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Abstract. We consider the structure of reducible curves on a projective sim-

ply connected surface with irreducible components belonging to a selected
subset the effective cone of the surface and which fundamental groups of the

complements admit free quotients having rank greater than one. Main result

is the following trichotomy depending on the ranks of free (essential) quotients
of the fundamental groups with components in the subset of effective cone. A:

There can be an infinite number of isotopy classes of curves with classes of

components in a selected subset of effective cone and rank of free quotients
being below a threshold depending on the subset. B: There are only finitely

many isotopy classes of curves with components in selected subset of effective

cone admitting surjection onto a free group of rank greater the threshold. C:
Moreover, irreducible components of curves admitting an essential surjection

onto a free group of rank sufficiently larger than the threshold belong to a
pencil of curves having class in the selected subset of the effective cone. Some

explicit information on the thresholds for different cases of the trichotomy are

discussed.

1. Preface

The goal of this note is to describe a result on the structure of the curves D ⊂ V
on a simply connected projective surface V such that π1(V \D) admits a surjection
on a free group of a large rank. We consider the curves D as elements of collections
C(∆), parametrized by subsets ∆ of the effective cone of V in the sense that the
irreducible components of D are required to have the homology classes in ∆. We
make only a technical assumption on singularities of D at intersections of different
components, but not on singularities of irreducible components outside of these
intersections and consider surjections π1(V \ D) → Fr which are essential in the
sense that the images in Fr of the elements of π1(V \ D) associated with each
irreducible component of D (the meridians) are conjugate to either the chosen
generators g1, ..., gr of Fr or to their product g1 · ... · gr. In these circumstances we
show that there is a constant M(∆) such that existence of surjection π1(V \D)→ Fr
with r > M(∆) implies that all components of D belong to a pencil of curves with
fundamental class being a class in ∆. In other words, existence of a surjection of
the fundamental group of a quasi-projective surface with compactification V onto
Fr with sufficiently large r with components of the divisor at infinity D ⊂ V being
in ∆ implies that the divisor at infinity formed by curves in a pencil of divisors in
∆. We expect that a more careful analysis can show that the technical assumptions
we made can be eliminated or substantially weaken.

The first named author is partially supported by MTM2016-76868-C2-2-P and Grupo Álgebra y
Geometŕıa of Gobierno de Aragón/Fondo Social Europeo. The second named author was partially
supported by a grant from Simons Foundation.
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The main step in the argument is a statement about pencils of curves on V admit-
ting sufficiently many fibers having as irreducible components only the curves from
the chosen subset ∆. More precisely, we consider pencils L ⊂ P(H0(V,OV (D))) (i.e.
dimL = 1) admitting r+ 1 distinct divisors d1, ...dr+1, di ∈ L such that irreducible
components of di have classes in ∆. We show that existence of such a pencil implies
that r ≤M(∆), unless all elements of the pencil L are already in ∆ i.e. D is formed
by curves belonging to a pencil of curves with generic member in a class from ∆.
For any r > 1 and a curve D =

⋃r+1
i=1 di with r + 1 components belonging to a

pencil L, the rational dominant map onto P1 corresponding to L induces surjection
π1(V \D) → Fr and our result shows that given a class ∆ of allowed components
of D this is the only way to construct surjections of the fundamental groups of
the complements onto Fr with r > M(∆). Explicit information about M(∆) for
V = P2 and some other surfaces is provided in section (4).

We also show that π1(V \D) has no surjections onto Fr, r > 10 for all curves D

having irreducible components in ∆ with only finitely many exceptions depending
on ∆, unless D is a union of curves belonging to a pencil with generic member
in a class from ∆. The number of exceptions in general is growing together with
∆. For some V and ∆ ∈ NS(V ), absence of surjections onto Fr with finitely many
exceptions occurs already for r ≤ 10 (see section 5). However, for general V ,
r ≤ 10 and certain ∆ one expects infinitely many curves D with components in ∆
admitting surjections onto Fr and not being a union of members of a pencil with
class of generic member in ∆. It is an interesting problem to find the threshold
R(V,∆) explicitly for specific (V,∆) with initial steps made in section 4

A precursor of such results is the following statement about arrangements of
lines in P2 which was first shown in [10] (and later improved in [6] and [14]). If an
arrangement A of lines in P2 is such that there exist a pencil of curves of degree
d ≥ 1 admitting 5 or more elements which are unions of lines and such that the
arrangement A is the union of the lines in these elements of the pencil then d = 1
and therefore A is a central arrangement i.e. is the union of lines all containing
a fixed point. (cf. section 4 for discussion of this and other special cases). This
implies that π1(P2 \ A) has no essential surjections onto Fr, r ≥ 4 except for the
central arrangements. On the other hand there are infinitely many non-central
arrangements of lines with π1(P2 \A) having essential surjections onto F2.

The conditions on the sets ∆ we use are as follows. Let Eff(V ) ⊂ NS(V ) denote
the effective cone of V (cf. [9]). We call a subset ∆ ⊂ Eff(V ) saturated if D ∈ ∆
and divisors C and D−C are both in Eff(V ) implies C and D−C are both ∆. This
condition assures that if an “allowed” (i.e. from ∆) class in NS(V ) is represented by
a reducible curve its irreducible components are allowed as well. Other conditions
of being saturated may lead to different implications on the ranks of free quotients.
We work with finite saturated sets. Note that a minimal saturated subset containing
a finite set is finite (cf. Lemma 3.2).

