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Abstract
This paper discusses the basic properties of various versions of the two-
variable elliptic genus with special attention to the equivariant elliptic genus. 
The main applications are to the elliptic genera attached to non-compact 
GITs, including the theories regarding the elliptic genera of phases on N  =  2 
introduced in Witten (1993 Nucl. Phys. B 403 159–222).
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1. Preface

This paper provides an overview of the main results of complex elliptic genera, while the 
second part focuses on the equivariant elliptic genus and contains additional details regard-
ing the treatment of the elliptic genera theories of the N  =  2 phases given in [40]. The first 
two sections give a chronological review of the highlights of the development of the elliptic 
genus as well as its relation to other problems since its introduction in the 1980s (section 2), 
recalling the key definitions and properties relating to the (complex, two-variable) elliptic 
genus (see section 3). Then we describe the equivariant elliptic genera using the approach to 
equivariant cohomology given in [20]. This gives a fast way of deriving the basic properties of 
the equivariant elliptic genus obtained in [52] from the non-equivariant version given in [9]. 
The final sections review the properties of the elliptic genera of Witten’s N  =  2 phase theories 
(see [56]), following [40], but also making explicit specializations of the elliptic genus to the 
χy-genus and the Euler characteristics, in the Landau–Ginzburg instance providing new links 
between the elliptic genus and the invariant of the singularities. Example 5.1 gives a direct 
calculation of the χy-genus of the LG phase (and can be a starting point for a reader interested 
in singularity theory), while in the last section it is obtained as a specialization of the elliptic 
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genus. Two appendices record the well-known information of the basics of theta-functions and 
quasi-Jacobi forms introduced in [39].

2. Introduction

The elliptic genus appeared in the middle of the 1980s in the works of topologists and physi-
cists. In mathematics, it was viewed either as the index of an operator on a graded infinite 
dimensional vector bundle with finite dimensional graded components (see (2) below) or (via 
Riemann–Roch) as a combination of characteristic numbers (see (3)). The motivation was the 
problem of finding rigid genera of differentiable spin-manifolds endowed with a circle action 
(see [36, 37]) extending the Atiyah–Hirzebruch rigidity of the Â-genus. In physics, elliptic 
genera appeared as indices of certain Dirac-like operators on a free loop space associated with 
spin-manifolds and also in connection with anomaly cancellations (see volume [38, 54] for an 
overview of the first results and references therein, e.g. [46]).

The initial versions of elliptic genera were given in the context of differentiable manifolds, 
but complex versions of the elliptic genus were proposed by Hirzebruch (see [28], see also 
[31, 36]), and by Witten ([38]) soon after. A different type of elliptic genus, associated with 
C∞-manifolds with a vanishing first Pontryagin class, was proposed by Witten (see [38]), 
leading to important connections with homotopy theory and elliptic cohomology (see [1, 32]).

This first period culminated with the proof of Witten’s rigidity conjecture by Bott and 
Taubes (see [10]). In the complex case, rigidity has been proven by Hirzebruch and in [36] (for 
somewhat different but closely related versions of the complex elliptic genus). A further study 
of rigidity was done in [41], and much of the material from this first period is summarized in 
Hirzebruch’s book [29] to which we refer the reader.

The elliptic genus, as an invariant of superconformal field theory (SCFT) (or of a repre-
sentation of a superconformal algebra), was considered at about the same time (see [55] and 
references to earlier works there). In the case of sigma models associated with manifolds, an 
invariant of SCFT becomes an invariant of an underlying manifold. There are, however, other 
backgrounds with which one can associate SCFT and obtain the invariants of such a back-
ground. Such notable examples are minimal model SCFTs and Landau–Ginzburg models. The 
latter are associated with weighted homogeneous polynomials that have isolated singularities. 
The elliptic genus, as a character of the representation of superconformal algebra in a complex 
setting (i.e. N  =  2 SCFT), was given in [34], following [55].

The mathematical version of the elliptic genus as an invariant of the SCFT was presented 
in [42] where the authors constructed the chiral deRham complex of a manifold and the asso-
ciated vertex operator algebra (VOA). The characters of vertex operator algebras, which are 
close relatives of the elliptic genus of SCFTs, were considered from the very beginning of the 
study of VOAs ([5, 17]), though the mathematical study of analogs of N  =  2 superconformal 
algebras is still not very well developed at the moment.

In the late 90s, the focus of mathematical study shifted to the elliptic genera of singular 
varieties ([50]). On the one hand this was motivated by the Goresky–MacPherson problem 
(see [25, 50]) of determining the Chern numbers (rather than the Chern classes, which being 
homological, are not a part of the multiplicative structure and do not determine the Chern 
numbers) of singular varieties admitting a small resolution of singularities, which are inde-
pendent of a resolution. The intersection homology groups, introduced in the early 80s, do 
possess this property, see [25].

On the other hand, mirror symmetry is inherently interwoven with singular varieties: in its 
very first example of a smooth quintic in P4 the mirror partner is the orbifold, which is the 
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global quotient of such a quintic by the action of an abelian group of order 125 and exponent 5.  
The relation between the SCFTs, which is a physics definition of mirror symmetry, implies the 
following relation between the elliptic genera of the mirror partners (see [57])

Ell(X) = (−1)dimXEll(X′). (1)

Mathematically, the relations similar to (1) but involving Hodge numbers, Gromov–Witten 
invariants, derived categories, etc, serve either as a definition or a test of mirror symmetry.

The orbifold elliptic genus was proposed in the context of Landau–Ginzburg models by 
Witten (see [55]). In a geometric context (i.e. sigma-models), the elliptic genus of orbifolds 
was apparently already understood in physics terms right after the introduction of the orbifold 
Euler characteristic (see [15, 30]). The mathematical definition of the orbifold elliptic genus 
was given in [8]. This paper also contains a definition of the elliptic genus for a certain class 
of singular varieties, including the orbifolds, in terms of the resolutions of singularities. The 
relation between both notions of the elliptic genus of orbifolds, which is the so-called McKay 
correspondence for an elliptic genus, had been proven in [9]. It includes, as a very special case, 
the numerical relations, which in dimension 2 are consequences of the relation between the 
representations of finite subgroups of SL2(C) and the resolutions of the quotients of C2 due 
to McKay (see [43]).

The identity (1) for the hypersurfaces in toric varieties corresponding to the dual polyhedra 
(Batyrev’s mirror symmetry, see [3]) was shown in [7]. One of the major applications of an 
orbifold elliptic genus to the elliptic genera of the Hilbert schemes of K3-surfaces was given 
in [14]. A vast generalization in the context of the orbifold elliptic genera of symmetric prod-
ucts was given in [8].

It is interesting to compare the elliptic genus with the other invariants of smooth and sin-
gular varieties appearing in the context of mirror symmetry: Hodge numbers, Gromov–Witten 
invariants, and derived or Fukaya categories (see [35]). Issues similar to those mentioned above 
in the context of elliptic genus, e.g. the search for the extension of the original definitions from 
smooth to singular varieties, behavior in mirror correspondence, MacKay correspondence, 
etc, appeared in the study of all these invariants. However, the results for one type rarely imply 
the results for others. For example, it is convenient to organize the Hodge numbers of smooth 
projective varieties in the E-function: E(u, v) =

∑
h p,qu pvq. This has Hirzebruch’s genus 

(see [27]) χy =
∑

χ(Ω p)y p =
∑

p,q(−1)qh p,qy p as a specialization y  =  u,v  =  −1. The ellip-
tic genus is related to the χy-genus via: y

−dimX
2 χ−y(X) = limq→0Ell(X). However, neither the 

E-function or Ell(X) determine each other (see [7]). Both invariants factor through different 
universal rings of classes of manifolds: the K-group of varieties, in the case of the E-function, 
and the group of unitary cobordisms, in the case of the elliptic genus. In fact, E(u, v) is a 
homomorphism KC(Var) → Z[u, v], while the elliptic genus is a homomorphism from the 
cobordism ring ΩU → C[a, b, c, d] to a certain polynomial algebra of functions on the product 
of H× C of the upper half and the whole complex plane respectively. Neither appears to have 
an extension with good properties to a bigger ring (see, however, [33]).

An attempt to extend the mathematical treatment of the elliptic genus to a wider context, 
which includes the elliptic genera of singular varieties and Landau–Ginzburg models, was 
made in [40]. More specifically, for certain geometric invariant theory (GIT) quotients, one 
can define the elliptic genus such that for the quotients considered by Witten in [56] and corre-
sponding to Calabi–Yau or the Landau–Ginzburg models, they reproduce respectively the 
elliptic genera of the Calabi–Yau manifolds considered in mathematics and physics literature 
and the elliptic genera of the Landau–Ginzburg models considered in physics. The approach 
of [40] is based on the use of the equivariant elliptic genus (in mathematics literature, the 
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equivariant elliptic genus of compact varieties was considered by Waelder [52]). In particular, 
it implies LG/CY correspondence for the elliptic genus as a consequence of the equivariant 
McKay correspondence. In the following sections, we spell out some of the details about the 
elliptic genus of such GIT quotients.

3. Review of previous work

3.1. Complex manifolds

The two-variable elliptic genus, which is the subject of this paper, can be defined as the 
holomorphic Euler characteristic of a bi-graded bundle associated with the manifold. More 
precisely, given a vector bundle F on a complex manifold X, one associates it with the 
Poincare series ΛtF and SymtF  (or just StF) defined respectively as Λt =

∑
Λi(F)ti and 

Symt(F) =
∑

Symi(F)ti. Both series are elements of the ring of polynomials in the formal 
variable t with coefficients in the semi-ring generated by vector bundles. With these notations, 
the elliptic genus is given by the Fourier expansion with coefficients of the monomials qiy j  
being the holomorphic Euler characteristics of the bi-graded components of the infinite tensor 
product of graded bundles with qiy j  providing the bi-grading (see [7, 31, 36, 50])2:

Ell(X) = y
−dimX

2 χ(X,⊗n�1

(
Λ−yqn−1Ω1

X ⊗ Λ−y−1qn TX ⊗ SqnΩ1
X ⊗ Sqn TX

)
⊗ K−k

X ).
 

(2)

(Here TX ,Ω1
X , KX  are respectively the tangent, cotangent and canonical bundles of X, and k is 

a constant.)
The Riemann–Roch theorem implies that (2) is a linear combination of Chern numbers 

defined as follows. The evaluation of (2) for a compact complex manifold provides a homo-
morphism of the cobordism ring ΩU of almost complex manifolds (see [48]). The target of 
this homomorphism is a ring of holomorphic functions on H× C where H is the upper half-
plane if one interprets the formal variable in (2) as q = e2π

√
−1τ , y = e2π

√
−1z, τ ∈ H, z ∈ C. 

Hirzebruch’s formalism (see [27]) implies that any such a homomorphism φ : ΩU → R with 
values in a commutative ring R (i.e. an R-valued genus) can be specified by a formal power 
series Q(x) ∈ R[[x]] so that φ(X) =

∏
Q(xi)[X] is the evaluation of the product series at the 

Chern roots xi on the fundamental class [X] ∈ HdimRX(X) of X (the Chern roots xi satisfy ∏
(1 + xi) = c(X), where c(X) ∈ H∗(X) is the total Chern class of X). In the case of (2), Q(x) 

is the Taylor series in variables x of the function 
x1−kθ( x

2π
√

−1
−z,τ)

θ( x
2π

√
−1

,τ)  and for k  =  0 one has

Ell(X) =
∏

i

xθ( x
2π

√
−1

− z, τ)

θ( x
2π

√
−1

, τ)
[X]. (3)

The holomorphic functions, which are the elliptic genera of manifolds, have important 
modularity properties. If c1(X)  =  0 then Ell(X) is the Jacobi form for the semidirect product 
of SL2(Z) and Z2 (the Jacobi group), i.e. it obeys the following transformation laws:

φ(
aτ + b
cτ + d

,
z

cτ + d
) = (cτ + d)ke

2π
√

−1tcz2

cτ+d φ(z, τ) (4)

φ(τ , z + λτ + µ) = (−1)2t(λ+µ)e2π
√
−1t(λ2τ+2λz)φ(τ , z)

2 Höhn [31] uses y → −y.
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a, b, c, d,λ,µ ∈ Z, ad − bc = 1.

Here k, t ∈ Z are the weight and index respectively of the (weak) Jacobi form φ(z, τ). For the 
Calabi–Yau manifold of dimension d, Ell(X), which is given by (2) or (3), is the Jacobi form 
of weight zero and index d2

3.
Without the Calabi–Yau condition, (3) is a quasi-Jacobi form in the sense of [39] (see also  

appendix B below)4. It follows (see [39] theorem 2.12) that the elliptic genera of almost complex 

manifolds are polynomials in Ê2(z, τ) = (E2(z, τ)− e2(τ))(
θ(z,τ)
θ′(0,τ) )

2, Ên(z, τ) = En(z, τ)( θ(z,τ)
θ′(0,τ) )

n, n � 1 

where En(z, τ) are the two variable Eisenstein series (see example B.4)

En(z, τ) =
∑

a,b∈Z2

(
1

z + aτ + b
)n n ∈ Z, n � 1 (5)

(with an appropriate choice of summation order for n  =  1, 2 see [39]) and e2(τ) is the one 
variable Eisenstein series5.

