliptic genus.

The following proposition shows that when q ! 0, we recover a formula for �y
genus of (Z , D) which follows from [5].

PROPOSITION 3.7
Let (Z , D) be a Kawamata log-terminal pair. Then

cEll(Z , D; u, q = 0) = (u�1/2 � u1/2)dim Z Est(Z , D; u, 1),
where Est is defined as in [5].

Proof
To avoid confusion, we immediately remark that the second arguments in the singular
elliptic genus and in Batyrev’s E-function have drastically different meanings. The
definition of Est(Z , D) in [5] could be stated as

Est(Z , D; u, v) :=
X

J⇢I
E(EJ ; u, v)

Y

j2J

⇣ uv � 1
uv↵ j+1 � 1

� 1
⌘
,

where
P

i2I ↵i Ei is the exceptional divisor of a resolution Y ! Z together with
proper preimages of the components of D and is assumed to have normal crossings.
Polynomials E(EJ ; u, v) are defined in terms of mixed Hodge structure on the coho-
mology of EJ (see [5]). Subvariety EJ is

T
j2J E j , and the sum includes the empty

subset J .
For each J ,

Est(EJ ; u, 1) =
Z

E j

dim EJY

i=1

(1� u e�xi,J )xi,J
1� e�xi,J

,

where c(T EJ ) = Q
i (1 + xi , J ). The adjunction formula for complete intersections

yields
c(T EJ ) = i⇤J

�
c(TY )

�
/

Y

j2J

�
1+ i⇤J c1(E j )

�
,

where i J : EJ ! Y is the closed embedding. We then obtain

E(EJ ; u, 1) =
Z

E j

dim YY

i=1

(1� u e�i⇤J xi )i⇤J xi
1� e�i⇤J xi

Y

j2J

1� e�i⇤J e j

(1� u e�i⇤J e j )i⇤J e j

=
Z

Y

dim YY

i=1

(1� u e�xi )xi
1� e�xi

Y

j2J

1� e�e j
1� u e�e j

,
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where c(TY ) = Q
i (1+ xi ). When we plug this result into Batyrev’s formula, we get

Est (Z , D; u, 1) =
Z

Y

dim YY

i=1

(1� u e�xi )xi
1� e�xi

Y

j2I

⇣
1+ (u � u↵ j+1)(1� e�e j )

(u↵ j+1 � 1)(1� u e�e j )

⌘

=
Z

Y

dim YY

i=1

(1� u e�xi )xi
1� e�xi

Y

j2I

(u � 1)(1� u↵ j+1 e�e j )
(u↵ j+1 � 1)(1� u e�e j )

= (u�1/2 � u1/2)� dim Z lim
q!0

cEll(Z , D; u, q).

The following simple proposition establishes the modular properties of the singular
elliptic genus in the Calabi-Yau case.

PROPOSITION 3.8
Let (Z , D) be a Kawamata log-terminal pair which is also a Calabi-Yau pair in the
sense that KZ + D is zero as a Q-Cartier divisor. Then the singular elliptic genus
cEll(Z , D; y, q) has the transformation properties of the Jacobi form of weight dim Z
and index zero for the subgroup of the full Jacobi group generated by

(z, ⌧ ) ! (z + n, ⌧ ), (z, ⌧ ) ! (z + n⌧, ⌧ ),

(z, ⌧ ) ! (z, ⌧ + 1), (z, ⌧ ) !
⇣ z
⌧

,
�1
⌧

⌘
,

where n is the least common denominator of the discrepancies.

Proof
The transformation properties of ✓(z, ⌧ ) under (z, ⌧ ) ! (z + 1, ⌧ ) and (z, ⌧ ) !
(z + ⌧, ⌧ ) together with Calabi-Yau condition

KY =
X

k
↵k Ek

assure that

cEll(Z , D; z + n, ⌧ ) = cEll(Z , D; z + n⌧, ⌧ ) = cEll(Z , D; z, ⌧ ).

We need here the fact that n↵k 2 Z. Similarly, the transformation properties of ✓

under (z, ⌧ ) ! (z, ⌧ + 1) show that

cEll(Z , D; z, ⌧ + 1) = cEll(Z , D; z, ⌧ ).

It remains to investigate what happens under (z, ⌧ ) ! (z/⌧, �1/⌧ ). For this, one
considers the change (ek, yl) ! (ek/⌧, yl/⌧ ) in the formula of Definition 3.3. A
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rather lengthy but straightforward calculation, similar to that of [12, Theorem 2.2],
shows that

cEll
⇣
Z , D; z

⌧
, �1

⌧

⌘
= ⌧ dim ZcEll(Z , D; z, ⌧ ).

Another application of our techniques is the following theorem, which complements
similar results for Hodge numbers of Calabi-Yau manifolds (see, e.g., [4] and [17]).

THEOREM 3.9
The elliptic genera of two birationally equivalent Calabi-Yau manifolds coincide.
Moreover, the statement is true for smooth projective algebraic manifolds X with
nKX ⇠ 0 for some n.