Below we consider curves D on smooth surfaces up to the following equivalence
relation: two curves D′,D′′ are equivalent if there is equi-singular deformation of D′

into D′′. Such deformations do not alter the fundamental groups of the complements
and all the finiteness statements are made for such equivalence classes.

We also say that a curve D is composed of a pencil in a linear systemH0(V,O(D))
if there is a partition of irreducible components of D into groups such that union
of irreducible components in each group is one of the curves in the pencil.
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Our main result now can be stated as follows.

Theorem 1.1. Let V be a smooth simply connected projective surface. Let ∆ ⊂
NS(V ) be a saturated subset of effective cone i.e. having the property that if d1 ∈
∆, d2 ∈ Eff(V ) are such that d1 − d2 is effective then d2, d1 − d2 ∈ ∆. Let D be
a curve such that its irreducible components have classes in ∆. Assume moreover
that all singular points belonging to more than one component are ordinary multiple
points i.e. locally are transversal intersection of smooth germs. Then there is
a constant M(V,∆) such that if π1(V \ D) admits an essential surjection onto
Fr, r > M(V,∆) (i.e. a surjection taking each meridian of a component of D to
an element in a conjugacy class of either one r generators of Fr or their product),
then irreducible components of D form elements of a pencil such that the class of
its generic element in NS(V ) is a class δ ∈ ∆. Moreover, if r > 10 then there is
only finite number N(V,∆) curves D with components from ∆ and not composed
of a pencil in H0(V,O(δ)), δ ∈ ∆ but admitting surjection π1(V \D)→ Fr.

The implication of this result on the structure of quasi-projective groups for
curves with given classes of components is as follows:

Corollary 1.2. Given a saturated set ∆ of classes in NS(V ) there is trichotomy
depending on the ranks of free quotients of fundamental groups π1(V \D) where D

has all its irreducible components belonging to ∆.
A. There are infinitely many (isotopy classes of) curves admitting surjections

π1(V \D)→ Fr with r ≤ 10.
B.There are finitely many isotopy classes of curves D admitting surjections

π1(V \D)→ Fr, 10 < r < M(V,∆).
C. If there is surjection π1(V \D)→ Fr, r > M(∆) then D is composed of curves

of a pencil from one of the classes in ∆ and π1(V \ D) splits as an amalgamated
product H ∗π1(Σ)G where Σ is a Riemann surface which is a smooth member of the
pencil, H is coming from a finite set of groups associated with the linear system
H0(V,O(δ)), δ ∈ ∆ and G is an extension:

(1) 0→ π1(Σ)→ G→ Fr → 0

The content of the paper is as follows. In section 3, we give the definitions
of the classes of curves for which we describe the distributions of the types of free
quotients, define the thresholds M(V,∆), N(V,∆) and K(V,∆) and prove the main
results of the paper. In particular we obtain the bound on the number of reducible
fibers of the pencils, with irreducible components belonging to a saturated set ∆.
In section 4 we give details on the free quotients for the curves on P2 and in section
5 we deal with examples on more general surfaces. More detailed estimates for
introduced here thresholds will be given elsewhere.

Finally, the first named author wants to thank the Fulbright Program and the
Spanish Ministry of Ciencia, Innovación y Universidades for the grant to collaborate
at UIC with the second named author.

2. Summary of Some Notations

∆ is a saturated subset of NS(V ) where V is a smooth projective simply-
connected surface.

M(V,∆) ∈ Z+ (or simply M(∆); the same with similar notations below) is the
threshold for the ranks of free groups Fr such that beyond it existence of surjection
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onto free group of π1(V \D), where D is a curve with classes of components in ∆,
implies that all irreducible components of D belong to a pencil in complete linear
system of a curve with class in ∆ (cf. theorem 1.1).

N(V, r,∆) ∈ Z+ is the number of curves D with irreducible components having
classes in a saturated set ∆, which admit a surjection onto a free group Fr, r > 10
(cf. theorem 1.1).

K(V,∆) is a positive integer such that for pencils in H0(V,O(D)) where D is
such that for any δ ∈ ∆ one has D−K(∆)δ ∈ Eff(V ), there are at most 12 reducible
fibers with all irreducible components on ∆ (cf. Corollary 3.4).

3. Proof of the main theorem

Definition 3.1. Subset ∆ ⊂ Eff(V ) is called saturated if d ∈ ∆ and δ ∈ Eff(V ) is
such that d− δ ∈ Eff(V ) implies that δ ∈ ∆. A saturated subset of NS(V ) spanned
by d1, .., dk, di ∈ Eff(V ) is the intersection of all saturated subsets of Eff(V ) each
containing all these classes. We denote it by ∆(d1, .., dr).

Lemma 3.2. Saturated subset spanned by a finite subset of Eff(V ) is finite.