For example, the elliptic genus of a complex surface of degree D in P3 can be calculated as

(E2
1(

D2

2
− 4D + 8)D + (E2 − e2)(

D2

2
− 2)D)(

θ(z, τ)
θ′(0, τ)

)2. (6)

In particular for the K3-surface, i.e. for the case D  =  4, one obtains

24(E2 − e2)(
θ(z, τ)
θ′(0, τ)

)2.

The elliptic genus considered in [7] is given by (3) or (2) with k  =  0. Up to a factor depend-
ing only on the dimension (see [7], proposition 2.3), it coincides with the elliptic genus 
considered in [31, 36, 50]. The latter two works use the Weierstrass σ-function (see (A.7),  
in appendix A) writing the characteristic series as follows6. Let

Υ(x, τ) = e−G2(τ)x2− x
2 σ(x, τ) = e−

x
2 2sinh(

x
2
)

∞∏
n=1

(1 − qnex)(1 − qne−x)

(1 − qn)2

 

(7)

(here G2(τ) = − 1
24 +

∑
n�1(

∑
d|n)qn see (A.9), appendix A). Then

Q(x) = ekxx
Υ(x − z, τ)

Υ(x)Υ(−z, τ)

(which, for k  =  0, is different from (3) by a factor which is (e−π
√
−1zΥ(−z, τ))dimX).

The Hirzebruch–Witten elliptic genus of an almost complex manifold corresponds to the 
characteristic series:

e
k̄
N x Υ(x − α)

Υ(x)Υ(−α)
α = 2π

√
−1

(aτ + b)
N

, 0 � a, b, k̄ < N. (8)

The specialization q  =  0 of (8) yields the holomorphic Euler characteristic χy(X, K
k
N ) and the 

specialization of (2) to z = 2π
√
−1(α+βτ)

N , up to a factor depending on the dimension, gives 

3 Different normalizations in (3), used in some papers, may lead to a different weight and index.
4 Zagier pointed out that, at least for some of these functions, the term quasi-elliptic would be more appropriate.
5 I.e. E2(0, τ) with the omitted summand corresponding to a  =  b  =  0.
6 Instead of ϒ, these papers use the notation Φ(x, τ), which is a little different from the one used in [29]; the nota-
tions here and below are the same as in [29].
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the Hirzebruch–Witten elliptic genus (8) ( [7], proposition 2.4). As (3), this is an invariant of 
almost complex manifolds but it has the following modular property: if c1(X) = 0 mod N  
then the Hirzebruch–Witten elliptic genus is a modular form for the subgroup Γ0(N) of the 
modular group. If N  =  2 in (8) then the Hirzebruch–Witten genus depends on the Pontryagin 
(rather than the Chern) classes of X only and is an invariant of the C∞-manifolds which is 
modular (for Γ0(2)) if the manifold is spin. This is the first instance of an elliptic genus which 
appears in mathematics literature and is due to Ochanine–Landweber–Stong (see [38]).

3.2. Orbifold elliptic genus

The elliptic genus of orbifolds which are global quotients was defined in [8] as follows (this 
definition was extended to arbitrary orbifolds in [18]):

Let X be a smooth projective variety and let Γ be a finite group of its automorphisms. For an 
element g ∈ Γ let Xg denote its fixed point set. For a connected component X̄g of Xg we consider 
the decomposition into the eigenspaces of g for the restriction TX|X̄g of the tangent bundle of X on 
X̄g. We represent each eigenvalue of g acting on this restriction, in the form exp(2π

√
−1λ(g)), 

where 0 � λ(g) < 1, and denote the eigenbundle corresponding to this eigenvalue as Vλ(g). In 
particular, V0 is the tangent bundle to X̄g and TX|X̄g = V0 ⊕ (⊕λ(g)�=0Vλ(g)). We also denote 
by F(g, X̄g) =

∑
λ(g), ‘the fermionic shift’ corresponding to the component X̄g. Then we let

Vh,X̄h⊂X := ⊗k�1
[
Λyqk−1 V∗

0 ⊗ Λy−1qk V0 ⊗ Symqk V∗
0 ⊗ Symqk V0⊗ 

(9)
[⊗λ(h) �=0(Λyqk−1+λ(h)V∗

λ(h) ⊗ Λy−1qk−λ(h)Vλ(h) ⊗ Symqk−1+λ(h)V∗
λ(h) ⊗ Symqk−λ(h)Vλ(h))]

]

(i.e. the tensor product over the positive integers k of the tensor products of the exterior and 
symmetric algebras Λt, Symt, defined just before equation (2), of the eigenbundles Vλ(h) of the 
automorphism h labeled by the logarithms λ(h) of the eigenvalues of h acting on the normal 
bundle of a component X̄h with the subscripts t of the exterior and symmetric algebras depend-
ing on k and λ(h)). With these notations one defines the orbifold elliptic genus as:

Ellorb(X,Γ; y, q) := ydimX/2
∑

{h}∈Conj(Γ),X̄h

yF(h,X̄h⊆X) 1
C(h)

∑
g∈C(h)

L(g, Vh,X̄h⊆X)

 

(10)

where Conj(Γ) is the set of conjugacy classes in Γ, C(h) ⊆ Γ is the centralizer of h ∈ Γ and 
L(g, V) is the holomorphic Lefschetz number of g with the coefficients in a holomorphic 
g-bundle V, i.e. L(g, V) =

∑
(−1)itr(g, Hi(Xg, V)). The equivalent form of (10) is

Ellorb(X,Γ; y, q) := ydimX/2
∑

{h}∈Conj(Γ),X̄h⊆X

yF(h,X̄h⊆X)χ(H•(Vh,X̄h⊆X)
C(h))

 

(11)

where χ(H•(Vh,X̄h⊆X)
C(h)) is the alternating sum of the dimensions of the C(h)-invariant sub-

spaces of the cohomology of bundles Vh,X̄h⊆X.
The Atiyah–Bott holomorphic Lefschetz formula (see [2]), allows us to rewrite the com-

bination of holomorphic Lefschetz numbers (10) in terms of characteristic classes as follows: 
for a pair of commuting elements g, h ∈ Γ, let Xg,h = Xg ∩ Xh denote the set of points in X 
fixed by both g and h (by abuse of notation, the summations below take place, however, over 
the connected components of Xg,h). Then (10) in terms of the characteristic classes looks as 
follows:

J. Phys. A: Math. Theor. 51 (2018) 073001
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1
|Γ|

∑
g,h,gh=hg

(
∏

λ(g)=λ(h)=0
xλ)

∏
λ

θ( xλ
2πi + λ(g)− τλ(h)− z)
θ( xλ

2πi + λ(g)− τλ(h))
e2πizλ(h)[Xg,h]

 

(12)

where the products are taken over all the Chern roots xλ (counted with their multiplicities) of 
the eigenbundles Vλ corresponding to the logarithms λ of the characters of the abelian sub-
group of Γ generated by g, h. The term in this sum corresponding to the pair in which both g, h  
are the identities coincides with the elliptic genus of X. We shall call this term the ‘trivial’ 
sector of the orbifold elliptic genus. It is a summand in the ‘untwisted’ sector representing the 
sum of terms corresponding to the pairs (1, h).

A notable application of the mathematical definition (10) is the following formula for the 
generating function for the orbifold elliptic genera of the symmetric products:

Theorem 3.1 (See [8]). Let X be a smooth projective variety and let Ell(X) =  ∑
m,l c(m, l)ylqm. Then

∑
pnEllorb(Xn,Σn; y, q) =

∏∞

i=1

∏
m,l

1
(1 − piqmyl)c(mi,l). (13)

The formula (13) and physics proof of this identity (13) was discovered in [14].

3.3. Elliptic genus of pairs

The same work [8], besides the definition of the elliptic genus of global quotients, contains an 
approach to the elliptic genus of singular varieties, based on the resolution of singularities, and 
in which the assumption that the singularities are the quotients is replaced by an assumption 
coming from the birational geometry:

Definition 3.2 (Q-Gorenstein varieties with klt singularities). A normal variety X 
is called Q-Gorenstein if a Weil Q-divisor, which is a multiple of the divisor of the top de-
gree differential form, is a Cartier. A Q-Gorenstein variety is call klt (i.e. having a Kawamata 
log-terminal singularities) if there exists a resolution of the singularities X̂ → X  such that the 
coefficients of decomposition KX̂ = f ∗(KX) +

∑
αkEk  satisfy αk > −1.

To define the elliptic genus of singular varieties with singularities as in 3.2, one first defines 
the elliptic genus of the pairs X, E, where X is smooth and projective and E is a Q-divisor on 
X, i.e. E =

∑
αkEk  is a formal sum such that the components Ek are smooth divisors on X 

intersecting transversally. Moreover, one assumes that αk > −1 for all k. In this situation one 
defines the cohomology class, called the elliptic class of the pair (X, E)7:

ELL(X, E) =
∏

i

xiθ(
xi

2π
√
−1

− z, τ)θ′(0, τ)

θ( xi
2π

√
−1

, τ)θ(−z, τ)

∏
k

θ( ek
2π

√
−1

− (αk + 1)z, τ)θ(−z, τ)

θ( ek
2π

√
−1

− z, τ)θ(−(αk + 1)z, τ)
.

 

(14)

The elliptic genus of a pair is then the evaluation of the elliptic class on the fundamental class 
of X: Ell(X, E) = ELL(X, E)[X].

7 In H∗(X,Q) tensored with a ring of functions in z, τ  appearing in the expansion (14) in x. A ring of quasi-Jacobi 
forms described in appendix B can be used. Often below we shall, by abuse of terminology, say that we consider the 
elliptic class in cohomology (or Chow groups), meaning in fact that this class is in the cohomology  
(or Chow theory) that has been extended in such a way.
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The fundamental property of the elliptic class of pairs, which allows us to define the elliptic 
genus of a singular variety as the elliptic genus of a pair consisting of a resolution and a certain 
divisor on the latter, is the compatibility in the blowups:

Theorem 3.3 (See [9], where a more general statement concerning the orbifold 
elliptic class of pairs endowed with a Γ-action.). Let (X, E) be a pair as described 
above after definition 3.2, Z is a submanifold of X transversal to the irreducible components 
Ek of E = −

∑
αkEk

8, f : X̂ → X  is the blow up of X with the center at Z, Exc( f ) is its 
exceptional divisor, Êk  are the proper preimages of components Ek, α and Ê  are such that 
Ê = −

∑
αkÊk − αExc( f ) and KX̂ + Ê = f ∗(KX + E). Then α > −1 and

f∗(ELL(X̂, Ê)) = ELL(X, E). (15)

In particular Ell(X̂, Ê) = Ell(X, E).

Corollary 3.4. Let X be a Q-Gorenstein projective variety with at most klt singularities. Let 
X̂ → X  be a resolution of its singularities and Ê =

∑
αkÊk  be a normal crossing divisor on 

X̂  such that f ∗(KX) = KX̂ + Ê. Then Ell(X̂, Ê) depends only on X, i.e. it is independent of a 
choice of (X̂, Ê) (and called a (singular) elliptic genus of X), which will be denoted Ellsing(X).