Proof
Let Z1 and Z2 be two birationally equivalent Calabi-Yau manifolds or their general-
izations above. Let Y be a desingularization of the closure of the graph of the bira-
tional equivalence such that ⇡1,2 : Y ! Z1,2 are regular birational morphisms. Let
n be the smallest integer such that nKZ1,2 is rationally equivalent to zero and there-
fore has a global section. Global sections of the pluricanonical bundle are birational
invariants, so one can consider the divisor

P
k ak Ek of this section on Y . It is easy to

see that for both morphisms ⇡1 and ⇡2 the exceptional divisor is
P

k(ak/n)Ek , which
we can then assume to have simple normal crossings (perhaps by passing to a new
desingularization). Therefore, the elliptic genera of Z1,2 are calculated on Y using the
same discrepancies.

Remark 3.10
It is interesting to compare the results of this section with the work of Totaro in [35],
where he tried to see which Chern numbers can be meaningfully defined for singular
varieties. For varieties that admit IH-small resolutions, the singular elliptic genus pro-
vides the maximum possible collection of such numbers. Totaro has shown that every
flop-invariant Chern number comes from the elliptic genus, and he obtained partial
results in the opposite direction by means of intersection cohomology.

In general, coefficients of the singular elliptic genus of Z at ykql provide analogs
of Chern numbers of singular varieties in the following sense.
(1) They are the invariants of the isomorphism class of singular spaces.
(2) For manifolds, these invariants are the usual Chern numbers (i.e., linear com-

binations of ci1(X) · · · ciN (X)[X ], where Pk=N
k=1 ik = dim X and [X ] is the

fundamental class of a manifold X ).
(3) These invariants are unchanged under small resolutions.

In fact, for singular varieties, elliptic genera may contain more information than



334 BORISOV and LIBGOBER

in the nonsingular case. For varieties with non-Gorenstein singularities, the singular
elliptic genus may depend on rational powers of y. Moreover, there exist examples of
Gorenstein varieties whose elliptic genera do not lie in the span of elliptic genera of
nonsingular varieties. This can be seen already at the level of the �y genus (see [3]
for an example of a variety with Gorenstein canonical singularities whose E-function
is not a polynomial).

We hope that elliptic genera of singular varieties can be interpreted as nontrivial
invariants of a not-yet-defined cobordism theory of singular spaces. Transformations
leaving the singular elliptic genus invariant in such a theory for smooth manifolds
should include the usual cobordisms as well as flops. It would be interesting to com-
pare our results with the invariants of Witt spaces studied by P. Siegel; the latter,
however, were defined in SO rather than in the complex category (see [9], [34]).

Remark 3.11
It is an open question whether the notion of singular elliptic genus can be extended
beyond Kawamata log-terminal pairs, and some partial resuts in this direction can
be obtained as follows. Assume that some of the discrepancies ↵k in Definition 3.3
equal (�1). One can try to define singular elliptic genus by continuity. Namely, for
any effective Cartier divisor H on Z that contains all singular points of Z , and whose
preimage on Y has simple normal crossings with the exceptional divisor and preimage
of of D, we calculate

lim
n!1

cEllY (Z , D + H/n; z, ⌧ )

for each (z, ⌧ ). If such a limit exists and is independent of H , then we call it
cEllY (Z , D; z, ⌧ ). Notice that if n is sufficiently big, then the discrepancies of all di-
visors Ek calculated for the pair (Z , D + H/n) are not equal to (�1). However, we
do not know of any necessary or sufficient conditions for the limit to exist. We also
cannot prove in general that this limit is independent of Y .

In particular, we cannot show in general that two resolutions Y1 and Y2 with
no (�1) discrepancies give the same singular elliptic genus because the sequence of
blow-ups and blow-downs which connects Y1 to Y2 may have intermediate varieties
with (�1) discrepancies. Provided a single divisor H can be chosen to satisfy the
normal crossing condition for both resolutions, one gets

cEllY1(Z , D; z, ⌧ ) = lim
n!1

cEllY1(Z , D + H/n; z, ⌧ )

= lim
n!1

cEllY2(Z , D + H/n; z, ⌧ ) = cEllY2(Z , D; z, ⌧ ),

where the middle identity follows from the argument of Theorem 3.2 since for large
n all intermediate discrepancies will be different from (�1). A similar approach al-
lows one to extend the definition of elliptic genus to arbitrary Q-divisors D on a
log-terminal variety Z by looking at limn!1 cEll(Z , (n + 1)D/n).



ELLIPTIC GENERA OF SINGULAR VARIETIES 335

4. Orbifold elliptic genus and DMVV formula
In this section we define orbifold elliptic genus, which we conjecture to equal the
singular elliptic genus of Section 3. We delay the comparison of these two genera
until Section 5. Instead, the goal of this section is to show how this definition of
orbifold elliptic genus allows one to recover the formula of [19] whose derivation
was based partly on heuristic string-theoretic arguments. Our definition of elliptic
genus is inspired by the calculations of [10].

Definition 4.1
Let X be a smooth algebraic variety acted upon by a finite group G. We assume that
the subgroup of elements of G acting trivially on X contains only the identity. We
define the following function of two variables, which we call the orbifold elliptic
genus of X/G:

Ellorb(X,G; y, q) := y� dim X/2
X

{h},Xh
yF(h,Xh✓X) 1

|C(h)|
X

g2C(h)
L(g, Vh,Xh✓X ),

where F(h, Xh ✓ X) is the fermionic shift (see [38], [7]) and Vh,Xh✓X is a vector
bundle over Xh defined as follows. Let T X |Xh decompose into eigensheaves for h as

V0 �
⇣ M

�:hhi!Q/Z
V�

⌘
. (4.1)

We lift �(h) to a rational number in [0, 1). Then Vh,Xh✓X is defined as

Vh,Xh✓X :=
O

k�1


(3•V ⇤

0 yq
k�1) ⌦ (3•V0y�1qk) ⌦ (Sym•V ⇤

0 q
k) ⌦ (Sym•V0qk)

⌦
h O

�6=0
(3•V ⇤

� yq
k�1+�(h)) ⌦ (3•V�y�1qk��(h))

⌦ (Sym•V ⇤
� q

k�1+�(h)) ⌦ (Sym•V�qk��(h))
i�

.