Proof. Let H be an ample divisor. Then for any δ ∈ ∆(d), d ∈ Eff(V ) one has
(δ,H) ≤ (d,H). Therefore ∆(d) is a discrete subset of a compact set {S ∈ ¯Eff(V )⊗
R|(S,H) ≤ (d,H)} (since, as follows from the Hodge index theorem, Eff(V ) ⊗ R
is a cone over a compact set). Hence it is finite. Alternatively, the claim can be
derived from [3] Theorem 4.10b. Finally, the set ∆(d1, .., dr) =

⋃
∆(di) and hence

is finite as well. �

The following will be used in an estimate of the number of fibers having classes
of components in a fixed saturated subset ∆ only, which can appear in pencils on
a surface V .

Proposition 3.3. Let ∆ be a saturated subset of Eff(V ) and s = Card∆. Let
F be a curve with irreducible components fj , j = 1, ...., J which moves in a pencil
with all its reducible fibers being reduced. Let D =

∑s
i=1midi be the class of F

in the free abelian group generated by di ∈ ∆ ⊂ NS(V ). We also use the same
notations for corresponding classes in NS(V ). For α > 5

3 and all but finitely many
(m1, ....,ms) ∈ Zs≥0 one has

(2)
e(V )

3 +D2 + 2
3KD

D2 +
∑J
j=1 e(fj) +KD

< α

(e(fj) denotes topological euler characteristic of component fj).

Proof. Note that one has

(3) e(fj) = −Kfj − f2
j +

∑
P∈Sing(fj)

(2δ(fj , P )− bfj , P ) + 1)

where P runs through the set Sing(fj) of singular points of the curve fj in the class
fj ∈ NS(V ) which we denote by the same letter as the curve, and δ(fj , P ), b(fj , P )
are respectively the δ invariant and the number of branches of fj at P (cf. [13]).
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Since each summand in summation in (3) is non-negative, the denominator in (2)
satisfies:

D2 +

J∑
j=1

e(fj) +KD ≥ D2 −
∑

miKdi −mid
2
i +KD = D2 −

∑
mid

2
i

Since we assume that the pencil consists of only reduced members, in the decom-
position D =

∑
i,d2i≥0midi +

∑
i,d2i<0midi, for coefficients of di, d

2
i < 0 one has

mi = 1. Indeed, two irreducible curves with negative self-intersection which ap-
pears in reducible member F of the pencil more than once must coincide, since they
cannot be deformations on each other. Therefore D2−

∑
mid

2
i =

∑
(m2

i −mi)d
2
i +

2
∑
mimjdidj > 0. and hence the inequality (2) would follow from

(4) (α− 1)D2 − α
∑

mid
2
i −

2

3
KD >

e(V )

3
.

To show (4), let D =
∑
midi, di ∈ ∆ be a divisor which is a reducible member

of a pencil (i.e. dimH0(V,O(D)) ≥ 2). By Riemann-Roch

−DK = 2(dimH0(O(D))− dimH1(O(D)) + dimH2(O(D))− 2χ(V )−D2.

Asymptotics of the cohomology of the nef divisors (cf. the proof of Theorem 1.4.40
[9] and [8]) implies that for all but finitely many (m1, ....,ms), i.e. those in the

compact subset of Eff(V ) ⊂ NS(V )⊗R where dimH1(O(D)) exceeds the dimension
of H0(O(D)), one has χ(O(D)) ≥ 0. For those (m1, ....,ms),

(5) −DK ≥ −2χ(V )−D2.

Hence for all but finitely many (m1, ...,ms) ∈ Zs≥ we have the following inequality

for the left hand side of (4):

(6) (α− 1)D2 − α
∑

mid
2
i −

2

3
KD ≥ (α− 5

3
)D2 − α

∑
mid

2
i −

4

3
χ(V )

We claim that since α > 5
3 , for all but finitely many mi one has

(7) (α− 5

3
)D2 − α

∑
mid

2
i >

e(V )

3
+

4

3
χ(V )

Indeed, as was already mentioned, in the decomposition D =
∑
i,d2i≥0midi +∑

i,d2i<0midi, since we assume that the pencil consists of only reduced members

and hence for di, d
2
i < 0 one has mi = 1, and for left hand side of (7) one has

(α− 5

3
)D2 − α

∑
mid

2
i =

α
∑
i,d2i≥0

(m2
i −mi)d

2
i −

5

3

∑
i,d2i<0

m2
i d

2
i + 2(α− 5

3
)
∑
i<j

mimjdidj ≥
e(V )

3
+

4

3
χ(V ) > 0

This is satisfied for all (m1, , , .ms) ∈ Zs≥ but a finite set since exceptions are given

by solutions of the opposite inequality which belong to a compact subset of (R≥)s.
Combined together, (3) and (7) show the Proposition.

�

Proof. (of theorem 1.1) Let D be a curve as in theorem 1.1. Assume that D is not
composed of curves in a pencil in a linear system H0(V,O(δ)), δ ∈ ∆. Note that
without this assumption, for a pencil of curves in a class δ ∈ ∆, one can construct
a curve D, which is a union of an arbitrary large number N of members of this
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pencil and for this curve the fundamental a group of the complement has essential
surjection onto FN−1 (cf. proof of Corollary 1.2 C).