The fundamental relation between the singular and orbifold elliptic genera is given by the 
so-called MacKay correspondence for the elliptic genus:

Theorem 3.5. Let X be a smooth projective variety on which a group Γ acts effectively via 
biholomorphic transformations. Let µ : X → X/Γ be the quotient map. Assume that μ does 
not have ramification divisors, i.e. fixed points of elements of Γ have a codimension greater 
than one. Then

ELLorb(X,Γ; z, τ) = (
2π

√
−1θ(−z, τ)
θ(0, )

)dim XELLsing(X/Γ, z, τ). (16)

In particular, the orbifold elliptic genus coincides with the elliptic genus of any crepant9 reso-
lution of the quotient (if such exist).

We refer to [9] theorem 5.3 for a more general statement in the category of Kawamata log-
terminal pairs and for the case of quotient maps admitting ramification divisors.

An immediate corollary is a reinterpretation of the series in theorem 3.1 in the case when 
dimX = 2, as the generating series of the elliptic genera of the Hilbert schemes:

Corollary 3.6. Let X be a smooth projective surface and Ell(X) =
∑

m,l qmyl. Then

∑
pnEll(Hilbn, q, y) =

∏∞

i=1

∏
m,l

1
(1 − piqmyl)c(mi,l) . (17)

Indeed, in the case of surfaces, the morphism Hilbn(X) → Xn/Σn is a smooth crepant 
resolution.

8 Recall that the divisors Ek are assumed to be smooth.
9 Recall that a resolution of singularities of a Q-Gorenstein variety is called crepant if the αk from definition 3.2 are 
all equal to zero.
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4. Equivariant elliptic genus

In this section we discuss an equivariant version of the elliptic genus. In particular we shall 
describe the equivariant analog of the push forward formula (i.e. theorem 3.3) for an elliptic 
class, equivariant McKay correspondence, the equivariant localization and push forward prop-
erties of the contributions of compact components of fixed point sets into an elliptic class. Our 
approach is based on the equivariant intersection theory as developed in [20] (see also [50]). 
It allows us to derive equivariant results from their non-equivariant counterparts, already dis-
cussed in section 3.3, applied in an appropriately formulated context. As in [9, 20], instead of 
ordinary cohomology, we work in Chow theory, but a reader of the course can interpret all the 
statements as those in ordinary cohomology.

4.1. Equivariant intersection theory

We start by working in the category of quasi-projective normal varieties (over C) with various 
assumptions on the singularities such as the Q-Gorenstein and klt conditions (see section 3.3). 
We also assume that a reductive algebraic group G, dimG = g acts on such an X via a linear-
ized action. The latter means that an ample line bundle L is presented on X together with a 
G-action on the total space of L such that the bundle projection on X is equivariant (see [44]). 
We shall refer to [20] section 6 for precise conditions of the action, which assure that the con-
structions needed for an equivariant intersection theory to run will work.

Let V , dimV = l be a representation of G, U ⊂ V  be an open set such that G acts on U 
freely and codimV \ U is sufficiently large. Then U/G is smooth, and for a given n, the Chow 
groups An′(U/G) = Al−g−n′(U/G) are well defined for l  ≫  n, and so are the products among 
them for all n′ < n. The Chow ring A*(BG) is defined as the graded ring with An(U/G) for 
n  ≪  l as its graded components; again, they are independent of l as long as l is large enough.

Since G acts freely on U, the diagonal G-action on X × U  is free as well, the quotient space 
XG = (X × U)/G  does exist and the equivariant Chow group AG

i (X) can be defined as the 
usual Chow group Ai+l−g(XG). Again, it is independent of V,U as long as codimV \ U is suf-
ficiently large (see [20] proposition-definition). The intuition behind such a choice of indices 
is that in the case when X is smooth, the projective and the quotient U/G is compact, and one 
has dimXG = dimX + l − g and Ai+l−g(XG) = AdimX−i(XG) by the Poincare duality.

Let E be an equivariant G-bundle on a quasi-projective variety with the action of G, i.e. the 
total space of E is endowed with a G-action such that projection E → X  is G-equivariant. Then 
EG = (E × U)/G → XG is a vector bundle on XG and the equivariant Chern class cG

j ∈ AG
∗ (X) 

is the Chern class of the vector bundle EG on XG. As in the non-equivariant case, one associates 
the equivariant bundle with the (equivariant) Chern roots xG

i ∈ A∗(XG).
To define the equivariant elliptic class, we note that the map π induced by the projection 

on the second factor:

XG = (X × U)/G π−→ U/G = BG (18)

is a locally trivial fibration with the fiber X.

Definition 4.1. Let X be a smooth projective variety with the action of the algebraic group 
G. The equivariant elliptic genus of (X, G) is the push forward of the equivariant elliptic class, 
i.e. the class (3) where xi are the equivariant Chern roots of the tangent bundle of X with its 
natural G-structure:

EllG(X) = π∗(ELL(XG)) ∈ A∗(BG)⊗ QJac (19)
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where π : XG → BG is induced by a projection of X × U  on the second factor and QJac is the 
ring of the quasi-Jacobi forms, i.e. the ring of functions on C× H  generated by coefficients of 
the Taylor expansion in x of a factor in the product (3) (see appendix B)10.

By the equivariant Riemann–Roch theorem, one can interpret (19) as the character decom-
position of the holomorphic Euler characteristic of the G-equivariant bundle (3), where TX ,Ω1 
is endowed with a natural G-structure (see [22]).

In the case when G is a torus T (affine connected commutative algebraic group) of dimen-
sion r, the equivariant elliptic class in A*(BT,QJac) can be viewed as an element of the ring 
of polynomials in r variables with coefficients in the ring of the quasi-Jacobi forms (see 
appendix B).

4.2. Equivariant localization

Let T be a torus acting algebraically on a smooth quasiprojective scheme X. Let T̂  be the group 
of characters of T. An identification T = C∗r  induces the identification of T̂  with a free abe-
lian group generated by the character t1, ..., tr ∈ T̂  (such that ti(z1, ...., zi, ...zr) = zi ∈ C∗). The 
T-equivariant Chow ring of a point, i.e. A*(BT), as was already mentioned, is isomorphic to 
the symmetric algebra of the free abelian group T̂ . More generally, if T acts trivially on X then 
AT
∗(X) = A∗(X)⊗ Sym(T̂) (here Sym(T̂) is the symmetric algebra with generators t1, ..., tr ; 

see [21]). For details of the following we refer to [21].

Theorem 4.2. Let RT = Sym(T̂), QT = (R+
T )

−1RT  where R+
T  is the semigroup of elements 

of positive degree and let i : XT → X  be the embedding of the fixed point set. Then

i∗ : A∗(XT)⊗QT → AT
∗(X)⊗QT (20)

is an isomorphism.

If Y and X are smooth, j : Y → X  is a regular embedding of codimension d, N is the normal 
bundle of Y in X and α ∈ A∗(Y), one has the self intersection formula j∗j∗(α) = cd(N) ∩ α (see 
section 6.3, corollary 6.3 [24]). If F is a fixed point set of a torus T acting on a smooth scheme 
X, then F is smooth and the self intersection formula applied to iF : F × U/G → X × U/G 
implies i∗FiF∗(α) = cT

d (N) ∩ α. This results in an explicit localization isomorphism:

AT
∗(X)⊗QT → A∗(XT)⊗QT : β → i∗F(β)

cT
d (N)

 (21)

(here cT
d (N) denotes the equivariant Chern class of the normal bundle to the fixed point set).

4.3. Push forward of the equivariant elliptic class and equivariant McKay correspondence

The above approach to equivariant intersection theory allows us to deduce directly the equiv-
ariant counterparts of the key results about the elliptic genus: the push forward formula of the 
elliptic class and the McKay correspondence. A different derivation of these properties was 
given in [52].

Let X̄  be a smooth projective variety with a biholomorphic action of a torus T. Let 
E =

∑
αiEi be a normal crossings divisor on X̄  such that all irreducible components Ei are 

T-invariant. Then (in notations of section 4.1) (Ei × U)/T  is a divisor on (X̄ × U)/T  and 

10 As in (14) one can use any ring of functions containing the coefficients of expansion of the elliptic genera of 
manifolds in Chern classes.
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hence the classes eT
i ∈ AT

∗(X̄) are well defined. Using (14) we obtain the equivariant elliptic 
class ELLT(X̄, E) ∈ AT

∗(X̄, QJac).

Theorem 4.3 (Push forward formula). Let X̄  be a smooth projective variety with a 
torus T acting on X̄  via biregular automorphisms. Let E be a T-invariant normal crossings  
divisor and Z a smooth T-invariant submanifold of X̄  transversal to all irreducible comp-
onents of E. Let φ : X̄′ → X̄  be the blow up of X̄  with the center at Z and let E′ be the divisor 
on X̄′ such that φ∗(KX̄ + E) = KX̄′+E′. Then the action of T on X̄ \ Z extends to the action on 
X̄′ leaving E′ invariant and

φ∗(ELLT(X̄′, E′)) = ELLT(X̄, E) (22)

where on the left one has the equivariant elliptic class for the action on X̄′ induced by the 
action of T on X̄ \ Z.

Proof. Let π : X̄T → BT  be a locally trivial fibration defined by the action of T and a rep-
resentation of T as in section 4.1 (recall that BT  =  U/T is the quotient space of a Zariski open 
set U in the representation space with a sufficiently large codimension of the complement to 
U). Since Z and Ei are T-invariant, one has the embedding of fibrations ZT → X̄T , (Ei)T → X̄T  
of subvarieties of X̄T  corresponding to Z and Ei compatible with the projections on T. Let 
X̄′

T = (X̄′ × U)/T  and φT : X̄′
T → X̄T  be induced morphisms. X̄′

T = (X̄′ × U)/T  can be iden-
tified with the blow up of X̄T  along ZT. This can be seen, for example, from a local description 
of the blow up as in [51] definition 3.23. Moreover, ET =

∑
αi(Ei)T, the multiplicity of (Ei)T  

along ZT is the same as the multiplicity βi of Ei along Z and the codimension of ZT in X̄T  coin-
cides with the codimension of Z in X̄ . It follows that (E′

i)T , whose irreducible components are 
the proper preimages of (Ei)T , and the exceptional locus of φT  all have the same multiplici-
ties as the corresponding components in E′ (see [8] p 327 and also theorem 3.3). Therefore, 
φ∗

T(KX̄T
+ ET) = KX̄′

T
+ E′

T. Now theorem 3.5 in [9] immediately implies theorem 4.3. □ 

As in the non-equivariant case, the push forward formula (22) shows us that the following 
definition is independent of the resolution it uses.

Definition 4.4 (Equivariant singular elliptic class).

Let X be a Q-Gorenstein  projective variety with at most klt singularities on which a torus T 
acts by regular automorphisms. Let f : X̂ → X  be an equivariant resolution of its singulari-
ties and Ê =

∑
αkÊk  be a normal crossing divisor on X̂  such that f ∗(KX) = KX̂ + Ê. The 

equivariant singular elliptic class is defined as

ELLT
sing(X) = f∗(ELLT(X̂, Ê)) (23)

(it is independent of a choice of equivariant resolution). The equivariant singular elliptic genus 

is the push forward of ELLT
sing(X) to the Chow ring of the point (see definition 19).

In the case when the singular variety is an orbifold with an action of a torus, one has an 
equivariant version of the orbifold elliptic class related to the equivariant singular elliptic class 
just described.