Remark 4.2
Another way to state this definition is

Ellorb(X,G; y, q) := y� dim X/2
X

{h},Xh
yF(h,Xh✓X)�

�
H•(VC(h)

h,Xh✓X )
�
.

THEOREM 4.3
Let X and G be as above, and let Xg,h be the set of fixed points of a pair of commuting
elements g, h 2 G. Let T X |Xg,h = L

W� be the decomposition (refinement of (4.1))
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of the restriction on Xg,h of the tangent bundle into the direct sum of line bundles on
which g (resp., h) acts as multiplication by e2⇡ i�(g) (resp., e2⇡ i�(h)). Denote by x� the
Chern roots of the bundle W�.

(1)We have

Ellorb(X,G) = 1
|G|

X

g,h,gh=hg

⇣ Y

�(g)=�(h)=0
x�

⌘

⇥
Y

�

✓(⌧, x�/(2⇡ i) + �(g) � ⌧�(h) � z)
✓(⌧, x�/(2⇡ i) + �(g) � ⌧�(h))

e2⇡ i�(h)z[Xg,h].

(2) Let X be a Calabi-Yau of dimension d, such that H0(X, KX ) = C. Denote
by n the order of G in AutH0(X, KX ). Then Ellorb(X,G) is a weak Jacobi form
of weight zero and index d/2 with respect to the subgroup of the Jacobi group 0 J

generated by transformations

(z, ⌧ ) ! (z + n, ⌧ ), (z, ⌧ ) ! (z + n⌧, ⌧ ),

(z, ⌧ ) ! (z, ⌧ + 1), (z, ⌧ ) !
⇣ z
⌧

, �1
⌧

⌘
.

In particular, if the action preserves holomorphic volume, then Ellorb(X,G) is a weak
Jacobi form of weight zero and index d/2 for the full Jacobi group.

Proof
We replace the contribution of each conjugacy class by an average contribution of its
elements to obtain

Ellorb(X,G) = 1
|G| y

� dim X/2
X

gh=hg
yF(h,Xh⇢X)L(g, Vh,Xh⇢X ).

Using holomorphic Lefschetz theorem, we obtain

Ellorb(X,G)

= 1
|G| y

� dim X/2
X

gh=hg
yF(h,Xh⇢X) ch(Vh,Xh⇢X |Xg,h )(g) td(TXg,h )[Xg,h]

ch3�1(N
g
Xh )

⇤(g)
,

where Ng
Xh is the normal bundle to X

g,h in Xh . An explicit calculation of the Chern
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and Todd classes then yields

Ellorb(X,G) = 1
|G|

X

gh=hg
yF(h,Xh⇢X)�dim X/2

⇣ Y

�(g)=�(h)=0
x�

⌘

⇥
Y

k�1,�

(1� yqk�1+�(h)e�x��2⇡ i�(g))(1� y�1qk��(h)ex�+2⇡ i�(g))

(1� qk�1+�(h)e�x��2⇡ i�(g))(1� qk��(h)ex�+2⇡ i�(g))

= 1
|G|

X

gh=hg

⇣ Y

�(h)=�(g)=0
x�

⌘

⇥
Y

�

✓(x�/(2⇡ i) + �(g) � ⌧�(h) � z)
✓(x�/(2⇡ i) + �(g) � ⌧�(h))

e2⇡ iz�(h)[Xg,h],

which proves the first part of the theorem.
To verify the modular property, we denote

8(g, h, �, z, ⌧, x) := ✓(x/(2⇡ i) + �(g) � ⌧�(h) � z)
✓(x/(2⇡ i) + �(g) � ⌧�(h))

e2⇡ iz�(h),

where � is a character of the subgroup of G generated by g and h. Then

Eorb(z, ⌧ ) = 1
|G|

X

gh=hg

⇣ Y

�(g)=�(h)=0
x�

⌘ Y

�

8(g, h, z, ⌧, x�)[Xg,h], (4.2)

where we suppress (X,G) from the notation for the sake of brevity. We have

8(g, h, �, z + 1, ⌧, x) = � e2⇡ i�(h) · 8(g, h, �, z, ⌧, x),

and hence Ellorb(z+n, ⌧ ) = (�1)dn Ellorb(z, ⌧ ) since by assumption n ·P �(h) 2 Z.
It is clear that

8(g, h, �, z, ⌧ + 1, x) = 8(gh�1, h, �, z, ⌧, x),

and hence Ellorb(z, ⌧ + 1) = Ellorb(z, ⌧ ). We have

8(g, h, �, z + n⌧, ⌧, x) = (�1)n e�2⇡ inz�⇡ in2⌧ enx+2⇡ in�(g) · 8(g, h, �, z, ⌧, x),

and hence

Ellorb(z + n⌧, ⌧ ) = (�1)dne�2⇡ idnz�⇡ idn2⌧ Ellorb(z, ⌧ )
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since X is a Calabi-Yau and n�(g) 2 Z. Finally,

