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Introductory courses of algebraic geometry usually explain that a smooth plane
complex algebraic curve is homeomorphic to a closed orientable surface of genus
1
2 (d − 1)(d − 2), where d is the degree of the defining equation of the curve. Home-

omorphism type of a singular curve in P2 also can be easily visualized. It is the
disjoint union of closed orientable surfaces, corresponding to irreducible factors of a
curve’s equation, with points identified in a way dictated by a curve’s singularities.
The subject of algebraic curves becomes very rich when one is interested in their
geometry and arithmetic. But what about the topology of a curve’s complement in
P2? Here one runs very quickly into questions, which are easy to ask but hard to
answer. Degtyerev’s book is about some such questions.

Here is a sample of problems about fundamental groups of the complements,
some of which are open and answers to some are known, at least partially. For
which groups G does there exist an algebraic curve C such that G = π1 (P2 \ C)?
When is π1 (P2\C) abelian, nilpotent, etc.? Can one relate π1 (P2\C) to the data of
the degrees of irreducible complements and the type of singularities of C, and how
does the geometry of the pair (P2, C) affect this fundamental group? How special
are fundamental groups of the complements to special plane curves, for example, for
curves all irreducible components of which have degree 1 (arrangements of lines)?
For curves with nonlinear components, torsion in fundamental groups often does
appear, but are fundamental groups of the complements to arrangements of lines
torsion free?

One can view all this as a version of more general problems about fundamental
groups or topological types of quasi-projective varieties. General results in the
topology of the latter have a lot to say about topology of P2 \ C. However, some
part of the picture may be specific for plane curves. For instance, P2 \ C is a
manifold of real dimension four, but is homotopy equivalent to a two-dimensional
complex. On the other hand, the class of groups which are fundamental groups of
the complements to hypersurfaces in PN coincides with the class of fundamental
groups of the complements to plane curves (in fact π1 (PN \ V ) = π1 (H \ V ∩ H)
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for any hypersurface V and generic plane H in PN ). What else is special for this
particular class of fundamental groups of quasi-projective manifolds?

The subject has a history that is more than hundred years long. Some effective
approaches use only topological methods, but the most interesting results involve
the relation of π1 (P2 \ C) to algebraic geometry associated with pair (P2, C), in
particular, Hodge theory. The main highlights of the developments in the topology
of the complements are as follows.

The Zariski–van Kampen description of π1 (P2 \ C) (cf. [38]). Consider the
equation f(x, y) = 0 of a curve C in sufficiently general affine coordinates. Denote
by x0 a sufficiently general point on the x-axis X, where Lx0 = {(x0, y) ∈ C2|y ∈ C}
is the corresponding “vertical” line and p = (x0, y0) ∈ Lx0 is a basepoint. Then
generators κi, i = 1, . . . , deg C of the free group π1 (Lx0 \ Lx0 ∩ C, p) also generate
the group π1 (P2 \ C, p), but satisfy in it certain relations. Let

(1) Cr(C) = {x ∈ X|Card(Lx ∩ C) < deg(C)}

be the critical set of projection of C onto X. For any loop γ in X \ Cr based
at x0, while one moves along γ, a continuous change of points of C ∩ L yields a
diffeomorphism of the pair (Lx0 , Lx0 ∩ C). This diffeomorphism, in turn, induces
the automorphism Φγ of the free group π1 (Lx0 \ Lx0 ∩ C, x0). If γj are generators
of the free group π1 (X −Cr(C), x0), then the defining relations of π1 (P2 \C, p) are

(2) Φγj (κi) = κi, i = 1, . . . , deg C, j = 1, . . . , CardCr(C), κ1 · . . . · κdeg C = id.