Theorem 4.5 (Equivariant version of the McKay correspondence). Let X be a 
smooth projective variety with a torus T acting on X via biregular automorphisms. Let Γ be a 
finite group whose action commutes with the action of T. Then, for any pair (g, h) ∈ Γ of com-
muting elements, the fixed point locus Xg,h is T-invariant, the class obtained by replacing it in 
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the elliptic class appearing in (11 ) the ordinary Chern roots of the bundles Vλ by the equiv-
ariant Chern roots of these bundles with a natural T-structure—and called the equivariant 
orbifold class of (X, T ,Γ)—satisfies the following push forward formula11. If ψ : X → X/Γ is 
the quotient morphism, then

ψ∗(ELLT
orb(X,Γ)) = ELLT

sing(X/Γ). (24)

Proof. This follows from the corresponding results in [9] as in the proof of theorem 4.3. 
Since the actions of T and Γ commute, the torus T acts on Xγ , γ ∈ Γ, the action of Γ on X 
induces the action of XT = (X × U)/T  via the action on the first factor and the fixed point set 
of γ ∈ Γ is Xγ

T . Hence ELLT
orb(X,Γ) = ELLorb(XT ,Γ). Now the theorem follows from theorem 

5.3 in [9] applied to the action of Γ on XT. □ 

4.4. Push forward of contributions of components of a fixed point set

The localization map (20) allows us to associate a fixed component F of an action of a torus 
with an invariant, constructed using the contribution of F in the equivariant elliptic class of 
X. In the case when X is a smooth projective variety, the sum over all fixed components of 
these contributions evaluated by the corresponding fundamental classes of the components 
coincides with the equivariant elliptic genus of X (see [2]). In the case when X is only quasi-
projective, but a component F is compact, the corresponding contribution is well defined and 
though by itself it does not have a geometric interpretation, this contribution does play a key 
role in the definitions of the next section. Here we shall describe the push forward property of 
the contributions of compact components and its generalization to the orbifold case.

Definition 4.6 (Local contribution of the component of a fixed point set: smooth 
case). Let X be a smooth quasi-projective variety, T as above, and let E denote a normal 
crossing divisor with T-invariant irreducible components. Let F be a component of the fixed 
point set. Assume that F is compact and let iF : F → X  denote its embedding. Let cT

codimF(NF) 
be the equivariant Chern class of the normal bundle of F in X. Then the local contribution of 
F in the equivariant elliptic genus of the pair (X, E) is the class12:

ELLT
F(X, E) =

i∗FELL(X, E)
cT

codimF(NF)
∈ A∗(F){{q, y}} ⊗ Q. (25)

Theorem 4.7 (Push forward for the local contribution of the equivariant elliptic 
genus). Let X be a smooth quasi-projective variety with the action of a torus T and let 
F ⊂ X  be a component of the fixed point set which is compact. Denote by φ : X′ → X  the 
T-equivariant blow up with the T-invariant center Z ⊂ F and let F ′

F =
⋃

F′∈IrrF ′ F′ be the 
union of the submanifolds F′ from the set Irr(F ′) of irreducible components of the fixed point 
set F ′ of the action of T on X′ mapped by φ onto F. Let E be a T-invariant normal crossing 
divisor, all components of which are transversal to Z, and let E′ be the divisor on X′ such that 
φ∗(KX + E) = KX′ + E′. Then

11 Here we consider the full elliptic class, i.e. for each commuting pair g,h one takes the cap product of the class 
obtained by the expansion of the θ-functions with the fundamental class [Xg,h]. This cap product is an element of the 
equivariant Chow ring of Xg,h. The push forward of this cap product to the Chow ring of a point gives the equivari-
ant orbifold elliptic genus and is an element in the ring of the formal power series in characters of T.
12 The ring in this formula can be taken to be A∗(F, QJac)⊗Q.
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φ∗
∑

F′∈Irr(F ′)

i∗F′ELLT(X′, E′)

cT
CodimF′⊂X′(NF/X′)

=
i∗FELLT(X, E)

cT
CodimF⊂X(NF/X)

. (26)

Proof. Let X̄  be a compactification of X and X̄′ be the blow up of X̄  at Z ⊂ X ⊂ X̄. Let 
F ′ =

⋃
F′∈Irr(F ′) F′ (respectively F =

⋃
F∈IrrF F) be the submanifold of X̄′ of fixed points 

of action of T on X̄′ (respectively X̄) and iF ′ : F ′ → X̄′ (respectively iF : F → X̄ ) be their 
embeddings. The push forward formula of theorem 4.3 can be rewritten as:

iF∗(iF
−1
∗ φ∗iF ′∗)i

−1
F ′ ∗ELLT(X̄′, E′) = ELLT(X, E). (27)

Now using the description of the inverse of i* given in (21) and (φ|F ′)∗ = iF−1
∗ φ∗iF ′∗ we 

obtain

φ∗
i∗F ′ELLT(X̄′, E′)

cT
top(NF ′/X̄′)

=
i∗FELLT(X, E)

cT
top(NF/X̄)

. (28)

The fixed point set F ′ (respectively F ) is a disjoint union of smooth irreducible components 
and hence A∗(F ′) = ⊕F′∈Irr(F ′)A∗(F′) (a similar direct sum decomposition for F ) where the 
summation is over the set Irr(F ′) of irreducible components of F ′ (respectively F ). The 
split is given by the projections i∗F′ : A∗(F ′) → A∗(F′) (respectively i∗F : A∗(F) → A∗(F)) 
where iF′ : F′ → F ′ is the embedding of an irreducible component into the disjoint union 
(and the same for F). The map φ|F ′∗ respects the above direct sum decomposition with 
φ|F ′

−1
∗ (A∗(F)) = ⊕F′∈Irr(F ′)A∗(F′). This implies (26). □ 

4.5. Contributions of components of a fixed point set into an orbifold elliptic genus

Let X be a smooth quasi-projective variety, let T be a torus acting on X effectively and let Γ 
be a finite group acting upon X (all actions are via biholomorphic automorphisms). We shall 
assume that the action of Γ commutes with the action of T, i.e. for all t ∈ T , γ ∈ Γ and any 
x ∈ X  one has γt · x = t · γx, γ, t ∈ Aut(X). This implies that Γ leaves invariant the fixed point 
set XT of the torus T, each fixed point set Xg, g ∈ Γ is T-invariant and that T acts on the quo-
tient X/Γ. We denote by Teff  the quotient of T, which acts effectively on X/Γ.

If F is a connected component of XT and Fγ is a component of the fixed point set of an 
element γ ∈ Γ acting upon F, then the restriction of the cotangent (or tangent) bundle Ω1

X of 
X on Fγ has the canonical structure of an equivariant T-bundle. If V is an eigenbundle of this 
T-action on Ω1

X|Fγ, then since we assume that actions of Γ and T commute, V is invariant under 
the action of γ as well.

If rkV  =  1, then as in section 3.2, for γ ∈ Γ we let λ(γ) denote the logarithm 1
2π

√
−1

log ∈ [0, 1) 
of the value on γ of the character of the action on V of the subgroup 〈γ〉 of Γ generated by γ. 
We assign the subscript λ to such a line bundle V, put xλ = cT

1 (Vλ) ∈ A2
T(F

γ) and count the 
class xλ with the multiplicity equal to the multiplicity of the character γ → exp(2π

√
−1λ(γ)) 

in the bundle Ω1
X|Fγ. A similar collection of equivariant Chern classes arises from the normal 

bundles to the fixed point sets Fg ∩ Fh of the pairs g,h commuting the elements in Γ.

Definition 4.8. Let F ⊂ X  be a connected compact component of the fixed point set of an 
action of T and for a commuting pair g, h ∈ Γ, let Fg,h denote the submanifold of F consisting 
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of the points fixed by both g and h. We associate a connected component of Fg,h and a rank one 
T-eigenbundle V of Ω1

X|Fg,h with the characteristic class in the ring A∗
T(X,C)[[q, y]] given by:

ΦT
Fg,h(xT , g, h, z, τ ,Γ) =

θ( xT

2πi + λ(g)− τλ(h)− z)

θ( xT

2πi + λ(g)− τλ(h))
e2πizλ(h) (29)

where xT is an equivariant Chern class of V.

Below we also denote by Cong(Γ) the set of conjugacy classes of Γ, C(g), g ∈ Γ will 
denote the centralizer of g, Λ is the set of (g, h)-eigenbundles of the tangent bundle to X 
restricted to Fg,h and ΛFg,h will be the collection of (g, h)-eigenbundles of NFg,h⊂F, such that 
λ(g) = λ(h) = 0.

Definition 4.9. The contribution of F ∈ XT  to the T-equivariant orbifold elliptic genus of 
(X,Γ) is the sum:

ELLTeff

F (X,Γ, u, z, τ) =
∑

{g}∈Cong(Γ)

1
|C(g)|

∑
h∈C(g)

(
∏

λ∈ΛFg,h

xλ)
∏
λ∈Λ

ΦTeff

Fg,h(xλ, g, h, z, τ ,Γ)[Fg,h]
 

(30)

where NFg,h⊂F is the normal bundle for Fg,h in F and all equivariant Chern classes are ex-
pressed in terms of the characters of Teff .

The motivation of this definition is the following: the Orbifold elliptic genus (12) is a sum 
over the pairs of commuting elements in Γ of classes in the Chow ring (which are combina-
tions of the Chern classes xλ of bundles Vλ in (10)) evaluated on the fundamental class of Xg,h 
(see proof of theorem 4.3 in [8]). In the case when X is projective, the localization formula (see 
(21)) applied to the equivariant version of the orbifold elliptic genus replaces each summand 
in (12) by the sum over the components F of XT of the pullbacks to the Fg,h = F ∩ Xg,h classes 
(12) divided by the equivariant top Chern class of the normal bundle to Fg,h in Xg,h. Definition 
4.9 is the sum over (g, h) of the contribution from one individual component F.

Example 4.10 (Trivial sector of the contribution described in definition 4.9 for 
χy-genus). The specialization to the case q  =  0 of the term corresponding to the pair 
g  =  h  =  1 (i.e. the trivial sector) gives the following local contribution of the component F of 
the fixed point set of action of T on X to the Γ-orbifold χy-genus:

χy(X,Γ, g = h = 1)Teff

F =
∏

λ
(y−

1
2 xλ(T)

1 − ye−xλ(T)

1 − e−xλ(T)
) ·

∏
λ
(y−

1
2

1 − ye−xn
λ(N)

1 − e−xn
λ(N)

)

 

(31)

where xλ(T) are the Chern roots of the tangent bundle to F (appearing in the first product) and 
xn
λ(N) are the equivariant Chern roots of the normal bundle to F (contributing to the second 

factor in (31)). Indeed, in the sector g  =  h  =  1 in (30), we have only one term, which is a spe-
cialization of class Φ given in the definition 4.8.

The contributions in the orbifold elliptic genus corresponding to the compact components 
of the fixed point set described in definition 4.9 satisfy the following McKay correspondence, 
localized at F, proof of which can be obtained in the same way as proof of the theorem 4.7. 
A more general case, providing a local equivariant version for pairs as in [9] can be obtained 
similarly.
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Theorem 4.11. Let X be a smooth quasi-projective variety, T be a torus and Γ be a finite 
group both acting on X via biholomorphic automorphisms so that their actions commute, i.e. 
γ · tv = t · γv, γ ∈ Γ, t ∈ T , v ∈ X. Let φ : X̃ → X/Γ be a crepant resolution of singularities 
of the quotient X/Γ (if it exists). As above, denote by Teff  the quotient of T by the finite group 
which acts effectively on X/Γ. Let F ⊂ X/Γ be a component of the fixed point set of Teff  and 
F ′ be the collection of components of the fixed point set of T such that φ(F′) ⊂ F, F′ ∈ F ′. 
Then

∑
F′∈F ′

ELLTeff

F′ (X̃) = ELLTeff

F (X,Γ). (32)

In the next section, we consider explicit examples of the calculations of the contributions 
of fixed components of C∗-actions on the GIT quotients by the actions of tori on bundles over 
quasi-projective varieties. They will provide ample illustration of the theorem 4.11.

5. Elliptic genus of phases

This section discusses applications of the local contributions of compact components of the 
fixed point sets introduced in the previous section  in the special case when the action of 
T = C∗ takes place on a GIT quotient of the total space of a vector bundle by an action of the 
reductive group. This action of T is canonical in the sense that it is induced from the action 
of T on the total space of the vector bundle by dilations v → t · v, t ∈ C∗. This is an extension 
of the framework of examples considered by Witten in [56]. Following this work, in [40] we 
called our GIT quotient phases as well. We also attach an elliptic genus to such a framework 
and describe its orbifoldization when additional symmetries are present. We show that this 
extends the well-known elliptic genera of the Landau–Ginzburg and σ-models.