8
⇣
g, h, �,

z
⌧

, �1
⌧

,
x
⌧

⌘

= ✓(�z/⌧ + x/(2⇡ i⌧ ) + �(g) + �(h)/⌧ , �1/⌧ )

✓(x�/(2⇡ i) + �(g) + �(h)/⌧ , �1/⌧ )
e2⇡ iz�(h)/⌧

= e⇡ iz
2/⌧�2⇡ iz/⌧ (x/(2⇡ i)+�(g)⌧+�(h))

⇥ ✓(�z + x/(2⇡ i) + �(g)⌧ + �(h), ⌧ )

✓(x/(2⇡ i) + �(g)⌧ + �(h), ⌧ )
e2⇡ iz�(h)/⌧

= e⇡ iz
2/⌧�zx/⌧ · ✓(�z + x/(2⇡ i) + �(g)⌧ + �(h), ⌧ )

✓(x/(2⇡ i) + �(g)⌧ + �(h), ⌧ )
e2⇡ iz(��(g))

= e⇡ iz
2/⌧�zx/⌧ · 8(h, g�1, �, z, ⌧, x).

Then the Jacobi transformation properties follow easily from (4.2), similarly to [12,
proof of Theorem 2.2].

It is straightforward to see from (4.2) that the orbifold elliptic genus is holomor-
phic and has the Fourier expansion with nonnegative powers of q.

We apply our definition of the orbifold elliptic genus to symmetric products of a
smooth variety. This gives a mathematical justification of the physical calculation
performed in [19]. More precisely, we calculate the generating function for the orb-
ifold elliptic genera introduced above for the action of the symmetric groups. To a
certain extent, our calculation follows [19], but we now have precise mathematical
definitions.

THEOREM 4.4
Let X be a smooth variety with elliptic genus

P
m,l c(m, l)ylqm, where the elliptic

genus is normalized as in [19] and [12]. Then

X

n�0
pn Ellorb(Xn, 6n; y, q) =

1Y

i=1

Y

l,m

1
(1� pi ylqm)c(mi,l)

.

We start with the following lemma, essentially contained in [19, Section 2.2], which
we include only for completeness.

LEMMA 4.5
Let V = Veven�Vodd be a supersymmetric space, and let A and B be two commuting
operators preserving parity decomposition of V , such that B has only nonnegative
integer eigenvalues. We assume that V splits into a direct sum of eigenspaces Vm of
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the operator B and that each Vm is finite-dimensional. Define

�(V )(y, q) = SupertraceV yAqB := trVeven(y
AqB) � trVodd(y

AqB)

=
X

m,l
d(m, l)qm yl ,

where d(m, l) is the superdimension of the space Vm,l = {v 2 V |Av = lv, Bv =
mv}. The operators A and B act on the space of invariants of the symmetric group
acting on V⌦N and

X

N
pNSupertraceSymN (V )y

AqB =
Y

m,l

1
(1� pqm yl)d(m,l) ,

where the right-hand side is expanded as a power series in q and p.

Proof
It is easy to see that it is enough to check the lemma for a one-dimensional space
V = Vm,l . If V is even, then

X

N
pNSupertraceSymN (V )y

AqB =
X

N�0
pN yNlqNm = (1� pqm yl)�superdimV .

If V is odd, then
X

N
pNSupertraceSymN (V )y

AqB = 1� pylqm = (1� pqm yl)�superdimV .

Proof of Theorem 4.4
We observe that for a fixed k the conjugacy classes of 6k are indexed by the numbers
ai of cycles of length i in the permutation. For each h 2 6k , the fixed-point set (Xk)h

consists of the Cartesian products of several copies of X , one for each cycle. For a
cycle of length i , the corresponding X is embedded into Xi . The centralizer group
is a semidirect product of its normal subgroup

Q
i (Z/ iZ)ai , which acts by cyclic

permutations inside cycles of h, and the product of symmetric groups
Q

i 6ai , which
act by permuting cycles of the same length.
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Our definition of the elliptic genus then gives
X

n�0
pn Ellorb(Xn, 6n; y, q)

=
X

a1,a2,...,an

pa1+2a2+···+nan y�(dim X/2)(a1+2a2+···+nan)

⇥
nY

i=1
yai F(i�cycle,X✓Xi )�

�
(H•(Vi�cycle,X✓Xi )

N
ai )6ai o(Z/ iZ)ai �

=
1Y

i=1
�

�
Sym•(pi y�i dim X/2+F(i�cycle,X✓Xi )H•(Vi�cycle,X✓Xi )

Z/ iZ)
�
. (4.3)

The symbol Sym should be interpreted here as the supersymmetric product where the
cohomology of Vh,Xh✓X is given parity by the sum of the cohomology number and
the parity of the exterior algebras.

We now calculate

�i (y, q) = �
�
pi y�i dim X/2+F(i�cycle,X✓Xi )H•(Vi�cycle,X✓Xi )

Z/ iZ�.

We denote the i-cycle by h and observe that

T Xi |X =
M

j=0,...,i�1;�(h)= j/ i

T X j .