If there is a surjection π1(V \ D) → Fr, r ≥ 2 it follows from [1] that there
is a surjective holomorphic map with connected fibers V \ D → C \ R, where C
is a smooth curve and R ⊂ C is a finite set containing r + 1 points such that
CardR ≥ r + 1. Since we assume that π1(V \D) → Fr is essential it follows that
CardR = r + 1. The generic curve in this pencil does not belong to ∆ since D is
not composed of a pencil as above and in particular each fiber over a point in R is
reducible since its class is the class of a generic member in the pencil.

This map extends to a map having indeterminacy points at a subset of V of
codimension two. More specifically, the map is well defined outside of a finite
subset B ⊂ V which is a subset of the set of intersections of components of D i.e.
subset of the union of d′∩d′′ where d′, d′′ run through the set of pairs of irreducible
components of D. Moreover, since we assume that intersections of components of
D are transversal, this map extends to a holomorphic map Φ : Ṽ → P1 of the blow
up of V at the indeterminacy points on V . One has π1(V ) = π1(V \ B) → π1(C)

and since we assume π1(V ) = 0 this shows that C = P1. Φ−1(R) ⊂ Ṽ can be
identified with D due to our assumption on intersection of components on V and
surjection of the fundamental group being essential. Outside of a finite subset
B′ ⊂ P1 the smooth fibers of holomorphic map Φ are diffeomorphic and one has
inclusion R ⊆ B′.

Assumption of transversality of components of D also implies that CardB =
(Φ−1(b) ·Φ−1(b)). For each b′ ∈ B′ and any p ∈ P1 \B′, let erel(b

′) = e(Φ−1(b′))−
e(Φ−1(p)) be the relative euler characteristic of the fiber at b′. Since the assumption
of the theorem on meridians implies that the multiplicities of all components of the
pencil Φ are equal to 1, it follows from the additivity of the euler characteristic (cf.
also [7]) that

(8) e(V ) + CardB = 2e(Φ−1(p)) +
∑
b′∈B′

erel(b
′) = 2e(Φ−1(p)) +

∑
b′∈B′

µ(b′)

where p ∈ P1 \B′ and µ(b′) is the sum of the Milnor numbers of the singularities in
the fiber over b′ of Φ. It follows by the adjunction applied on V , that for p ∈ P1 \B′
one has e(Φ−1(p)) = −(KD + D2) where D ⊂ V is the union of components of
D which Φ|V \B takes to a point b ∈ R. Note that for any b′ ∈ B′ \ R one has

erel(b
′) > 0 and CardB = D2. Therefore

(9) e(V ) +D2 ≥ −2(KD +D2) +
∑
b′∈R

erel(b
′)

For any b′ ∈ R, such that the class of fiber Φ−1(b′) is D =
∑
midi, one has

(10) erel(b
′) ≥

∑
−midi(K+di)−

∑ mi(mi − 1)

2
d2
i −
∑
i<j

mimjdidj+D(K+D)

= −
∑

miKdi+
∑

d2
i (−mi−

mi(mi − 1)

2
+m2

i )+
∑
i<j

didj(2mimj−mimj)+
∑

miKdi

=
∑

d2
i

mi(mi − 1)

2
+
∑

didjmimj =
D2 −

∑
mi(d

2
i )

2
=
D2 +KD +

∑
mie(di)

2
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Selecting b′ ∈ R for which
D2−

∑
mi(d

2
i )

2 is the smallest one obtains

(11) e(V ) +D2 ≥ −2(KD +D2) + r
D2 +KD +

∑
mie(di)

2

Hence the last inequality and the Proposition (3.3) imply that

(12) r ≤ 2
e(V ) + 3D2 + 2KD

D2 +KD +
∑
mie(di)

< 6α

For α = 5
3 we obtain that, with only finitely many exceptions Ξ = {D|D =∑

miDi}, a pencil in a linear system D will have at most 10 reducible fibers with
all components in ∆. Since each linear system may have only a finitely many iso-
topy classes of pencils (it is bounded by the number of strata in a stratification
of the set of pair (l,Disc) where l is a line and Disc is the discriminant in the
complete linear system P(H0(O(D))), this may create only a finite set of pencils
in H0(O(D)) with D ∈ Ξ having as irreducible components the curves in ∆. This
shows the theorem. �

The inequalities considered in the proof above imply the following.

Corollary 3.4. Let ∆ ⊂ NS(V ) denote a saturated subset. Assume that either ∆
contains a class d such that d2 > 0 or that one has d2 < 0,Kd < 0 for all classes
in ∆. Then there exists a constant K(V,∆) ∈ Z+ such that for a pencil of curves
having class D ∈ NS(V ) satisfying inequality D > d for all d ∈ K(V,∆)∆ where

K(V,∆)∆ = {d ∈ NS(V )|d =
∑

midi, di ∈ ∆,mi > K(V,∆)}

the number r(V ) of reducible fibers with components in ∆ is bounded by 12.

Remark 3.5. Recall that we are considering only the pencils subject to condi-
tion on meridians stated in the theorem 1.1. It excludes the pencils with all
components of reduced fibers being in ∆ having only classes d with d2 < 0 in
D =

∑
midi,mi > 1. Proposition 5.12 below shows that there are pencils having

arbitrary large number of reducible components with negative self-intersections and
positive intersection with canonical class (albeit on different surfaces)

Proof. Consider the inequality (4) for α = 2 i.e.