5.1. Phases

We will start with a very special example of a phase considered by Witten ( [56]), in which we 
calculate the contribution of the component of the fixed point set, not in the elliptic genus but 
rather in the χy-genus (which is the limit q → 0 of the elliptic genus). The ‘advantage’ of the 
χy-genus of course is that it is a Laurent polynomial, rather than a more general holomorphic 
function. In this example, we work with the χy-genus directly, i.e. we perform the localization 
of the χy-genus rather than the elliptic genus. Already, in the case of the Landau–Ginzburg 
phase, this calculation results in the Arnold–Steenbrink spectrum of weighted homogeneous 
singularity, providing interpretation of the latter using equivariant cohomology.

Example 5.1. Let w1, ..., wn, D be a collection of positive integers. Consider the  
G = C∗-action on C× Cn given by

λ(s, z1, ...., zn) = (λ−Ds,λw1 z1, ....,λwn zn). (33)

The quotient of the subset in C× Cn given by s �= 0 is the orbifold W/µD, where W is a 
vector space, dimCW = n and µD is the group of roots of the unity of degree D acting via 
multiplication on W. The group Teff = C∗ acts on C× Cn via t(s, z1, ..., zn) → (ts, z1, ..., zn) 
and this action induces the effective action of Teff  on W/µD. The effective C∗-action on 
W, which induces this action of Teff  on W/µD, is multiplication by r ∈ C∗ where r−D  =  t  

(r and rexp( 2π
√
−1l

D ), l ∈ Z induce the same automorphisms of W/µD), i.e. W is acted upon by 
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T = C∗, with the D-fold cover of the group Teff  acting on W/µD. In particular infinitesimal 
characters of the normal bundle at the fixed point O of the action of T on W (i.e. the origin) 
in terms of the characters of Teff  are xi = −wiu

D , where u is the infinitesimal character of T. 

It follows from (31) that the trivial sector of the local contribution of O to the orbifold 
χy-genus is given by:

∏
i
y−

1
2 (

wiu
D

1 − ye−
wiu
D

1 − e
−wiu

D

) · 1
wiu
D

. (34)

For a special value of u given by u = 2π
√
−1z  one obtains:

∏
i
y

−1
2

1 − y(1− wi
D )

1 − y
−wi

D

=
∏

i
y

−1
2

y
wi
D − y

y
wi
D − 1

 (35)

which coincides with the generating function of the spectrum, as calculated in (see [47]).

Now we consider the general case for which the example 5.1 is an illustration.

Definition 5.2 (See [40]). Let E be the total space of a vector bundle E on a smooth quasi -
-projective manifold X. Let G be a reductive algebraic group acting by the biholomorphic  
authomorphism on E. Let κ be a linearization of this G-action satisfying the conditions of 
proposition 3.1 in [40]13. The phase of the G-action on E corresponding to the linearization κ is 
the GIT quotient E//κG = E ss/G endowed with the C∗-action induced by the C∗-action given 
by dilations t(v) = t · v, t ∈ C∗, v ∈ E .

A phase is called Landau–Ginzburg if this GIT quotient is an orbifold that is biholomorphic 
to a quotient of Cn by a finite subgroup of GLn(C).

A phase is called a σ-model (respectively Calabi–Yau) if this GIT quotient is biholomor-
phic to the total space of a vector bundle (respectively the canonical bundle) over a compact 
orbifold.

The change of linearization κ of the G-action on E may result in a birationally equivalent 
GIT-quotient. More specifically, if NSG(E) denotes the equivariant Neron–Severi group (in 
the case when E is an affine space this is just the group CharG of characters of G), then there 
is a partition of NSG(E)⊗Q into a union of cones, such that GIT-quotients are biregular for 
linearizations within a cone and E//κG acquires a change when κ belongs to the bound-
ary of a cone or is moving into the adjacent one. For a general discussion of the changes of 
GIT-quotients we refer to [49] or [16] and to [40] for the particular case of the total spaces of 
bundles as in the definition 5.2.

GIT-quotients are often singular but we will be interested in the cases when they are biho-
lomorphic to the global quotients of a smooth manifold which we call the uniformization of 
a global quotient.

Definition 5.3. A smooth quasi-projective variety X̄  together with the action of a finite 
group Γ is called the uniformization of a phase E//κG if

 1. there exists a biholomorphic isomorphism E//κG → X̄/Γ
 2. there is an action of the 1-dimensional complex torus T on X, and a finite degree covering 

the map π : T → Teff  of the 1-dimensional torus Teff  acting on E//κG via dilations (see 
definition 5.2), such that the quotient map φ : X̄ → X̄/Γ = E//κG is equivariant, i.e. 
φ(t · x) = π(t) · φ(x), t ∈ T .

13 Which implies that the C∗-action by dilations is well defined on the GIT quotient.
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The following is an illustration of the definitions 5.2 and 5.3, with an example borrowed 
from [56].

Example 5.4. The quotient in example 5.1 is a special case of the quotients considered 
in definition 5.2 with X = Cn, E = Cn+1 being the total space of the trivial line bundle and 
G = C∗ acting on E via (33). In this case Char(C∗)⊗Q = Q, there are two cones and for a 
pair of linearizations κ1,κ2 from distinct cones, the corresponding semi-stable loci are:

(Cn+1)
ss
κ1

= C× (Cn − 0) ⊂ Cn+1 (Cn+1)
ss
κ2

= (C− 0)× Cn ⊂ Cn+1. (36)

In the simplest case, when wi  =  1, D  =  n, the corresponding GIT quotients are respectively 
the total space [OPn−1(−n)] of the canonical bundle over Pn−1 and the quotient W/µn, W = Cn 
by the group of roots of unity of degree n acting diagonally. As was mentioned in the discus-
sion of example 5.1, the dilations t · (s, z1, ..., zn) = (ts, z1, ..., zn) induce on Cn/µn the action 
t · [(z1, ..., zn) modµn] = t(1, z1, .., zn) mod C∗ = (t, z1, ..., zn) mod C∗ = (t−

1
n z1, ..., t−

1
n zn)modµn. 

This action is effective on the quotient W/µn. Denote by π : λ → t = λ−n the (cyclic) cover-
ing map of one-dimensional tori C∗

λ → C∗
t  and let φ : Cn → Cn/µn be the quotient map. As-

sume that C∗
λ is acting on Cn via multiplication of the coordinates by λ, and C∗

t  acts on Cn/µn 
as above. Then φ(λv) = t · φ(v), and therefore we have a uniformization in the sense of the 
definition 5.3. Hence we have an LG phase. The quotient, which is the total space OPn−1(−n), 
is the σ-model (in fact the CY) phase. Here the GIT quotient is smooth, dilations on C× Cn 
induce on OPn−1(−n) the multiplication by elements of C∗, which is an effective action and 
does not require uniformization.

5.2. Elliptic genus of a phase

Next we shall define the elliptic genus of a phase for which the fixed point set of C∗-action 
induced by dilations has a compact component.

Definition 5.5 (Elliptic genus of a phase). Let X, G, E ,κ be as in definition 5.2.  

Assume that E//κG admits uniformization Ẽ//κG, i.e. Ẽ//κG/Γ = E//κG for an action of 

a finite group Γ and that one has the action of T = C∗ on Ẽ//κG such that the quotient map 
Ẽ//κG → E//κG is equivariant for the C∗-action on E//κG induced by dilations on E. Let 
F ⊂ Ẽ//κG  be a compact component of a fixed point set of T-action on Ẽ//κG. Consider the 

local contribution of the component F to the T-equivariant orbifold elliptic genus

EllT
eff

orb (Ẽ//κG,Γ, u, z, τ) (37)

given by (30) in definition 4.9, where u is the infinitesimal character of the action of the maxi-
mal, effectively acting quotient Teff . Then, the elliptic genus of the phase (X, G, E ,κ) relative 
to the component F, denoted as Ell(E//κG, F, z, τ), is defined as the restriction of the local 
contribution (37) on the diagonal u  =  z of C× C×H:

Ell(Eκ//G, F, z, τ) = EllT
eff

orb (Ẽ//κG,Γ, F, z, z, τ). (38)

More generally, the same definition can be used in cases when Ẽ//κG has Kawamata log-

terminal singularities and when Ell(Ẽ//κG,Γ) is well defined as the orbifold elliptic genus of 

a pair obtained via a resolution of singularities and taking into account the divisor determined 
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by the discrepancies of the resolution (see [9]).

In the next theorem, we shall describe a class of phase transitions in which one can 
apply equivariant McKay correspondence to obtain the invariance of elliptic genus in such 
transitions.

Theorem 5.6 (Invariance of elliptic genus in phase transitions). Let E//κ1 G = X1 = 
X̄1/Γ, E//κ2 G = X2 = X̄2/Γ, X̃1, X̃2,Γ be as in 5.3. Assume that ψ : X1 → X2 is a  
K-equivalence, i.e. ψ∗(KX2) = KX1. Then

∑
Pi

Ell(L//κ1 , Fi) = Ell(L//κ2 , F) (39)

where Fi is a collection of fixed point sets which ψ takes into F.

5.3. Quotients of phases by the action of a finite group

The constructions of mirror symmetry in the toric or weighted homogeneous case (see  
[3, 4]) suggest considering the orbifoldization of phases with respect to finite groups. Even 
the very first construction of the mirror symmetric of the Calabi–Yau quintic in P4 (see [11]) 
was obtained via orbifoldization. The orbifoldization of the elliptic genus of Calabi–Yau and 
Landau–Ginzburg models was proposed in [4, 34]. Here we discuss the orbifoldization of 
arbitrary phases including hybrid ones.

Let X be a quasi-projective manifold with an action for a reductive group G and let Γ be a 
finite subgroup of the group of biregular automorphisms of X which normalizes G, i.e. for any 
γ ∈ Γ, g ∈ G one has γgγ−1 ∈ G. We say that Γ normalizes a linearization κ of the G-action 
on X, if the action of Γ on X lifts to the action on the total space of the ample line bundle Lκ 
underlying κ so that this lift normalizes the action of G on the total space of Lκ. This assump-
tion implies that Γ acts on the semi-stable locus

Xss = {x ∈ X|∃s ∈ Γ(X, L⊗m
κ )G, s(x) �= 0}. (40)

Here the action of either G or Γ on Γ(X, L⊗m
κ ) is given by (gs)(x)  =  gs(g−1x) (g is an element 

of either G or Γ). Indeed, (γ · s)(γ(x)) = γs(x) �= 0 if s(x) �= 0. The action of Γ on Xss
κ  in turn 

defines its action on X//κG.
First we shall consider the orbifoldization of the elliptic genus (i.e. defining the elliptic 

genus of the corresponding orbifold) in the case when the GIT quotient E//κG is smooth.

Definition 5.7 (Orbifoldization of smooth phases). Let X, E , G,κ be as in definition 
5.2, Γ be a finite group of automorphisms of bundle E → X  normalizing linearization κ and 
E//κG be the phase corresponding to X, E ,κ endowed with the action of Γ induced from 
the action on the G-semistable locus in E corresponding to κ. If E//κG is smooth and F is 
a compact component, the fixed point set of the C∗ action on E//κG induced by dilations 
λ(v) = λ · v, v ∈ E ,λ ∈ C∗, then the Γ-orbifoldized elliptic genus of this phase corresponding 
to F is the contribution (4.9) of component F to the C∗-equivariant Γ-orbifold elliptic genus 
of E//κG.

More generally, in the case when (E//κG) is an orbifold, assume further that it is a global 
quotient admitting (Y ,Γ, T) as uniformization in the sense of definition 5.3 and that there is a 
finite group Δ of automorphisms of Y, containing Γ as a normal subgroup14, with the action 

14 In particular Δ acts on the quotient Y/Γ.

J. Phys. A: Math. Theor. 51 (2018) 073001



Topical Review

19

of Δ commuting with the action of T. We want to describe the ∆/Γ-orbifold elliptic genus 
attached to E//κG = Y/Γ for the action induced by the action of Δ.