This implies F(h, X ✓ Xi ) = dim X
Pi�1

j=0 j/ i = dim X ((i � 1)/2), which allows
us to write

�i (y, q)

= pi y� dim X/2�
h⇥
H•(

O

k�1

⇥
(3•T ⇤yqk�1) ⌦ (3•T y�1qk) ⌦ (Sym•T ⇤qk)

⌦ (Sym•Tqk) ⌦
⇥ O

j=1,...,i�1
(3•T ⇤yqk�1+ j/ i )

⌦ (3•T y�1qk� j/ i ) ⌦ (Sym•T ⇤qk�1+ j/ i )

⌦ (Sym•Tqk� j/ i )
⇤⇤⇤Z/ iZ

i

= pi y� dim X/2 1
i

i�1X

r=0

Z

X

dim XY

l=1
xl

⇥
Y

k�1

i�1Y

m=0

(1� yqk�1+m/ i⇠mr e�xl )(1� y�1qk�m/ i⇠�mr exl )
(1� qk�1+m/ i⇠mr e�xl )(1� qk�m/ i⇠�mr exl )
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= pi y� dim X/2 1
i

i�1X

r=0

Z

X

dim XY

l=1
xl

⇥
Y

j�1

(1� yq( j�1)/ i⇠ ( j�1)r e�xl )(1� y�1q j/ i⇠ jr exl )
(1� q( j�1)/ i⇠ ( j�1)r e�xl )(1� q j/ i⇠ jr exl )

= pi1/ i
i�1X

r=0
Ell(X; y, q1/ i⇠ r ) =

X

m,l
c(mi, l)ylqm .

Here we have denoted the primitive i th root of unity by ⇠ . Now Lemma 4.5 finishes
the proof.

Remark 4.6
In [37] the authors conjectured an equivariant version of Theorem 4.4. Its proof fol-
lows using the same arguments as above. More precisely, we have the following.
Let X and G be as above, and let G o 6n be the wreath product

�
consisting of

pairs ((g1, . . . , gn); � ), gi 2 G, � 2 6n , with multiplication ((g1, . . . , gn); �1) ·
((h1, . . . , hn); �2) = ((g1 · h

��1
1 (1), . . . , gn · h

��1
1 (n)); �1�2)

�
. G o 6n acts in an obvi-

ous way on Xn , and if Ellorb(X,G; y, q) = P
cG(m, l)ylqm , then

X

n�0
pn Ellorb(Xn,G o 6n; y, q) =

1Y

i=1

Y

l,m

1
(1� pi ylqm)cG (mi,l) . (4.4)

To obtain a proof of this formula, one should make the following changes in the
above proof of Theorem 4.4. Using the description of the conjugacy classes in
wreath products (see, e.g., [29]),

P
n�0 pn Ellorb(Xn,G o 6n; y, q) can be rewritten

as the right-hand side of the first row of (4.3) with summation taken over collections
{h}, a1, . . . , an , where ai , as earlier, are positive integers and {h} runs through all
conjugacy classes in G. The same transformation used in (4.3) now yields the product
over i and {h} of terms in which invariants are taken for the semidirect product of the
centralizer of h and Z/ iZ with the sheaf V constructed for Xh . Finally, each term
in this product is the graded dimension of a supersymmetric algebra, which Lemma
4.5 expresses in terms of �i,{h}. A calculation similar to the calculation of �i above
identifies �i,{h} with

X

m,l
c{h}(mi, l)ylqm = y� dim X/2+F(h,Xh✓X) 1

|C(h)|
X

g2C(h)
L(g, Vh,Xh✓X )

(the component of the orbifold elliptic genus corresponding to the conjugacy class
{h}). This yields (4.4).
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5. Comparison of different notions of elliptic genera
It is natural to ask how the orbifold elliptic genus of X/G is related to its singu-
lar elliptic genus. To begin, even in the case |G| = 1, these two genera differ by a
normalization factor. In addition, when µ : X ! X/G has a ramification divisor
D = P

i (⌫i � 1)Di , one has to compare Ellorb(X,G; y, q) not to cEll(X/G; y, q) but
rather to cEll(X/G, 1X/G; y, q), where

1X/G :=
X

j

⇣⌫ j � 1
⌫ j

⌘
µ(Dj )

with the sum taken among representatives Dj of the orbits of the action of G on the
components of the ramification divisor.

CONJECTURE 5.1
Let X be a smooth algebraic variety equipped with an effective action of a finite group
G. Then

Ellorb(X,G; y, q) =
⇣2⇡ i ✓(�z, ⌧ )

✓ 0(0, ⌧ )

⌘dim XcEll(X/G, 1X/G; y, q),

where 1X/G is defined as above.

We now present some evidence to support this conjecture.

PROPOSITION 5.2
Conjecture 5.1 holds in the limit ⌧ ! i1.

Proof
At q = 0, the function Ellorb specializes to Eorb(y, 1) of [5]. Then the result of [18]
allows one to rewrite it in terms of Est(y, 1), and Proposition 3.7 finishes the proof.

PROPOSITION 5.3
Conjecture 5.1 holds in the case when X is a smooth toric variety and G is a subgroup
of the big torus of X.