A permutation of the finite set Lx0 ∩C obtained by moving along γ is the mon-
odromy transformation central to the Riemann description of multivalued func-
tions in one variable: the inverse map of the projection of C onto the x-axis is
such a multivalued function. In 1912 Enriques attempted to extend Riemann’s
theory to the multivariable case and considered the problem of finding which fi-
nite groups can appear as the monodromy groups of an algebraic function in two
variables having a given C as its ramification locus. Relations (2) appeared in his
work as conditions which should be satisfied by the generators of the monodromy
groups of multivalued algebraic functions, such as solution z(x, y) to an equation
z(x, y)n + a1 (x, y)z(x, y)n−1 + . . . + an(x, y) = 0, where ai(x, y) are polynomials.
Enriques’ calculation yields a quotient of π1 (P2 \ C) by the intersection of sub-
groups of finite index (as was pointed out already by Zariski in [42]) and bears a
hint of the idea of an algebraic fundamental group which started being developed
only half century later by Grothendieck, Serre, and Abhyankar. His calculations
describe the group having the same profinite completion as π1 (P2 \ C). In fact,
comparison of Enriques and van Kampen’s approaches leads to the question, Is the
intersection of subgroups of finite index trivial, i.e., are the fundamental groups of
the complements to plane curves residually finite? This is one of many “easy to
ask” questions that are still wide open, but in 1993 Toledo [36] found an example
of a projective variety with a nonresidually finite fundamental group (cf. [36]). On
many occasions, one sees in the early period of the topology of plane algebraic
curves the seeds of fundamental ideas which became fully developed much later.

Construction of presentation (2) allowed the carrying out of several important
calculations, but it shed little light on most problems about fundamental groups
mentioned above. Often presentation (2) is not the most useful one, and specific
features in special situations may lead to different important presentations. For
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example Brieskorn (cf. [5]) gives presentations of fundamental groups of comple-
ments to arrangements of hyperplanes corresponding to some Coxeter groups. It is
transparently related to the presentation of the Coxeter group itself and is also a
generalization of a standard presentation of Artin’s braid group, leading to Deligne’s
determination of their homotopy type by showing the vanishing of higher homotopy
groups of these complements, cf. [12].

Commutativity of π1 (P2\C) in the case when C has nodes as the only sin-
gularities. Nodes, i.e., points near which the curve can be given by local equation
x2 = y2, are the mildest singularities, and the above claim was made by Zariski in
a 1929 paper (cf. [39]). His argument relied on the Severi assertion in [35, Anhang
F, 1921] that the variety of plane curves of fixed degree and with fixed number
of nodes is irreducible. It was meant to be applied to obtain several fundamental
results in algebraic geometry of curves, but Severi’s proof was incorrect. Another
such application, besides Zariski’s, was the irreducibility of the moduli space of
smooth curves of a given genus. Alternative proofs for the latter were found very
early (Deligne and Mumford’s proof in [9] still uses some of Severi’s ideas), but the
problem of the irreducibility of families of nodal plane curves was solved by Harris
only in 1986 in [20]. The question on commutativity of the fundamental groups
of the complements to nodal curves became known as the “Zariski problem”. Its
solution, independent of Severi’s assertion, actively sought over decades, was found
in 1979 by Fulton (cf. [18]) for algebraic fundamental groups and by Deligne (cf.
[11]) in the topological case. A few years later, Nori in [33] discovered a solution
to a generalization of the Zariski problem for curves with arbitrary singularities
on arbitrary projective surfaces implying commutativity of π1 (P2 \ C) in the case
when C is nodal. To date, this is the strongest tool for identifying cases in which
the fundamental group of the complement is commutative.

Dependence of the fundamental group on the local type of singularities.
Early studies of special classes of curves signaled dependence of π1 (P2 \ C) on
the complexity of the local type of singularities of C as well as their number.
Evidence for this started coming in with Zariski’s assertion about the fundamental
group of the complements to nodal curves and continued to his calculations of
nonabelian fundamental groups in several explicit examples of curves with mild
singularities. Later calculation of fundamental groups of the complements to the
curves (xp + yp)q + (yq + zq)p = 0 as a free product of two cyclic groups Zp ∗Zq,
due to Oka, (cf. [34]) reinforced such expectation.