(13) D2 − 2
∑

mid
2
i −

2

3
KD >

e(V )

3

We want to show that there is K(∆) such it holds for D =
∑
midi satisfying

mi > K(V,∆) for all i
Let d1 ∈ ∆ be class such that d2

1 > 0. Let K(V,∆) be the maximum of the roots
of polynomials fi(m) or 1 where

f1(m) = m2d2
1 − 2md2

1 −
2

3
mKd1 +

2

3

∑
j,d2j≤0,Kdj>0

Kdj −
e(V )

3

and

fi(m) = m2d2
i − 2md2

i −
2

3
mKdi

for each i > 1 such that d2
i > 0.
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Then for D =
∑
midi,mi ≥ K(V,∆) for each i with d2

i > 0 one has fi(mi) > 0
and hence

D2 − 2
∑

mid
2
i −

2

3
KD − e(V )

3
=

∑
i,d2i>0

m2
i d

2
i + 2

∑
i,j

mimjdidj − 2
∑
i,d2i>0

mid
2
i +

∑
i,d2i<0

(m2 − 2m)d2
i

−2

3

∑
i,d2i>0

miKdi −
2

3

∑
i,d2i<0

miKdi −
e(V )

3
≥

∑
i,d2i>0

m2
i d

2
i − 2

∑
i,d2i>0

mid
2
i −

2

3

∑
i,d2i>0

miKdi −
2

3

∑
j,d2j<0,Kdj>0

Kdj −
e(V )

3
≥

∑
i

fi(mi) > 0

The first inequality used that mi = 1 for curves with d2
i < 0 since multiplicities

of components are equal to 1 and positivity of other dropped terms. Therefore
the inequality (4) is satisfied for α = 2 and hence the inequality (12) with α = 2
implies that a pencil of curves in H0(V,O(D)) has at most 12 reduced fibers with
components having classes only in ∆.

�

Finally we will show the Corollary 1.2.

Proof. (of Corollary 1.2) The implications A and B are an immediate consequence
of the theorem. We will show that the fundamental groups of the complements
to a union of r + 1 members of a pencil have the form described in C. Consider
the map π : V \ D → P1 \ R, CardR = r + 1 corresponding to the pencil and let
R = R

⋃
S where R (resp. S) are the images of singular (resp. smooth) fibers of

π. Let D1 be a disk in P1 containing all critical values of π outside of R and let D2

be a disk in intersecting D1 at one point and containing R. Let H = π1(π−1(D1)).
The fundamental group of π|π−1(D2) is isomorphic to extension (1) since over D2

the map π is a locally trivial fibration and π2(D2 \ R) = 0. Finally V \ D can
be retracted onto a union if preimages of D1 and D2 and van Kampen theorem
gives a presentation as the amalgamated product with Σ = π−1(D1 ∩D2) i.e. the
complement in a generic fiber, i.e. a closed Riemann surface, to the set of base
points of the pencil which is the extension of π to Ṽ . Since the set of isotopy
classes of pencils in one of linear system H0(V,O(δ)) is finite and for a fixed pencil
each subgroup H is determined by subset R of the total set of critical points of S
with reducible preimages, the finiteness claim follows. �

4. Pencils on P2

We will consider concrete examples of estimates of type of fibers pencils on
surfaces for various choices of the types ∆ of components of reducible curves D ⊂ V .
In many cases the bound M(∆) can be made more explicit.
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4.1. General estimates. In the case ∆ = [1] ⊂ Z = Pic(P2) one has M(∆) ≤ 3
(cf. [10],[14],[6]). Indeed, as was shown in these an references, a pencil of curves can
have at most 4 fibers which are unions of lines unless this is a pencil of lines. If A is
an arrangement of lines such that one has essential surjection π1(P2 \A)→ Fr, in
the sense that it takes each meridian to either to conjugate to one of the generators
gi of Fr or to a conjugate of g1, ..., gr then the holomorphic map Φ described in the
proof of the Theorem 1.1 has a union of reducible fibers coinciding with A (i.e. any
line of A belongs to one of the fibers of Φ). If r > 3 then the pencil must be a pencil
of lines and P2 \ A is fibered over P1 with r points removed and fiber isomorphic
to C. Hence π1(P2 \A) = Fr.

There are pencils of curves of arbitrary large degrees d containing arrangements
of lines with 3 fibers which are union of lines (for example the curves Cd given by
equation λ(xd−yd)+µ(yd−zd) = 0 and hence finiteness of the number of pencils of
curves for which a union of reducible fibers is union of lines and admits surjection
π1(P2 \ Cd) → Fr may take place only for r ≥ 3. There is only one known pencil
of curves with 4 fibers which are unions of lines (pencil of cubics with union of
reducible fibers being 12 lines containing 9 inflection points of a smooth cubic). If
no other pencils with 4 fibers being a unions of lines then M(∆) = 3.

Now consider the case ∆k = {[1], ...., [k]} ∈ Pic(P2). Theorem (1.1) yields the
following:

Corollary 4.1. There exists a function k →Mk = M(∆k) ∈ Z+ such that a curve
C having the degree of all components at most k and such that there is surjection
π1(P2 \ C)→ Fr, r > Mk is composed of a pencil of curves of degree k.