Proof
Let 6 be the defining cone of X in the lattice N (see, e.g., [16]). Let ni be the gen-
erators of one-dimensional cones of 6. The group G can be identified with N 0/N ,
where N 0 is a sublattice of N of finite coindex. Then the variety X/G is given by the
same cone 6 in the new lattice N 0. The map µ : X ! X/G has ramification if and
only if for some one-dimensional rays of 6 points ni are no longer minimal in the
new lattice.
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Torus-invariant divisors on a toric variety correspond to piecewise linear func-
tions on the fan. It is easy to see that the definition of1X/G assures that the piecewise
linear function that takes values (�1) on all ni gives the divisor KX/G + 1X/G . We
denote this piecewise linear function by deg. One can show that

Ellorb(X,G; y, q) =
⇣2⇡ i✓(�z, ⌧ )

✓ 0(0, ⌧ )

⌘dim X
fN 0,deg z(q),

where fN 0,deg z(q) is the function defined in [11]. More explicitly,

fN 0,deg z(q) =
X

m2(N 0)⇤

⇣X

C26

(�1)codimCa.c.
X

n2C\N 0
qm·n e2⇡ iz deg(n)

⌘
,

where a.c. means analytic continuation. The proof of this fact is based on explicit
calculation of the Euler characteristics of the bundles VXh✓X by means of Čech coho-
mology. The calculation is very similar to that of [11, Theorem 3.4] and is left to the
reader. We remark that the sum over h in Definition 4.1 facilitates the change from
N to N 0, while taking C(h)-invariants is responsible for the switch from N⇤ to its
sublattice (N 0)⇤.

Now let Y ! X/G be a toric desingularization of X/G given by the subdivision
61 of 6. We denote the codimension one strata of Y by Ek and the generators of
the corresponding one-dimensional cones of 61 by rk . We also denote the first Chern
classes of the corresponding divisors by ek , and we get

cEll(X/G, 1X/G; y, q) =
Z

Y

⇣Y

l

(yl/(2⇡ i))✓(yl/(2⇡ i) � z)✓ 0(0)
✓(�z)✓(yl/(2⇡ i))

⌘

⇥
⇣Y

k

✓(ek/(2⇡ i) � (↵k + 1)z)✓(�z)
✓(ek/(2⇡ i) � z)✓(�(↵k + 1)z)

⌘
,

where c(TY ) = Q
l(1 + yl) and ↵k = deg(rk) � 1. We use c(TY ) = Q

k(1 + ek) to
rewrite cEll(X/G, 1X/G; y, q) as

Z

Y

⇣Y

k

(ek/(2⇡ i))✓(ek/(2⇡ i) � deg(rk)z)✓ 0(0)
✓(� deg(rk)z)✓(ek/(2⇡ i))

⌘
,

which equals fN 0,deg z(q) by [11, Theorem 3.4]. We have used here the fact that f
does not change when the fan is subdivided.

Remark 5.4
Proposition 5.3 was the main motivation behind our definition of the singular elliptic
genus.

PROPOSITION 5.5
Conjecture 5.1 holds for dim X = 1.
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Proof
Expanding ✓ functions as (linear) polynomials in cohomology classes, one obtains
that the singular genus is equal to (2g � 2)✓ 0(�z)/(2⇡ i✓(�z)) plus the sum of con-
tributions of singular points that depend on the ramification numbers only. Here g is
the genus of X/G. For the orbifold genus, one needs to notice that the h = id term
gives (2g � 2)✓ 0(�z)/(2⇡ i✓(�z)) plus contributions of points because it is the Euler
characteristic of the bundle on the quotient that equals the usual elliptic genus bun-
dle twisted at the ramification points. Since the equality holds in the toric case of the
d-fold covering of P1 by P1, which has two points of ramification (d � 1), the extra
terms for the two genera coincide, which finishes the proof.

One would also want to compare the singular elliptic genus to the elliptic genus de-
fined for toric varieties and Calabi-Yau hypersurfaces in toric varieties in [12]. It turns
out that these definitions agree, up to a normalization. We explain the Calabi-Yau
case in more detail and leave the toric case to the reader. We need to recall the com-
binatorial description of Calabi-Yau hypersurfaces in toric varieties and the previous
definition of their elliptic genera.

Let M1 and N1 be dual free abelian groups of rank d + 1. Denote by M and N
the dual free abelian groups M = M1 � Z and N = N1 � Z. Element (0, 1) 2 M is
denoted by deg, and element (0, 1) 2 N is denoted by deg⇤. There are dual reflexive
polytopes 1 2 M1 and 1⇤ 2 N1 which give rise to dual cones K ⇢ M and K ⇤ ⇢ N .
Namely, K is a cone over (1, 1)with vertex at (0, 0)M , and similarly for K ⇤. There is
a complete fan 61 on N1 whose one-dimensional cones are generated by some lattice
points in1⇤ (in particular, by all vertices). This fan induces the decomposition of the
cone K ⇤ into subcones, each of which includes deg⇤. Let us denote this decomposi-
tion by 6. A generic Calabi-Yau hypersurface X f of the family given by the above
combinatorial data is determined by a choice of coefficients fm for each m 2 (1, 1).

The elliptic genus of X f was defined in [12] as the graded Euler characteristic of
a certain sheaf of vertex algebras on X f . We do not need to recall the definition of
this sheaf in view of the following combinatorial formula for the elliptic genus.

PROPOSITION 5.6
The elliptic genus Ell(X f ; y, q) of the Calabi-Yau hypersurface X f , as defined in
[12], is given by

Ell(X f ; y, q) = y�d/2
X

m2M
a.c.

⇣ X

n2K ⇤
yn·deg�m·deg⇤qm·n+m·deg⇤G(y, q)d+2

⌘
,
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where a.c. stands for analytic continuation and

G(y, q) =
Y

k�1

(1� yqk�1)(1� y�1qk)
(1� qk)2

.