The first quantitative results in this direction were obtained by A. Libgober in
[25] and [26]. It is convenient to state these results using the Alexander invariants
of groups, first developed in the context of knot theory. Interestingly, Zariski used
polynomial invariants in his study of covering space (cf. [41]), but the connection
with Alexander polynomials associated with knots was not made at the time (cf.
Mumford’s question in [42, Ch. 8, Appendix II]).

Let G be a finitely generated and finitely presented group endowed with a sur-
jection Π : G → Σ onto a cyclic group Σ with generator σ. Let KΣ = KerΠ. The
exact sequence

(3) 0 → KΣ/K ′
Σ → G/K ′

Σ → Σ → 0,

where ′ denotes the commutator, induces the action of a generator σ of Σ on
KΣ/K ′

Σ⊗Q. The characteristic polynomial of σ is called the Alexander polynomial
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of G relative to surjection Π. For irreducible curves in P2 or C2, as well as for knots
in the 3-sphere, the abelianization of the fundamental group G of the complement
is cyclic, and its orientation gives the canonical choice of σ, i.e., the resulting
polynomial is an invariant of the group. From its definition, it depends only on
G/G′′, where G′′ is the commutator of G′. This construction is due to Alexander
(cf. [1]), at least in the case of fundamental groups of links, and subsequently it was
developed by Reidemeister, Seifert, Fox, and many others.

To a germ CP of a plane curve at point P ∈ P2, one can associate a link in the
3-sphere as follows. Let BP be a small ball about P (its real dimension is four). The
link of CP is the intersection of CP with the boundary ∂BP of BP . Complexity of
singularity of CP at P is reflected by complexity of its link: if a germ CP is smooth,
then CP ∩ ∂BP is unknotted in ∂BP ; if CP has a node at P , then CP ∩ ∂BP is a
pair of linked circles; if CP has local equation x2 = y3 , then CP ∩ ∂BP is a trefoil
knot, etc. The Alexander polynomials respectively are 1, t−1, t2− t+1. In general,
the links associated with singularities are of a special kind: they are iterated torus
links. This implies, in particular, that their Alexander polynomials are cyclotomic.

Consider an irreducible curve C in P2 with arbitrary singularities P1 , . . . , PN .
Let ∆C(t) be the Alexander polynomial of π1 (P2 \ C), and let ∆C,Pi(t) be the
Alexander polynomial of the link of a germ of C at Pi. One of the main results of
[25] is the divisibility relation,

(4) ∆C(t)|Πi=1 ,...,N∆C,Pi(t).

For example, for irreducible curves C having nodes and cusps as the only singular-
ities, the Alexander polynomial has the form (t2 − t + 1)s for some integer s ≥ 0.
Another consequence of relation (4) is the cyclotomicity of the Alexander polyno-
mials of arbitrary algebraic curves, which allows one to show the nonrealizability
of many groups as the fundamental groups of complements to plane curves. For
example, the roots of the Alexander polynomial of the fundamental group of the
figure-eight knot are not roots of unity, and hence this group is not π1 (P2 \ C) for
any algebraic curve C.