Let FY be the preimage in the uniformization of a component of the fixed point set 
F ⊂ (E//κG). Then the Δ-orbifoldized contribution of F is the sum over all connected comp-
onents Q in FY of Δ-orbifoldized contributions of components Q to the equivariant elliptic 
genus of Y, as described in definition 4.9. More precisely, let Qg,h be the fixed point set of 
the pair of commuting elements g, h ∈ ∆ acting on Q, Vλ ⊂ TY |Qg,h be the eigenbundle of 
the subgroup  <g,h  >  of Δ generated by (g, h), and Λ is the full set of such eigenbundles 
in TY |Qg,h, Λg,h = {λ} ⊂ Λ is the set of eigenbundles in the normal bundle to Qg,h in Q such 
that λ(g) = λ(h) = 0. Since we assume that the actions of Δ and T commute, the bundles 
Vλ are the eigenbundles of T as well. Let xT

λ be T-equivariant Chern classes of Vλ written in 
terms of the characters of Teff , which is the quotient of T acting effectively on the orbifold 
E//κG = Y/Γ.

Definition 5.8. The Δ-orbifoldized contribution of component Q to the equivariant elliptic 
genus of Eκ//G is given as follows:

1
|∆|

∑
gh=hg,g,h∈∆

(
∏

λ∈ΛQg,h

xλ)
∏
λ∈ΛQ

ΦTeff

Qg,h(xλ, g, h, z, τ ,∆)[Qg,h] (41)

where

ΦTeff

Qg,h(xT
λ, g, h, z, τ ,∆) =

θ(
xT
λ

2πi + λ(g)− τλ(h)− z)

θ(
xT
λ

2πi + λ(g)− τλ(h))
e2πizλ(h).

The next and final section contains examples showing how these definitions yield the invar-
iants of the Calabi–Yau and Landau–Ginzburg models, which have already appeared in the 
literature, as well as the explicit examples of some hybrid models.

6. The calculations of the elliptic genera of phases and their specializations

6.1. Elliptic case: the weighted projective spaces and LG models

The following is a continuation of the examples 5.1 and 5.4 and gives an explicit form of the 
elliptic genera of corresponding phases and their specializations. We shall start with the case 
of the GIT quotient from example 5.4, i.e. example 5.1 with wi  =  1, D  =  n.

Proposition 6.1. Consider the C∗-action on C× Cn given by:

λ(s, z1, ...., zn) = (λ−ns,λz1, ....,λzn).

There are two GIT quotients corresponding to the linearizations ψ(λ) = λr  with r  >  0 (called 
the σ-model phase) biholomorphic to the total space OPn−1(−1) of the canonical bundle of 
Pn−1 and r  <  0 (called the Landau–Ginzburg phase) biholomorphic to Cn/µn.

 1. The trivial sector of the elliptic genus of the Landau–Ginzburg phase is given by

(−1)n(
θ(z(1 − 1

n ))

θ( z
n )

)n. (42)

 2. The elliptic genus of the Landau–Ginzburg phase is given by:
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1
n

∑
0�a,b<n

(−
θ((1 − 1

n )z +
(a−bτ)

n )

θ( z
n + (a−bτ)

n )
)ne2πibz. (43)

 3. The elliptic genus of the σ-model phase is given by:

(x
θ( x

2πi − z)
θ( x

2πi )
)n−1(

θ( nx
2πi )

θ( nx
2πi − z)

)[Pn−1] (44)

  and coincides with the elliptic genus of the smooth hypersurface of degree n in Pn−1.
 4. (LG-CY correspondence) The elliptic genera (44) and (43) of σ and the LG models  

respectively coincide.

Proof. The calculation of GIT quotients was already made in example 5.4. The uniformiza-
tion is given by W → W/µn with the C∗-action given by dilations of W. The normal bundle 
of the fixed point, i.e. the origin O is the direct sum of lines with the equivariant Chern class 
being u

n where u is the infinitesimal character of C∗ acting effectively on W/µn). Hence the 
contribution of the origin ELLC∗

O (W,µn) to the equivariant elliptic genus is given by

1
n

∑
0�a,b<n

(−
θ( 1

2πi
u
n − z + (a−bτ)

n )

θ( 1
2πi

u
n + (a−bτ)

n )
)ne2πibz

which for u = 2πiz gives (43). For a  =  b  =  1, one obtains (42).

In the case of the σ-model, the C∗-action is the action via the dilations on the fibers of the 
total space of OPn−1(−n). The tangent bundle of OPn−1(−n) restricted to the fixed point set, i.e. 
the zero section, obtains contributions from the tangent bundle to Pn−1 and from OPn−1(−n). 
The equivariant Chern polynomial of the tangent bundle to Pn−1 is (1  +  x)n and the equivari-
ant Chern class of OPn−1(−n) is −nx+u

2πi . Hence the contribution of the fixed point set is:

(x
θ( x

2πi − z)
θ( x

2πi )
)n−1(

θ(− nx
2πi +

u
2πi − z)

θ(− nx
2πi +

u
2πi )

)[Pn−1].

Since θ(z) is an odd function, for u = 2πiz we obtain (47). Since the Chern roots of a hyper-

surface Vn
n−2 of degree n in Pn−1 are found from relation c(Vn−2) =

(+x)n

(1+nx) |Vn
n−2

, it follows that 

the elliptic genus of the hypersurface is given by

(x
θ( x

2πi − z)
θ( x

2πi )
)n−1(

θ( nx
2πi )

nx · θ( nx
2πi − z)

)[Vn
n−2].

The latter coincides with (47) since [Vn
n−2] = nx ∩ [Pn−1].

The LG/CY correspondence follows from the McKay correspondence since the contrac-
tion [OPn−1(−n)] → Cn/µn is a crepant morphism. □ 

In the case where the action in example 5.1 has arbitrary weights, we obtain the following:

Proposition 6.2. Consider the C∗-action on C× Cn with weights w1, ..., wn (wi ∈ Z  
pairwise relatively prime) and degree D ∈ Z>0 given by (33):

λ(s, z1, ...., zn) = (λ−Ds,λw1 z1, ....,λwn zn).
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There are two GIT quotients corresponding to the linearizations ψ(λ) = λr  with r  >  0 (called 
the σ-model phase) and r  <  0 (called the Landau–Ginzburg phase) respectively.

 1. The trivial sector of the elliptic genus of the Landau–Ginzburg phase is

∏
j

θ(
wjz
D − z)
θ(

wjz
D )

. (45)

 2. The elliptic genus of the Landau–Ginzburg phase is given by:

1
D

∑
0�a,b<D

∏i=n

i=1

θ((wi
D − 1 )z + wi(a−bτ)

D )

θ( zwi
D + wi(a−bτ)

D )
e2π

√
−1 bwiz

D . (46)

 3. Let Γ = µw1 × .... × µwn  be the product of a group of roots of unity acting coordinate-
wise on Pn−1. Then with x ∈ H2(Pn−1,Z) being the positive generator and with notations 
used in (12) the elliptic genus of the σ-model phase is given by

1
|Γ|

∑
gh=hg

(
∏

λ(g)=λ(h)=0
xλ)

∏
λ

θ( xλ
2πi + λ(g)− τλ(h)− z)
θ( xλ

2πi + λ(g)− τλ(h))
e2πizλ(h) θ( Dx

2πi )

θ( Dx
2πi − z, τ)

[(Pn−1)
g,h
].

 (47)
 4. (LG-CY correspondence) If 

∑n
1 wi = D, then the elliptic genus of the LG model is equal 

to the orbifold elliptic genus of the hypersurface of degree D in the weighted projective 
space P(w1, ...., wn), i.e. the Γ-orbifoldized elliptic genus of the hypersurface of degree D 
in Pn−1 is invariant under the action of the group Γ.

Proof. The semistable loci corresponding to two linearizations of the C∗ action (33) are 
s �= 0 and 

∑
i |z2

i | �= 0. The quotient of the first locus is the quotient of Cn by the action of µD 
and gives the Landau–Ginzburg phase. Parts 1 and 2 follow directly from definition 5.5 using 
the uniformization W as used in 5.1.

The quotient of the second locus has a projection onto Cn \ 0/C∗ with the action on Cn \ 0 
being the restriction of the action (33). Hence this GIT quotient can be identified with the orbi-
fold bundle over a weighted projective space. Using its presentation as a quotient of the total 
space of OPn(−D) by the action of µw1 × ..... × µwn we obtain a uniformization of this phase. 
The cT

1  of the normal bundle to the fixed point set in the uniformization is  −Dx  +  u where u 
is the infinitesimal character, and the claim follows from definition 5.5. The rest of the calcul-
ation is a direct generalization of those in the proposition 6.1. □ 

Remark 6.3. Though without a Calabi–Yau condition, the equality of the elliptic genus 
of the LG model and the σ-model fails, the McKay correspondence for the pairs (see [9]) 
still provides an expression for the elliptic genus of the LG model as the elliptic genus of 
a pair.

6.2. Specialization of the elliptic genus q → 0

Proposition 6.2 has, as an immediate consequence, the following relation between the spec-
trum of the weighted homogeneous singularities and the χy genus of the corresponding 
hypersurfaces.
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Proposition 6.4. 

 1. (The trivial sector of the LG models) The specialization q → 0 of the elliptic genus of the 
LG phase corresponding to the action (33) is given by

limq→0ELL(LG) = y
−n

2

∏n

j=1

y
wj
D − y

y
wj
D − 1

 (48)

  (where y = exp(2πiz)).
 2. (The relation between the trivial sector of the LG model and the spectrum) Let {ql}, ql ∈ Q 

be the Steenbrink spectrum of the isolated singularity of a weighted homogeneous poly-
nomial s = f (z) with weights wi and degree D,15 i.e. ql is the collection of μ, where μ is 
the Milnor number of f, the rational number ql such that exp(2πiql) is an eigenvalue of 
the monodromy acting on the graded component Gr p

F (H
n−1(X∞,f )) of the Hodge filtra-

tion of the limited mixed Hodge structure on the cohomology of the Milnor fiber of f  =  0 
(with the multiplicity of ql being equal to the dimension of the eigenspace) and the integer 
part [ql] being equal to n  −  p  −  1 (respectively n  −  p) if exp(2πiql) �= 1 (respectively 
exp(2πiql) = 1). Let

Ξ(y) = y
−n

2

µ∑
l=1

yql . (49)

  Then

limq→0ELL(LG)(y) = (−1)nΞ(y). (50)

 3. (The orbifoldized-χy genus of the LG model) The specialization of the elliptic genus of the 
Landau–Ginzburg model is given by:

1
D

y−
n
2

∑
0�a<D

(
∏y

wj
D − yω−awj

D

y
wj
D − ω

−awj
D

+
∑

1�b<D

(y
b
D )D) (51)

  where ωD = e
2π

√
−1

D .
 4. In the case wj  =  1, j  =  1,....,n,D  =  n (i.e. the Calabi–Yau condition is satisfied) the  

specialization q  =  0 has the form:

1
n

y−
n
2

n−1∑
k=0

[(
1 − y1− 1

n e
2π

√
−1k

n

1 − y−
1
n e

2π
√

−1k
n

)n +

n−1∑
b=1

(y
b
n )n]. (52)

Proof. The trivial sector of the χy-genus of the LG model was already derived directly in 
example 5.1. Now we shall obtain it as the q → 0 limit of the trivial sector of the elliptic genus 
given in part 1 of the proposition 6.2. Part 1 of proposition 6.4 follows from:

limτ→i∞
θ(u(z)− z, τ)
θ(u(z), τ)

e2π
√
−1cz =

sinπ(u(z)− z)
sin(πu(z))

e2πi
√
−1cz 

(53)= y−
1
2

1 − ye−2π
√
−1u(z,0)

1 − e−2π
√
−1u(z,0)

yc

15 I.e. a polynomial f (z1, ...., zn) such that sf (z) is invariant for the action (33).
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where u(z) is a linear function of z and, as above, y = e2π
√
−1z. (53) implies that the factor 

corre sponding to wi
D  in (45) has y−

1
2

y
wi
D −y

y
wi
D −1

 as the limit and (48) follows. Part 2, as was men-

tioned in 5.1, is a consequence of [47].
The specialization of a summand in (46) with b �= 0 gives y

b
D , while each factor in the sum-

mand with b  =  0 becomes y−
1
2

y
wi
D −yω−awi

D

y
wi
D −ω

−awi
D

. Applying (53) to (46) one obtains:

1
D

y−
n
2

∑
0�a<D

(
∏y

wi
D − yω−awi

D

y
wi
D − ω−awi

D

+
∑

1�b<D

(y
b
D )D). (54)

This implies 3 while 4 follows from it immediately. □ 

6.3. Specialization q → 0, y = 1

Such a specialization leads to numerical invariants of the phases.