Corollary 3.4 shows that the pencils of curves of degree d, have independent of d
or k the number of fibers which are unions of irreducible curves of degree at most
k provided d >> k. Proposition below makes it more explicit. It shows that the
number ρd,k of the reducible fibers with degrees of components at most k (we call
such pencils k-reducible) in a pencils of curves of degree d ≥ 2k is at most 11. In
other words:

Mk ≥ ρd,k, ρd,k ≤ 11 (d ≥ 2k)

Moreover, the constant 10 in the theorem 1.1 can be decreased for P2 to 5.

Proposition 4.2. Assuming d = nk + d0 ≥ 2k (or equivalently n ≥ 2), one has
the following universal bounds

(14) ρd,k ≤



6 if k = 2,

8 if k = 3,

9 if k = 4, 5,

10 if 6 ≤ k ≤ 11,

11 otherwise.

Proof. For the pencil of curves of degree d = nk+d0 one has at least n components
of degree k and one component of degree d0 and hence in notations used in inequality
(12) one has d3 − 3d+

∑
mie(di) ≥ n(3k − k2) + 3d0 − d2

0 = (d− d0)(d+ do − k).
Therefore we obtain from (12):

(15) ρd,k ≤ 2
e(V ) + 3D2 + 2KD

D2 +KD +
∑
mie(di)

≤ 6(d− 1)2

(d− d0)(d+ d0 − k)
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The condition that a constant α is an upper bound of the right hand term in (15)
is equivalent to positivity of the function

(16)
h(k, n, α) = nk

(
(n− 1)k + 2d0

)
α− 6(nk + d0 − 1)2

= (α− 6)k2n2 +
(
12 + α(2d0 − k)

)
kn− 6.

For α = 12 (and n ≥ 2) one has:

h(k, n, α) ≥ 6× 4k2 + (12− 12k)k × 2− 6 > 0

for k ≥ 1. The rest of of inequalities (14) follows by direct verification.
The second part of the Proposition follows from inequality (16) as well.

�

Corollary 4.3. For r > 5 there are only finitely curves, with components of degree
at most k and not composed of a pencil, which may admit surjections π1(P2 \D)→
Fr

Proof. Indeed for α > 6 and fixed k the function h(k, n, α) in (16) takes only finitely
many negative values. �

Corollary 4.4. The number of reducible curves ρd,d−1(P2) in a primitive base-
component-free pencil of degree d is at most 3(d−1) and there exist pencil of curves
of degree d with 3(d− 1) reducible fibers. In particular M(k) ≥ 3(k + 1).

Proof. It is an immediate consequence of the bound

ρd,k ≤
[

3(d− 1)2

erel,k

]
≤
[

6(nk + d0 − 1)2

nk((n− 1)k + 2d0)

]
,

applied to the particular case k = d− 1, that is, n = 1 and d0 = 1. The existence
is a consequence of the example of a pencil due to Ruppert. �

4.1.1. Ruppert’s Example. For the sake of completeness we will briefly discuss the
sharpness of the lineal bound given in Corollary 4.4. Ruppert described in [12] the
existence of a pencil of curves of any degree d with exactly 3(d−1) reducible fibers.
Consider the net N in P2 given by the following curves Cλ of degree d defined by
the equation:

Fλ(x0, x1, x2) = λ0x0(xd−1
1 − xd−1

2 ) + λ1x1(xd−1
2 − xd−1

0 ) + λ2x2(xd−1
0 − xd−1

1 )

for any λ = [λ0 : λ1 : λ2] ∈ P2. One has the following properties:

(1) The curves C[1:0:0], C[0:1:0], and C[0:0:1] are products of d lines xi(x
d−1
j −

xd−1
k ), {i, j, k} = {0, 1, 2}.

(2) The generic member of N is smooth. In order to check this note that

C[1:0:0] ∩ C[0:1:0] ∩ C[0:0:1] =
{P0 = [1 : 0 : 0], P1 = [0 : 1 : 0], P2 = [0 : 0 : 1], Qi,j = [1 : ζi : ζj ]},

where ζd−1 = 1 are the (d− 1)2 + 3 ≤ d2 base points of this net. By direct
calculation of the Jacobian of Fλ, one can check that the base points are
only singular points of Cλ for a finite number of values of λ and hence by
Bertini’s Theorem, the generic member is smooth.
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(3) The curve Cλ is reducible if λ satisfies S(λ) = 0 where S(λ) is the degree
3(d− 1) polynomial

S(λ) = (λd−1
0 − λd−1

1 )(λd−1
1 − λd−1

2 )(λd−1
2 − λd−1

0 ).

In other words, the net N intersects the discriminant variety D in its locus
of reducible curves and the intersection splits as a product of 3(d−1) lines.

(4) A pencil in N is given as P = {Cλ ∈ N | L(λ) = 0}, where L is a linear
form. If L(λ) is in general position with respect to S(λ), then L(λ) defines
a pencil with exactly 3(d− 1) reducible fibers.

(5) Moreover, if Cλ is a generic point of N ∩D, then Cλ is the union of a line
and a smooth curve of degree (d− 1).