π1 (P2 \ C) and algebraic surfaces. The idea of studying properties of a plane
curve using invariants of covering surfaces of P2 ramified along this curve appears
in [40] in the special case of cyclic coverings and irreducible curves with nodes or
cusps as the only singularities (the case of arbitrary singularities was studied later
in [26]). The main result of [40] is that the dimension of space of holomorphic
1-forms (called irregularity) on such cyclic multiple planes may be used to detect
noncommutativity of π1 (P2 \ C): if this group is abelian, then irregularity of any
cyclic covers ramified along C is zero. On the other hand, irregularity can be
related to the dimension of the space of curves passing through the cusps of a given
curve. In particular, a special position of cusps yields noncommutativity of the
fundamental group of the complement. An archetypal example is the curve with
equation f2(x, y, z)3 +f3 (x, y, z)2 = 0, where fn is a generic form of degree n. Here
the cusps are the solutions of the system f2(x, y, z) = f3 (x, y, z) = 0 (there are
no other singularities if forms fn are generic), and hence six cusps are situated
on a curve of degree 2. Zariski showed in [40] that this implies that irregularity
of a 6-fold cyclic cover of P2 ramified along this curve is nonzero and hence the
fundamental group of its complement is nonabelian.
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B. Moishezon (cf. [30]) attempted to reverse the above idea and obtain invariants
of an embedded projective surface X ⊂ PN using the branching curve C of a generic
linear projection onto P2, and he viewed π1 (P2 \C) as an invariant of deformation
type of the pair (X,PN). In the case of a pluricanonically embedded surface of
general type X, one expects to obtain an invariant of its deformation type only. In
a series of papers (later ones jointly with Teicher, cf. [32]), explicit calculations for
many concrete pairs (X,PN) were carried out. Moishezon used the interpretation of
automorphisms Φγ of the free group π1 (Lx0 \ C ∩Lx0) in the Zariski–van Kampen
presentation (2) as braids (as was done earlier by Chisini), viewing the latter as
the isotopy classes of diffeomorphisms of a disk fixing a finite subset of points
which are identity on the boundary. The crucial piece of data associated with
the curve (and determining the fundamental group) became the homomorphism
π1 (P1 \ Cr) → Bd, where Bd is the braid group on d = deg C strings, which he
called the braid monodromy. Composition of the braid monodromy with the map
associating to a braid the corresponding permutation, is the Riemann monodromy
of a multivalued function associated with the projection of C on the x-axis. A
special type of combinatorial analysis, partially motivated by Hurwitz’s analysis of
monodromy with values in a symmetric group, was developed for finding “normal
forms” for the braid monodromy of singular curves. In particular, if Cd(n) is the
branching curve of the generic projection of a smooth surface of degree n in P3 ,
then π1 (P2 \ Cd(n)) = Bn/(∆2

n), where ∆2
n is the generator of the center of the

braid group. Later on, precise conjectures on the structure of π1 (P2 \ C), where C
is a branching curve of a generic projection, were put forward (cf. [37]). With the
advent of symplectic geomerty, braid monodromy became a very effective tool for
the study of symplectic 4-manifolds and embedded symplectic curves (cf. [3]). Early
expectations that the diffeomorphism (or symplectomorphism) type of manifold
underlying a projective surface would determine its deformation type and that
π1 (X \ C) would provide invariants of a diffeomorphism (or symplectomorphism)
type different from Donaldson’s invariants turned out to be incorrect (cf. [17], [6]).

One of the striking outcomes of the above combinatorial analysis of braid mon-
odromy is a counterexample to the assertion by Chisini about the existence of plane
curves of given degree and numbers of cusps and nodes. A braid monodromy asso-
ciates with a curve C ⊂ P2 the collection of braids β(γi), where γi ∈ π1 (P1 \Cr(C)),
which must satisfy the relation Πβ(γi) = ∆2. This is an analog of the Hurwitz re-
lation Πσ(γi) = id for ordinary monodromy σ : π1 (P1 − Cr) → Sd with the values
in the symmetric group associated with the cover C → P1 . Moreover, the local
type of critical point corresponding to each generator γi determines the conjugacy
class of the braid β(γi). In [7] Chisini asserted that for a given collection of braids
Γi ∈ Bd,ΠΓi = ∆2, each belonging to the conjugacy classes of braids appearing in
the braid monodromies of curves with nodes and cusps, there exists an algebraic
curve of degree d for which the braid monodromy satisfies β(γi) = Γi. Work [31]
showed the existence of a counterexample to this claim, but later on it was realized
that braid monodromy is very effective in describing singular symplectic curves (cf.
[4]). Disproval of Chisini’s claim was interpreted as showing the existence of sym-
plectic curves not isotopic to algebraic ones. An interesting property (the so-called
“Chisini problem”) of homomorphisms onto a symmetric group of the fundamental
groups of the complements to the branched curves of generic projections was proved
by Kulikov (cf. [23]).
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Characteristic varieties and calculation of abelianization of the commu-
tator of π1 (P2 \ C). Part of the fundamental group of the complement that is
relatively well understood is the abelianization of its commutator π1 (P2 \C)′. One
of the problems leading to studying this abelianization is the calculation of the
homology of abelian covers of P2 \ C or covers of P2 ramified over C.