Corollary 6.5. 

 1. The specialization q  =  0, y  =  1 of the untwisted section of the LG model is given by

ELL(LG)(q = 0, y = 1) =
∏

j
(1 − D

wj
)

 (55)

  i.e. up to sign it coincides with the Milnor number of the weighted homogeneous singular-
ity with weights w1, ..., wn and degree D.

 2. The specialization q  =  0,y  =  1 of the elliptic genus of the LG model in case 4 of proposi-
tion 6.4 gives the orbifoldized Euler characteristic of the LG model16:

1
D
[(1 − D)D + D2 − 1] (56)

  and coincides with the Euler characteristic of the smooth hypersurface of degree n in 
Pn−1 (LG/CY correspondence for the Euler characteristic; recall that for wi  =  1 the CY 
condition is n  =  D).

Proof. The contributions of either the trivial or remaining sectors follow from (52) and

limy→1
1 − y1− 1

D e
2π

√
−1k

D

1 − y−
1
D e

2π
√

−1k
D

=

{
(1 − D) k = 0
1 k �= 0. (57)

In fact, the specialization of proposition 6.4 part 4 gives 1
D ((1 − D)n + (D − 1) + D(D − 1)), 

with the first and second summands corresponding to the first summand in the bracket with 
k  =  0 and k � 1 respectively (since for k  >  0, each factor in the product is equal to 1). The 
claim about matching the Euler characteristic of the LG model and smooth hypersurface can 
be seen directly, i.e. without use of the McKay correspondence, as in 4 in proposition 6.2, using 
the following formula (see [27]) for the Euler characteristic of a smooth (N − 2)-dimensional  
hypersurface of degree D:

16 Or the ‘orbifoldized Milnor number’.
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e(VD
N−2) =

(1 − D)N + ND − 1
D

. (58)
□ 

6.4. The orbifoldization of phases by the action of finite groups

In this section we illustrate the orbifoldization of the elliptic genus of phases as defined in 
section 5.3.

Example 6.6. Consider the σ-model phase corresponding to the action (33) with wi  =  1, 
i  =  1,....,n and linearization with the semistable locus C× (Cn \ 0). The GIT quotient 
C× Cn \ 0//κC∗ is the total space of the line bundle [On−1(−D)]. Let Γ ⊂ SLn(C) be a finite 
subgroup, which we consider as acting on E = C× Cn via γ(s, v) = (s, γ · v), γ ∈ Γ. The 
orbifoldization of the contribution of the only fixed component of the C∗ action by dilations, 
which is the zero section of On−1(−D), is given by the same formula as (47) but in which Γ 
is an arbitrary subgroup of SLn(C) viewed as acting on the total space of bundle OPn−1(−D). 
As in the proof of part 3 proposition 6.2, we see that the orbifoldization of the σ-model phase 
is the Γ-orbifoldized elliptic genus of the hypersurface of degree D in Pn−1.

Example 6.7. Next we shall consider the Γ-quotients of the LG models in the sense of 
 section 5.3. First let us look at the LG model corresponding to the case w1 = .... = wn = D = 1 
and its orbifoldization by the cyclic group Γ = µD generated by the exponential grading op-
erator JW = (......, exp(2π

√
−1 wi

D ), ....). The GIT quotient corresponding to this LG phase is 
Cn, i.e. we have the orbifoldization of the smooth phase, and the elliptic genus of such orbi-
foldization coincides with the elliptic genus of the LG models with C∗-action (33), as speci-
fied in definition 5.7.

Example 6.8. Now we shall look at the orbifoldization of the arbitrary LG phase. 
Let ∆ ⊂ SLn(C) be a finite subgroup containing the exponential grading operator 
JW = (......, exp(2π

√
−1 wi

D , ....)17 and such that JW belongs to its center. These conditions im-
ply that one can use the space W as a uniformization of the LG phase with the Δ-action, such 
that for the cyclic group Γ = µD generated by JW one has W/Γ = C× Cn//κC∗. Now, the 
definition 5.8 yields the following expression for the orbifoldized LG phase:

1
|∆|

∑
g,h∈∆,gh=hg

∏
λ

θ((wi
D − 1)z + λ(g)− λ(h)τ)
θ( zwi

D + λ(g)− λ(h)τ)
e2πiλ(h)z. (59)

The specialization q → 0 of the orbifoldized phases goes as follows:

Proposition 6.9. With the notations as above, the elliptic genus of the LG phase orbi-
foldized by a group Δ for q → 0 specializes to

∑
{h}∈Conj(∆),Xh

y
∑

λ,λ(h) �=0(−
1
2 +λ(h)) 1

|C(g)|
∑

g∈Cent∆(h)

∏
λ,λ(h)=1

y−
1
2

1 − y(1−
wj
D )exp(2πiλ(g))

1 − y(−
wj
D )exp(2πiλ(g))

 (60)

(here Xh is the maximal subspace of Cn fixed by a representative of the conjugacy class). In the 
case when Δ is abelian, one has:

17 For a discussion of the origins of this condition see [6], corollary 2.3.5.

J. Phys. A: Math. Theor. 51 (2018) 073001



Topical Review

25

1
|G|

∑
{h}∈Γ,Xh

y
∑

λ,λ(h) �=0(−
1
2 +λ(h))

∏
λ,λ(h)=1

y
1
2 − y(

wj
D )− 1

2 exp(2πiλ(g))

1 − y(
wj
D )exp(2πiλ(g))

. (61)

Remark 6.10. The expression (60) coincides with the one given in [4] and the expression 
(61) coincides with the one given in theorem 6 in [19].

Proof. The term ΦT(x, g, h, z, τ ,Γ) for q → 0 has as a limit:

y
−1

2 +λ(h) if λ(h) �= 0 resp. y
−1

2
1 − yex+2πiλ(g)

1 − ex+2πiλ(g) . (62)

For an action corresponding to the weighted homogeneous polynomials with weights wi and 
degree D, the equivariant Chern class of action of C∗ is twi

D . This implies the proposition. □ 

6.5. Hybrid models

Here we shall consider types of phases which are neither σ-models or LG, called hybrid mod-
els (see [13, 56]).

6.5.1. Complete intersection. Sigma models corresponding to the complete Calabi–Yau 
intersections have hybrid counterparts rather than LG phases appearing in the case of hyper-
surfaces. See [13, 58] for an alternative treatment of the complete intersections via the hybrid 
models.

Definition 6.11 (Phases of the complete intersection). Consider the action of

λ( p1, ..., pr, z1, ..., zn) = (λ−q1 p1, ...,λ−qk pr,λz1, ....,λzn). (63)

One of the GIT quotients is the total space of the bundle ⊕OPn−1(−qi) (corre sponding 
to the linearization in one of the cones in Char(C∗)×Q) having as a semistable locus 
Cr( p1, ..., pr)× (Cn(z1, ...., zn) \ 0)). For linearizations in the second cone, the semistable 
locus is (Cr \ 0)× Cn. The GIT quotient of the total space of the direct sum of the n line 
bundles over the weighted projective space OP(q1,....,qr)(−1)⊕n/µD, where D = gcd(q1, .., qr) 
and µD is the group of roots of unity of degree D acting diagonally on the fibers of this direct 
sum. The contribution to the equivariant elliptic genus of the component of the fixed point set 
in the first case is given by

[
xθ( x

2π
√
−1

− z, τ)

θ( x
2π

√
−1

, τ)
]n ·

∏r

i=1

(xθ( −qix
2π

√
−1

+ t − z, τ)

θ( −qix
2π

√
−1+t

, τ))n
[Pn−1] (64)

where t is the generator of the equivariant cohomolgy H∗
C∗( p) of a point. For t  =  z one obtains 

the elliptic genus of the smooth complete intersection of hypersurfaces of degree q1, ..., qr in 
Pn−1.

In the second case, one has a hybrid model (see [56]). The GIT quotient ((Cr \ 0)× Cn)/C∗ 
is a fiber space with the orbifold Cn/µD  as a fiber, and its base being the weighted projective space 
with the orbifold structure given by viewing Pr−1(q1, ...., qr) as a quotient of Pr−1 by the action 
of the abelian group Γ = ⊕iµqi. The uniformization is given by taking the quotient of the total 
space [O⊕n

Pr−1(−1)] of the split vector bundle on Pr−1 by the action of Γ, such that the projection 
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on Pn−1 is compatible with Pr−1 → Pr−1/Γ = P(q1, ..., qr). The fixed point set of the action 
of C∗ on the GIT-quotient induced by action t( p1, ..., pr, z1, ..., zn) → (tp1, .., tpr, z1, ..., zn) is 
Pr−1(q1, .., qr), and for the induced C∗-action on [O⊕n

Pr−1(−1)] it is the zero section of this bun-
dle. Hence for each pair (g, h) of elements of Γ, the contribution of the C∗-fixed point to the 

summand of the orbifold elliptic genus ELLC∗

Pr−1([O⊕n
Pr−1(−1)],Γ) corresponding to (g, h) will 

have two factors. One comes from a restriction of the tangent bundle

T[O⊕n
Pr−1 (−1)]|Pr−1g,h (65)

to the subspace of Pr−1 fixed by both g, h. The latter coincides with TPr−1 |Pr−1g,h. This contrib-
ution is the summand ELLorb(Pr−1,Γ)g,h of the elliptic class

ELLorb(Pr−1,Γ) =
1
|Γ|

∑
g,h

ELLorb(Pr−1,Γ)g,h

corresponding to the pair g, h since Pr−1 is the fixed point set of the C∗-action. The quotient 

T[O⊕n
Pr−1 (−1)]|Pr−1g,h/TPr−1 |Pr−1g,h is just OPr−1(−1)n|Pr−1g,h. The total space of this bundle acted 

upon by the group  <g, h  >  is considered as the automorphism group of [OPr−1(−1)⊕n]. It also 
supports the C∗-action by dilation. The corresponding equivariant contribution of this part of 

T[O⊕n
Pr−1 (−1)]|Pr−1 is

(
θ( x

2πi +
u
D − z + λ(g)− τλ(h))

θ( x
2πi +

u
D + λ(g)− τλ(h))

e2πiλ(h)z)n

where λ is the character of  〈g, h  〉  acting on this eigenbundle (term u
D reflects that the contrib-

ution is written in terms of the character of C∗/µD acting effectively on the fibers). The result-
ing elliptic genus of the hybrid model can described as

1
|Γ|

∑
g,h

ELLorb(Pr−1,Γ))g,h · (
θ( x

2πi + ( 1
D − 1)z + λ(g)− λ(h)τ)

θ( x
2πi +

z
D + λ(g)− λ(h)τ)

e2πiλ(h)z)n[Pr−1]g,h.

 

(66)

Note that this expression in the case r  =  1 becomes the elliptic genus of the LG-model since 
x  =  0, Γ = µD and for g = e2πi a

D , h = e2πi b
D one has λ(g) = a

D ,λ(g) = b
D.

6.5.2. Hypersurfaces in the products of projective spaces. This material is discussed in [56], 
section 5.5. Consider the action of C∗ × C∗ on C× Cn × Cm given by

(λ,µ)( p, x1, ..., xn, y1, ..., ym) = (λ−nµ−mp,λx1, ...,λxn,µy1, ...,µym). (67)

There are three cones in Char((C∗)2)⊗Q corresponding to linearizations with a constant 
GIT with semistable loci respectively:

{C× Cn × Cm}ss =



C× (Cn \ 0)× (Cm \ 0), Calabi − Yau phase
C∗ × (Cn \ 0)× (Cm), hybrid phase
C∗ × (Cn)× (Cm \ 0), hybrid phase

 (68)

with the GIT quotients being respectively:


[ p∗

1OPn−1(−n)⊗ p∗2OPm−1(−m)],
[⊕OPn−1(−1)m]/µm,
[⊕OPm−1(−1)n]/µn.