4.2. Examples of pencils with a maximal number of 2-reducible curves.
Let

(17) ρk(P2) := max{ρd,k(P2) | d ≥ 2k}.
It follows from [10],[14] that ρ1(P2) = 4 and the arrangement of 12 lines containing
9 inflection points of a smooth cubic provides an example of a pencil with 4 fibers
which are unions of lines. Our purpose in this section will be to study ρ2(P2).

4.2.1. The bound ρd,2. By Corollary 4.4 we know that ρ3,2(P2) = 6 and 15 shows
that ρd,2(P2) ≤ 6 for all d ≥ 4. It is the purpose of this section to make this into
an equality by constructing a pencil of quartics with six 2-reducible curves.

Consider a pencil of conics Λ in general position and three lines L1, L2, L3 such
that there exist three conics C1, C2, C3 ∈ Λ such that Li is tangent to Cj and
Ck with {i, j, k} = {1, 2, 3}. This can be achieved for instance with the pencil
Λ = {α(x2 − z2) + β(y2 − z2)}, the lines

L1 =
√

2x+ i
√

2y +
√

3z, L2 = 2x+ iy +
√

3z, L3 =
√

2x+
√

2y − 3z

and the conics

C1 = x2 + 2y2 − 3z2, C2 = 2x2 + y2 − 3z2, C3 = 2x2 − y2 − z2.

Let κ denote the Kummer cover of order two associated with the abelian Z2 × Z2-
cover ramified along L1, L2, and L3 (i.e. associated with surjection π1(P2\

⋃3
1 Li)→

Z3
2/Z2 sending the meridian of Li to i-th component of Z3

2). Note that Λ′ =
κ∗(Λ) becomes a pencil of quartics intersecting transversally at the 16 points in
the preimage of the base points of Λ and also that κ∗(Ci), i = 1, 2, 3 is a union
of two conics. Finally, note that Λ contains 3 singular fibers C ′i, i = 1, 2, 3 which
are products of two lines. Hence κ∗(C ′i) is also a product of two conics intersecting
transversally.

Additivity of euler characteristic or the main result of [7] allows to relate the
Euler characteristic of the surface V , the Euler characteristic of the generic fiber
eϕ̂(t0) (a Riemann surface of genus

(
4−1

2

)
= 3), and the relative Euler characteristic

of the singular fibers erel as follows:

e(X) = 3 + |B| = 3 + 16 = e(P1)eϕ̂(t0) + 6erel + n = 2 · (−4) + 6 · 4 + n,

where n is the relative Euler characteristic of the remaining singular fibers. Hence
n = 3, which amounts for the number of additional nodal quartics in the pencil Λ′.

Proposition 4.5. The pencil Λ′ above is a primitive base-component-free pencil of
quartics with six 2-reducible members. Therefore M2 = ρ2(P2) = 6.
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5. Completely reducible fibers of pencils on surfaces in P3

The purpose of the remaining section is to exhibit examples of pencils on surfaces
with a large number of completely reducible divisors as well as bounds which follow
from the calculations in section 3

We shall start with the case V = P1 × P1,∆ = {(1, 0), (0, 1), (1, 1)}. The left
hand side of inequality (12) gives the following upper bound for the number of
reducible fibers in pencils on P1×P1 of curves of bidegree (m,n),m ≥ n, (m,n) 6= 1
the following:

3× 2 + 3mn− (m+ n)

mn− n
which does not exceed 12 (and in fact does not exceed 10 with possible exceptions
for bidegree (m,n), 6 ≥ m ≥ n.

We will show that M(P1 × P1,∆) ≥ 4, M(S,∆1) ≥ 5 for cubic surfaces and
that M(X,∆) can be arbitrarily large for general surfaces in P3 for appropriate
saturated sets ∆ or ∆1 on respective surfaces.

5.1. Generalized Hesse arrangements on P1×P1. The purpose of this section
is to exhibit a example of a pencil of curves on P1×P1 with 4 completely reducible
fibers, showing that Hesse is not the only such pencil on a rational surface.

5.1.1. A Special Configuration of Points. Consider 9 points on a smooth cubic
C ⊂ P2 satisfying Pascal’s Theorem as in Figure 1:

P1

P2

P3

P4

P5

P6

Q1

Q2

Q3

Figure 1. Pascal Point Configuration

Note that such a configuration of points would have to satisfy the following
relations in the Picard group of the cubic:

(18)
P1 + P2 +Q1 = 0, P4 + P5 +Q1 = 0,
P2 + P3 +Q2 = 0, P5 + P6 +Q2 = 0,
P3 + P4 +Q3 = 0, P1 + P6 +Q3 = 0.
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In other words Pi + Pi+1 + Qj = 0, i ∈ Z9 and π(i) = j, where π : Z9 → Z3. By
Pascal’s Theorem

(19)
∑
i

Pi = 0,
∑
i

Qi = 0.

We also ask for three additional relations involving the diagonals:

(20)
P1 + P4 +Q2 = 0,
P2 + P5 +Q3 = 0,
P3 + P6 +Q1 = 0.

Definition 5.1. Any configuration of 9 points on a smooth cubic satisfying (18),
(19), and (20) will be called a special Pascal configuration of points.