Homology groups of cyclic covers of P2, associated with a curve C with arbitrary
singularities, were calculated by Libgober in 1981 (cf. [26]), extending the results of
[40]. The answer was given in terms of the dimensions of linear systems of curves
whose local equations near singular points of C belong to certain ideals. Such ideals,
introduced under the name “the ideals of quasi-adjunction” in [26], represent the
first appearance of multiplier ideals, which became a very active area of study since
the late 1990s (cf. [24]). An upshot of [26], in the case when H1 (P2 \C,Z) is cyclic,
is an algebro-geometric expression for the quotient

(5) π1 (P
2 \ C)′/π1 (P

2 \ C)′′ ⊗ Q

in terms of dimensions of linear systems of curves associated with singularities of
C: the geometry of singularities determines the topology, i.e., the vector space (5)
and vice versa.

The case of an arbitrary H1 (P2\C,Z) was treated in [27]. Similarly to the cyclic
case, the first Betti number b1 of abelian covers of P2 ramified along a curve C has
an algebro-geometric expression in terms of the dimension of the linear system of
curves depending on singularities of C. On the other hand, this b1 can be described
in terms of the quotient (5) endowed with the canonical structure of a finitely
generated module over the group ring C[π1 (P2 \ C)/π1 (P2 \ C)′] (this module
structure is obtained from the action of an abelian group π1 (P2 \ C)/π1 (P2 \ C)′

on (5) coming from the exact sequence (3) with Σ = π1 (P2 \ C)/π1 (P2 \ C)′). In
fact, the first Betti number of abelian covers depends only on an invariant of (5)
that is a certain subvariety of the torus of characters Char H1 (P2 \ C,Z) called
the characteristic variety of π1 (P2 \ C). It is defined as the (reduced) support of
the module (5) considered as a subvariety of SpecC[π1 (P2 \ C)/π1 (P2 \ C)′] =
CharH1 (P2 \ C,Z)), cf. [27]. This definition works for any group G, and in the
case of fundamental groups of links yields the classical multivariable Alexander
polynomial, extending the Alexander construction mentioned earlier. As a corollary
of the calculation of the first Betti number of abelian covers, one obtains an algebro-
geometric expression for this topological invariant.

Characteristic varieties have an interpretation in terms of cohomology of local
systems (cf. [21]), which in turn opens the way for using Hodge theoretical methods
(cf. [10], [28]). Characteristic varieties attached to fundamental groups of general
quasi-projective varieties are very special. For example, in many cases they are
known to be finite unions of translated subgroups of the torus of characters. This
fundamental property found numerous applications; cf. for example [14] or [15]
where it was shown that the only fundamental groups of Kähler manifolds which
are also fundamental groups of 3-manifolds are the finite groups.