 (69)
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The respective elliptic genera are:




[
xθ( x

2π
√

−1
−z,τ)

θ( x
2π

√
−1

,τ) ]n[
yθ( x

2π
√

−1
−z,τ)

θ( y
2π

√
−1

,τ) ]n[
θ( nx+my

2π
√

−1
,τ)

θ( nx+my
2π

√
−1

−z,τ)
][Pn−1 × Pm−1]

1
n

∑
0�a,b<n(

θ(−m x
2πi +( 1

n −1)z+ a−bτ
n ,τ)

θ(−m x
2πi +

1
n z+ a−bτ

n ,τ)
e

2πibz
n )n(

xθ( x
2πi −z)

θ( x
2πi )

)m[P m−1]

1
m

∑
0�a,b<m(

θ(− ny
2πi +( 1

m −1)z+ a−bτ
m ,τ)

θ(− ny
2πi +

1
m z+ a−bτ

m ,τ)
e

2πibz
m )m(

xθ( y
2πi −z)

θ( y
2πi )

)n[P n−1].

 (70)

The expression in the upper row represents the elliptic genus of the Calabi–Yau hypersurface 
of bidegree (n, m) in Pn−1 × Pm−1.
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Appendix A. Theta functions

The Jacobi theta function θ(z, τ), z ∈ C, τ ∈ H  is an entire function on C×H, where H is the 
upper half plane18 defined as the product:

θ(z, τ) = q
1
8 (2sinπz)

l=∞∏
l=1

(1 − ql)

l=∞∏
l=1

(1 − qle2πiz)(1 − qle−2πiz) (A.1)

where q = e2πiτ .
Its transformation law is as follows:

θ(
z
τ

,−1
τ
) = −i

√
τ

i
e

πiz2
τ θ(z, τ) (A.2)

θ(z + 1, τ) = −θ(z, τ), θ(z + τ , τ) = −e−2πiz−πiτθ(z, τ).

The derivative θ′(0, τ) appears in expansion θ(z, τ) = θ′(0, τ)z + 1
2θ

′′(0, τ)z2 + .... and 
satisfies:

θ′(0, τ) = η3(τ), where η(τ) = q
1
24

∏
(1 − qn). (A.3)

(Dedekind’s) η(τ)-function transforms as follows:

η(−1
τ
) = (

τ

i
)

1
2 η(τ). (A.4)

It follows that

θ( z
τ ,− 1

τ )

θ′(0,− 1
τ )

=
e

πiz2
τ

τ

θ(z, τ)
θ′(0, τ)

. (A.5)

Let

18 θ1(z, τ) or θ1,1(z, τ) are other common notations.
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Υ(x, τ) = (1 − e−x)

∞∏
n=1

(1 − qnex)(1 − qne−x)

(1 − qn)2 (A.6)

and

Φ(x, τ) = e
x
2 Υ(x, τ) = (e

x
2 − e−

x
2 )

∞∏
n=1

(1 − qnex)(1 − qne−x)

(1 − qn)2

(see [29] p 170 and [7] p 456)19. Hence

Φ(x, τ) = 2sinh(
x
2
)

∞∏
n=1

(1 − qnex)(1 − qne−x)

(1 − qn)2

(see [29] p 117), i.e.

Φ(x, τ) =
iθ( x

2πi , τ)
η3(τ)

(see [7] p 461).
The Weierstrass σ-function is defined by

σ(z, τ) = z
∏

ω �=0,ω∈Z+Zτ
(1 − z

ω
)e

z
ω+ 1

2 (
z
ω )2

 (A.7)

(see [12] p 52), which can be used to describe Φ(z, τ), where z = x
2π

√
−1  (see [29] p 145, 

corollary 5.3)20.

Φ(z, τ) = exp(4π2G2(τ)z2)σ(z, τ) = exp(−e2(τ)

2
z2)σ(z, τ). (A.8)

Here the quasi-modular forms G2(τ) and e2(τ) are given by

G2(τ) = − 1
24

+
∞∑

n=1

(
∑
d|n

d)qn = − 1
8π2 e2(τ) where e2(τ) =

∑
n,(m,n) �=(0,0)

∑
m

1
(m + nτ)2 .

 (A.9)
We also consider the following product expansion (see [53] chapter 4 section 3):

φ(z, τ) = x
∏′

e
(1 − z

w
) (A.10)

(related to (A.7); the product is taken over the elements w of the lattice W = {1, τ}, the sub-
script e designates the Eisenstein ordering of factors and ′ indicates omission of (0, 0) ∈ W . 
φ(z, τ) admits the following product formula in q (see (15) ibid)

φ(z, τ) =
1

2π
√
−1

(eπ
√
−1z − e−π

√
−1z)

∏
n�1(1 − qne2π

√
−1z)(1 − qne−2π

√
−1z)∏

n�1(1 − qn)2

 

(A.11)=
1

2π
√
−1

Φ(x, τ) =
1

2π
θ(z, τ)
η3(τ).

19 In [7], Hirzebruch’s Υ(z, τ)-function is denoted as Φ(z, τ); the notation Φ(z, τ) is the one used in the appendix to 
the [29] corollary 5.3 p 145.
20 I.e. in terms of x = 2π

√
−1z, for which the lattice is 2π

√
−1(Z+ Zτ), one has Φ(x, τ) = σ(x, τ)exp(−G2(τ)x2). 

[28, 29] use this notation while we selected traditional notations (in particular consistent with [53]).
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Appendix B. Quasi-Jacobi forms

Recall the following:

Definition B.1 (See [23, 39]). The meromorphic Jacobi form of index t ∈ 1
2Z and weight 

k for a finite index subgroup of the Jacobi group ΓJ
1 = SL2(Z) ∝ Z2 is defined as mero-

morphic in the elliptic variable z function χ on H× C having the expansion 
∑

cn,rqnζr  in 
q = exp(2π

√
−1τ) and satisfying the following functional equations:

χ(
aτ + b
cτ + d

,
z

cτ + d
) = (cτ + d)ke

2πitcz2
cτ+d χ(τ , z) (B.1)

χ(τ , z + λτ + µ) = (−1)2t(λ+µ)e−2πit(λ2τ+2λz)χ(τ , z) (B.2)

for all elements [

(
a b
c d

)
, 0] and [

(
1 0
0 1

)
, (a, b)] in Γ. A meromorphic Jacobi form is 

called a weak Jacobi form if

 (a) it is holomorphic in H× C and
 (b) it has a Fourier expansion 

∑
cn,rqnζr  in q = exp(2π

√
−1τ) in which n � 0.

The functional equation (B.2) implies that the Fourier coefficients cn,r depend on r mod 2m 
and ∆ = 4nm − r2 (the discriminant). A weak Jacobi form is called the Jacobi form (respec-
tively the cusp form) if the coefficients cn,r with ∆ < 0 (respectively ∆ � 0) are vanishing21.

Remark B.2. Presentation (2) provides the Fourier expansion of the elliptic genus hav-
ing non-negative powers of q (i.e. it yields a weak Jacobi form) while the powers of y can be 
negative.

The algebra of the Jacobi forms is the bi-graded algebra J = ⊕Jt,k. and the algebra of the 
Jacobi forms of index zero is the sub-algebra J0 = ⊕kJ0,k ⊂ J.

We shall need below the following real analytic functions:

λ(z, τ) =
z − z̄
τ − τ̄

, µ(τ) =
1

τ − τ̄
. (B.3)

Their transformation properties are as follows:

λ(
z

cτ + d
,

aτ + b
cτ + d

) = (cτ + d)λ(z, τ)− 2icz (B.4)

λ(z + mτ + n, τ) = λ(z, τ) + m

µ(
aτ + b
cτ + d

) = (cτ + d)2µ(τ)− 2ic(cτ + d). (B.5)

Definition B.3. An almost meromorphic Jacobi form of weight k, index zero and depth 
(s, t) is a (real) meromorphic function in C{q

1
l , z}[z−1,λ,µ], with λ,µ given by (B.4), i.e. the 

polynomial in λ,µ with complex meromorphic functions as coefficients which

21 Mentioning that this condition on the Fourier expansion is applicable in the holomorphic case only, and the 
restriction n � 0 was inadvertently omitted in [39].
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 (a) satisfies the functional equations in the definition B.1 of the Jacobi forms of weight k and 
index zero, and

 (b) which has a degree of at most s in λ and at most t in μ.

The quasi-Jacobi form of weight k, index zero and depth (s, t) is the term of bi-degree (0, 0) 
in λ,µ of an almost meromorphic Jacobi form of weight k and depth (s, t). The algebra of the 
quasi-Jacobi forms is bi-graded filtered algebra generated by the filtered algebra of the quasi-
Jacobi forms and the algebra of the Jacobi forms (which have a depth (0, 0) and have trivial 
filtration).

Example B.4. 1. Two-variable Eisenstein series (see [53, 39]). Consider the following 
functions meromorphic in z:

En(z, τ) =
∑

a,b∈Z2

(
1

z + aτ + b
)n n ∈ Z, n � 1. (B.6)

These series are absolutely convergent for n � 3 and yield meromorphic Jacobi forms of 
weight n and index 0. For n  =  1, 2 one obtains a meromorphic function using an Eisenstein 
summation (see [53]) which are quasi-Jacobi forms of index 0, weight n  =  1, 2 and depth 
(1, 0) for n  =  1 and (0, 1) for n  =  2 (see [39]). E2 − e2 is a Jacobi form (here e2(τ) is a quasi-
modular form, which is the one-variable Eisenstein series). The products

Ên(z, τ) = En(z, τ)(
θ(z, τ)
θ′(0, τ)

)n (n �= 2) Ê2 = (E2(z, τ)− e2(τ))(
θ(z, τ)
θ′(0, τ)

)2

 (B.7)

are holomorphic quasi-Jacobi forms (Jacobi forms for n � 2.

The structure of the algebra of quasi-Jacobi forms generated by the forms (B.7) is as 
follows:

Theorem B.5. The algebra QJac0,* (or simply QJac) of the quasi-Jacobi forms of weight 
zero and index d

2 , d ∈ Z�1 is a polynomial algebra with the generators Ên, n = 1, 2, 3, 4. The 
algebra Jac0,* of the Jacobi forms of weight zero and index d2 (or Jac) is a polynomial algebra 
in three generators Ê2, Ê3, Ê4. The algebra QJac is isomorphic to the algebra of the complex 
cobordisms ΩU modulo, the ideal I generated by X1 − X2 where X1, X2 are K-equivalent. The 
algebra Jac is isomorphic to the algebra ΩSU  of the complex cobordisms of the manifolds with 
a trivial first Chern class modulo, which is the ideal I ∩ ΩSU.

Remark B.6. 

 1. Different generators of the algebra Jac are described in [26]. 
 2. The term ‘quasi-Jacobi forms’ used in [45] in a slightly more narrow sense than in [39] 

and above, where the author was apparently unaware of [39]. The quasi-Jacobi forms 
considered in [45] belong to the algebra generated by the function:

θ(z, τ)
η3(τ)

,
∂log( θ(z,τ)

η3(τ)
)

∂z
, e2(τ), e4(τ),℘(z, τ), y

[d℘(z, τ)
dy

 (B.8)
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(y = exp(2π
√
−1z)) are in the algebra of the meromorphic quasi-Jacobi forms as defined in 

(B.3) (see also [39]). Indeed, 
∂(

θ(z,τ)

η3(τ)
)

∂z = E1(z, τ) (which follows from appendix A; see also 

[53] chapter IV, section  3 (15)) and also ℘(z, τ) = E2 − e2, y d℘(z,τ)
dy = −2E3(z, τ) and the 

modular functions are clearly part of the algebra described in definition B.3.
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