Proof
Combine [12, Proposition 4.2] and [12, Definition 5.1].

THEOREM 5.7
The elliptic genus of the Calabi-Yau hypersurface X f of dimension d defined above
and its singular elliptic genus are related by the formula

Ell(X f ; y, q) =
⇣2⇡ i✓(�z, ⌧ )

✓ 0(0, ⌧ )

⌘dcEll(X f ; y, q).

Proof
First of all, observe that

y�1/2G(y, q) = 2⇡ i✓(�z, ⌧ )

✓ 0(0, ⌧ )
,

due to the product formulas for ✓(z, ⌧ ) and ✓ 0(0, ⌧ ) (see [14]). Therefore, we only
need to show that

cEll(X f ; y, q) =
X

m2M
a.c.

⇣ X

n2K ⇤
yn·deg�m·deg⇤qm·n+m·deg⇤G(y, q)2

⌘
.

Denote by deg1 the piecewise linear function on N1 whose value on the generators of
the one-dimensional cones of61 is 1. Notice that K ⇤ consists of all points (n1, l) 2 N
such that l � deg1(l). In addition, one can replace

P
n2K . . . by

P
C26(�1)codim6 . . .

to get
X

m2M
a.c.

⇣ X

n2K ⇤
yn·deg�m·deg⇤qm·n+m·deg⇤G(y, q)2

⌘

=
X

k2Z

X

m12M

X

C1261

(�1)codimC1a.c.
X

n12C1

X

l�deg1(n1)
yl�kqm1·n1+lk+kG(y, q)2

=
X

k2Z

X

m12M

X

C1261

(�1)codimC1

⇥ a.c.
X

n12C1

X

l�deg1(n1)
ydeg1(n1)�kqm1·n1+deg1(n1)k+k(1� yqk)�1G(y, q)2

= G(y, q)2
X

k2Z

y�kqk

(1� yqk)
fN1,deg1 z(yq

k, q).
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Let 60
1 be a refinement of the fan 61 in N1 such that the corresponding toric variety

P60
1
is smooth. Coefficients fm define a hypersurface X 0

f in P60
1
which is a resolution

of singularities X f . We denote the codimension one strata of P60
1
by Dj , their first

Chern classes by d j , and the corresponding generators of one-dimensional cones of
60
1 by n j . By [11, Theorem 3.4], we get

G(y, q)2
X

k2Z

y�kqk

(1� yqk)
fN1,deg1 z(yq

k, q)

= G(y, q)2
X

k2Z

y�kqk

(1� yqk)

⇥
Z

P60
1

Y

j

(d j/(2⇡ i))✓(d j/(2⇡ i) � deg1(n j )(z + k⌧ ))✓ 0(0)
✓(� deg1(n j )(z + k⌧ ))✓(n j/(2⇡ i))

=
Z

P60
1

Y

j

(d j/(2⇡ i))✓(d j/(2⇡ i) � deg1(n j )z)✓ 0(0)
✓(� deg1(n j )z)✓(n j/(2⇡ i))

⇥
⇣X

k2Z
G(y, q)2

y�kqk

(1� yqk)
ek

P
j d j deg1(n j )

⌘
.

We denote D = P
j deg1(n1)Dj and d = c1(D). Because of [12, Proposition 3.2],

we get

X

k2Z
G(y, q)2

y�kqk

(1� yqk)
ek

P
j d j deg1(n j ) = G(edq, q)G(y, q)

G(y�1edq, q)

= 2⇡ i✓(d/(2⇡ i))✓(�z, ⌧ )

✓(d/(2⇡ i) � z)✓ 0(0)
,

which gives
X

m2M
a.c.

⇣ X

n2K ⇤
yn·deg�m·deg⇤qm·n+m·deg⇤G(y, q)2

⌘

=
Z

P60
1

Y

j

(d j/(2⇡ i))✓(d j/(2⇡ i) � deg1(n j )z)✓ 0(0)
✓(� deg1(n j )z)✓(n j/(2⇡ i))

⇥
⇣2⇡ i✓(d/(2⇡ i))✓(�z, ⌧ )

✓(d/(2⇡ i) � z)✓ 0(0)

⌘
.

Observe now that D = ⇡⇤(�KP61
), where ⇡ : P60

1
! P61 is the resolution induced

by the subdivision of the fan. In addition, X f is a zero set of a section of D. Hence,
the adjunction formula gives

c(TX 0
f
) = i⇤c(TP60

1
)/(1+ i⇤d),
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where i : X 0
f ! P60

1
is the embedding. The exceptional divisors of X 0

f ! X f are
Dj \ X 0

f (unless dim⇡(Dj ) = 0), and their discrepancies are equal to deg(n j ) � 1.
Then it is easy to see that the above expression is precisely the singular elliptic genus
of X f .

Remark 5.8
The case of toric varieties is a straightforward application of [11, Theorem 3.4] and
is left to the reader.

Remark 5.9
The above calculations indicate that for any smooth variety P of dimension d + 1
one can define a weak Jacobi form of weight d and index zero which coincides with
the singular elliptic genus of the Calabi-Yau hypersurface in P if P has smooth an-
ticanonical divisors. Otherwise, the formula gives the elliptic genus of the “virtual”
Calabi-Yau hypersurface in P. One can also interpret this Jacobi form as an elliptic
genus of a (d + 1, 1)-dimensional Calabi-Yau supermanifold5K X (a canonical line
bundle over X , considered as an odd bundle).