Beautiful properties of abelian covers of P2 branched over an arrangement of
lines were discovered by Hirzebruch ([22]) in the 1980s: for some arrangements and
abelian covers the resulting complex surfaces are the quotients of ball in C2 by
arithmetic subgroups of PU(1, 2). The theory of characteristic varieties allowed
one to describe in a unified way the irregularity of these ball quotients (cf. [27]).
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In another direction, characteristic varieties, in a special case of arrangements
of lines, attracted much attention due to their relation with combinatorics. Posi-
tive-dimensional irreducible components of characteristic varieties containing 1 ∈
Char(π1 (P2 \ A)), where A is an arrangement of lines, correspond to pencils (i.e.,
one-dimensional families of plane curves) with at least three special members. Each
special member is a union of lines, and a union of lines in all such special mem-
bers form the given arrangement ([29]). This correspondence uncovered several
combinatorial aspects underlying the properties of π1 (P2 \ A).

The relation between characteristic varieties and pencils of plane curves led to
considering in [2] the pencils of curves with multiple fibers. Connection of the latter
with orbifold fundamental groups became one of many currently active developing
directions.

The book. Degtyarev’s book is a welcome and timely addition to the literature
on the topology of plane algebraic curves, which so far, besides being one of several
subjects in the textbook [13], had included only research and survey articles. It
combines a lot of introductory material, presenting a number of developments men-
tioned above (including introduction to the theory of Alexander polynomials and
braid monodromy) and a detailed exposition of some of the author’s research done
over the last twenty years. The main guiding theme of the book is a description of
approaches to the classification of the fundamental groups of plane curves of low
degree, to which the author was the main contributor. But there are many related
topics discussed in depth, spreading from algebraic curves over R and geometry of
elliptic surfaces.

The text is separated into two parts. The first part deals with a description of
technical tools, and the second contains concrete applications of these techniques
to classification problems.

Classification of equisingular families of plane curves (sometimes called “families
of rigidly isotopic curves”), for which the fundamental groups of the complements
are the main invariants, in the case of curves of degree up to 4, is easy but becomes
much harder already in the case of quintics and sextics. In fact, there are 221
equisingular families of quintics, and a list of equisingular families of sextics—
should it be possible to compile—must be frighteningly long. Nevertheless, the
list of fundamental groups of quintics was found by Degtyarev in 1989. Results
on classification of curves of degree 6 continued emerging gradually over last two
decades, and it has been completed for many classes of singular sextics. This book
contains the most complete description of such classification results to date (though
the author remarks that “topology of plane sextics is a vast subject deserving a
separate monograph”).

One of the central points, which makes the classifications of plane sextics so
interesting, is the relation of the latter with the theory of K3 surfaces. A K3 surface
is a simply connected complex surface admitting a nonvanishing holomorphic 2-
form. There is a 20-dimensional family on complex surfaces satisfying this condition
and containing countably many 19-dimensional families of projective ones. K3
surfaces are among the most beautiful and most studied objects in mathematics,
which still continue to reveal new facets. Areas in which they play an important role
spread from number theory to string theory and dynamics. A minimal resolution
of singularities of double covers of P2 branched over a sextic curve having simple
(in the sense of Arnold) singularities are K3 surfaces. This is the reason for the
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appearance of K3 surfaces in connection with plane sextics. Another tool prominent
in this book is the relation of sextics to trigonal curves, i.e., curves admitting a map
of degree 3 onto P1 , embedded into Hirzebruch surfaces (i.e., P1 -fibrations over P1 ).

A way to make sense out of the enormous number of equisingular types of sextics
is to relate them to a manageable combinatorial object. This is done in the book,
based on author’s works over the years, by relating them to special graphs embed-
ded into closed orientable surfaces representing an overdecorated version (due to
Orevkov) of “dessins d’enfant” that appeared in Grothendieck’s “l’Esquisse d’un
Programme” [19]. Detailed exposition of such graph theory is given in Chapters
1 and 4. Sextic curves having a point of multiplicity 3 admit interpretation as a
subclass of trigonal curves, i.e., threefold covers of P1 , in a blowup of P2 at a point
(Hirzebruch surface). Indeed, a proper preimage of such a sextic in a blowup of
P2 at its triple point, mapped by the natural map of such a blowup onto its ex-
ceptional curve, yields the presentation of the sextic as a trigonal curve. Moreover,
the double cover of the Hirzebruch surface totally ramified along the union of a
embedded trigonal curve and the exceptional curve yields an elliptic surface, i.e., a
surface admitting dominant maps onto P1 and having as a generic fiber a smooth
elliptic curve. This correspondence and a concise introduction to the theory of
elliptic surfaces, including their role in real algebraic geometry, are presented in
Chapter 3. As mentioned earlier in this review, braid monodromy of plane curves
and its specialization to B3 -valued case, which is central in the isotopy classifica-
tion of trigonal curves, are discussed in Chapters 3 and 5. This is preceded by
an introductory Chapter 2 containing a discussion of the braid group B3 together
with the closely related modular group PSL2(Z) (i.e., the quotient of B3 by its
center). This chapter also includes properties of the Burau homomorphism of B3

into Aut(Z[t, t−1 ]2), used in the study of Alexander invariants later in the book.
Braid monodromy in connection with dessins d’enfant is the subject of Chapter 5.

Part II contains a unified exposition of several classification results spread over a
vast literature, as well as many new results. Discussion of classification of Alexander
modules of trigonal curves is given in Chapter 6. Fundamental groups of sextics per
se, including detailed tables for many classes of sextics, is the subject of Chapters
7 and 8. There is an extensive discussion of the so-called Oka conjecture charac-
terizing sextics with nontrivial Alexander polynomials as the sextics of torus type,
i.e., having an equation of the form f 3

2 + f2
3 = 0, where fd are possibly nongeneric

forms of degree d. This chapter also includes the complete classification of classes
of equisingular deformations and the fundamental groups of the complements to
plane quintics already mentioned. Chapter 9 discusses the transcendental lattices
of elliptic surfaces constructed using trigonal curves as well as Mordell–Weil groups
and extremal elliptic surfaces. Factorization of monodromy, representing part of
the earlier-mentioned combinatorial analysis of braid monodromies is discussed in
Chapter 10. One of the main results here is the existence of the exponentially grow-
ing in k number of nonequivalent factorizations of length k of the elements of B3 .
The problem of deciding if there are pairs of plane algebraic curves of the same de-
gree with the same number of cusps and nodes but different fundamental groups is
known as finding “Zariski pairs”. The main result of the concluding chapter is the
existence of topologically distinct Zariski k-plets (extending the notion of Zariski
pairs to the case k > 2) in a variety of contexts: irreducible trigonal curves, real
Lefschetz fibrations, extremal elliptic surfaces, etc.
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The book contains several appendices that help the reader connect to the author’s
terminology and which help a novice understand the material in the main body of
the book.

The text is clearly written, it contains a good and systematic exposition of known
and new material. This book should be a must-have for anyone working in this area
and also for everyone who runs into plane singular curves and wants to know how
to work with them.
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plexen Spiegelungsgruppe (German), Invent. Math. 12 (1971), 57–61. MR0293615 (45 #2692)

[6] Fabrizio Catanese, Differentiable and deformation type of algebraic surfaces, real and sym-
plectic structures, Symplectic 4-manifolds and algebraic surfaces, Lecture Notes in Math.,
vol. 1938, Springer, Berlin, 2008, pp. 55–167, DOI 10.1007/978-3-540-78279-7 2. MR2441412

[7] Oscar Chisini, Il teorema di esistenza delle trecce algebriche. I, II (Italian), Atti Accad. Naz.
Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 17 (1954), 143–149, 307–311 (1955). MR0071103
(17,86a)

[8] J. I. Cogolludo-Agustin and A. Libgober, Mordell-Weil groups of elliptic threefolds and the
Alexander module of plane curves, J. Reine Angew. Math., to appear.

[9] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst.
Hautes Études Sci. Publ. Math. 36 (1969), 75–109. MR0262240 (41 #6850)
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