6. Cobordism invariance of orbifold elliptic genus
We view Ellsing(X/G) and Ellorb(X,G) as invariants of G-action on X and work in
the category of stably almost complex manifolds.

LEMMA 6.1
A singular elliptic genus is an invariant of a complex G-cobordism.

Proof
We consider cobordisms of pairs (X, D) (see [36]), where X is a stably almost com-
plex manifold (i.e., a C1-manifold such that a direct sum of a trivial bundle ✏ with
the differentiable tangent bundle TX admits a complex structure) and D = S

Di is a
finite union of codimension one stably almost complex submanifolds (i.e., TDi � ✏ is
a complex subbundle in ✏ � TX ) satisfying the following normal crossing condition:
at each point of Di1 \ · · · \ Dik , the union of (stabilized by adding trivial bundles)
tangent spaces TDi j � ✏ is given in the (stabilized) tangent space to X by l1 · · · lk = 0,
where li are linearly independent complex linear forms. A pair (X, D) is cobordant
to zero if there exist a C1-manifold Y with a complex structure on the stable tangent
bundle and a system of submanifolds

S
Ei such that @Y = X and

S
@Ei = S

Di . As
usual, the disjoint union and product provide the ring structure on cobordism classes.

Notice that the numbers ci1 [ · · ·[ cik [ [Dj1][ · · ·[ [Djk ]([X ]), where [Di ] are
the classes in H2(X,Z) dual to submanifolds Di , [X ] 2 H2 dimC X is the fundamental
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class of X , and
P

j i j + k = dimC X , are invariants of cobordism of such pairs.
(Indeed, if X = @Y and j : X ! Y , then this number is j⇤(ci1 [ · · · [ cik [
[E j1] [ · · · [ [E jk ])([X ]) = ci1 [ · · · [ cik [ [Dj1] [ · · · [ [Djk ]( j⇤[X ]) = 0 since
X is homologous to zero in Y .) The lemma therefore follows if we show that for an
almost complex null-cobordant G-manifold X the quotient X/G admits a resolution
of singularities (]X/G, D), where D = S

Di is the exceptional locus such that this
pair is cobordant to zero.

If X = @Y , where Y is a G-manifold, we can construct a resolution of Y/G
as follows. Let H be a subgroup of G, and let YH = {y 2 Y |Stab y = H}.
Then YH are smooth submanifolds of Y (possibly with boundary) providing a strat-
ification of Y . Let C(H) be the union of subgroups of G conjugate to H . Then
YC(H) = S

H 02C(H) YH 0 is still a submanifold of Y and the group G acts on YC(H)

so that YC(H) ! YC(H)/G is an unramified cover (of degree [G : H ]). In partic-
ular, YC(H)/G is a smooth manifold and these manifolds for all H ⇢ G provide a
stratification of Y/G such that Y/G is equisingular along each stratum YC(H)/G. A
small regular neighborhood of each stratum in Y/G is isomorphic to a bundle ⇠H over
YC(H)/G with the fiber isomorphic to V/H , where V is a fiber of the normal bundle
to YH in Y over a point of YH . (This presentation is independent of a point in YH , and
representations at points of YH and YH 0 are isomorphic for conjugate H and H 0.)

For each quotient singularity V/H , let us fix the universal desingularization con-
structed by Bierstone and Milman (see [8, Theorem 13.2]). Its universality assures
that it is equivariant with respect to the centralizer of H in GL(V ). Hence, one can
use the transition functions of ⇠H to construct the fibration ⇠̃H with the same base as
⇠H and having as its fiber the universal resolution of V/H . Moreover, due to univer-
sality of canonical resolution (see [8, Theorem 13.2]), this property assures that ⇠̃H
corresponding to different classes of conjugate subgroups H can be glued together,
yielding an almost complex manifold whose boundary is the pair (]X/G, D), where D
is the exceptional set of the universal resolution of X/G. This proves the lemma.

LEMMA 6.2
The orbifold elliptic genus is an invariant of G-cobordism.

Proof
Let X be a null-cobordant G-manifold. Then for each g 2 G the pair Xg, ⌫(Xg, X),
where ⌫(Xg, X) is the normal bundle of the fixed-point set Xg in X , is cobordant to
zero as well. Since the contribution of the term in Ellorb corresponding to a conju-
gacy class [g] is a combination of the products of Chern classes of Xg and ⌫(Xg, X)

evaluated on the fundamental class of Xg , this contribution is zero. This yields the
lemma.
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Remark 6.3
Unfortunately, the orbifold elliptic genus is not multiplicative. Rather, for G-
manifolds X and Y with an action of G as above, one has Ellorb(X ⇥ Y,G ⇥ G) =
Ellorb(X,G) · Ellorb(Y,G).

COROLLARY 6.4
Conjecture 5.1 is true for G = Z/2Z.

Proof
This follows from the result of Kosniowski (see [30]) describing generators of Z/pZ-
cobordisms. If p = 2, then additive generators of the cobordism group in any di-
mension are toric varieties with the group being a subgroup of the big torus. Hence
Proposition 5.3 yields the claim.

Acknowledgments. The authors wish to thank Burt Totaro for his helpful comments.
We also thank Willem Veys for pointing out an error in the original version of the
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