Lemma 5.2. For any special Pascal configuration of points, the points Qi are
necessarily inflection points.

Proof. By symmetry, it is enough to show 3Q1 = 0. Note that 0 = (P1 +P4 +Q2)+
(P3 + P6 +Q1) (from (20)) and 0 = (P3 + P4 +Q3) + (P1 + P6 +Q3) (from (18)).
Subtracting both relations one obtains

0 = (P1+P4+Q2)+(P3+P6+Q1)−(P3+P4+Q3)−(P1+P6+Q3) = Q2+Q1−2Q3.

Finally subtracting the previous equality to 0 = Q1 + Q2 + Q3 (from (19)) one
obtains the desired relation 3Q1 = 0. �

Proposition 5.3. For any smooth cubic C there is a family of special Pascal con-
figurations of points parametrized by C.

Proof. In order to construct a list of such 9 points one needs to choose three aligned
inflection points, say Q1, Q2, Q3, and an extra point on the cubic, say P1. The
remaining Pi are obtained from P1 and Qj . �

Generically, the three lines defined by (20) intersect in three double points, the
conic defined in (19) is smooth, and intersects the line also defined in (19) transver-
sally.

Consider the pencil of cubics generated by C1 := L12 ∪ L34 ∪ L56 and C2 :=
L23 ∪ L45 ∪ L16, where Lij is the line passing through Pi and Pj . Note that the
original smooth cubic C belongs to such a pencil and so does C3 := L14 ∪L25 ∪L36

and the union of the conic Q passing through P1, ..., P6 and the line L passing
through Q1, Q2, Q3. In other words, one can find equations such that C3 = C1−C2

and QL = C1 + C2.

Proposition 5.4. After blowing up the base points, the pencil of cubics described
above induces an elliptic surface which is generically of type I1 + I2 + 3I3.

Proof. The existence of I2 and 3I3 is given by hypothesis, then by a standard Euler
characteristic computation, there should be an additional fiber of type I1. �

Example 5.5. Equations for Figure 2 can be given as:

C1 = (2y + (−2
√

3 + 2)z)(
√

3x+ y +
√

3z)(−
√

3x+ y +
√

3z)

C2 = (2y + 2z)(
√

3x+ y −
√

3z)(−
√

3x+ y −
√

3z)

C3 = (
√

3x− y − (2−
√

3)z)(
√

3x+ y + (2−
√

3)z)y

Q = 3x2 + 3y2 − 3z2 + 2(2−
√

3)yz
L = z
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Figure 2. Special Pascal Point Configuration of type I1 + I2 + 3I3

Proposition 5.6. There are only two possible degenerations of the previous generic
pencil:

(1) A surface of type I2 + 2I3 + IV
(2) A surface of type 4I3.

Proof. By hypothesis, we know that three singular fibers are products of lines,
hence of type I3 or IV , and a fourth singular fiber contains a line, hence it is of
type I2, I3, III, or IV . Therefore, numerically, there can only be three possibilities:
4I3, I2 + 2I3 + IV , and 3I3 + III. A surface of type 4I3 corresponds with the
Hessian pencil, which comes from the choice of P1 as an inflection point. A surface
I2 + 2I3 + IV appears when the three lines in C3 are concurrent. Finally, the
surface 3I3 + III does not exist according to Miranda’s list of rational elliptic
surfaces (cf.[11, p.197, item 92.]). �

Example 5.7. The special Pascal configuration of type I2+2I3+IV can be realized
as the set of zeroes of:

C1 = (2y −
√

3z)(
√

3x+ y +
√

3z)(−
√

3x+ y +
√

3z)

C2 = (2y +
√

3z)(
√

3x+ y −
√

3z)(−
√

3x+ y −
√

3z)

C3 = (3x−
√

3y)(3x+
√

3y)y
Q = x2 + y2 − z2

L = z

5.1.2. Generalized Hesse Arrangements on P1 × P1. Consider a double cover δ of
P2 ramified along a smooth conic which is bitangent to Q. The rational surface
which realizes this covering is a ruled surface P1 × P1. Any irreducible component
in the preimage of a line in P2 by δ has bidegree (1, 1), (1, 0), or (0, 1) according to
the relative position of the ramification locus and the line.

Definition 5.8. We say a curve in P1×P1 is completely reducible if it is a union of
irreducible components all being in the set ∆ consisting of 3 classes: (1, 1), (1, 0),
or (0, 1).
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Theorem 5.1. There exist pencils on P1×P1 with four completely reducible fibers.

Proof. Consider a special Pascal configuration of type I1 +I2 +3I3 or I2 +2I3 +IV
and a double cover δ of P2 ramified along a smooth conic, which is bitangent to Q.
Then the pencil of cubics described above induces a pencil of curves of genus four
on P1 × P1. The preimage of the I2-fiber becomes two (1, 1)-curves as preimage
of the conic Q and one more (1, 1)-curve as a preimage of L. The preimage of the
I3-fibers is a union of three (1, 1)-curves. �

Example 5.9. Using the special Pascal configuration of type I2+2I3+IV provided
in Example 5.7 and the covering δ : P1 × P1 → P2 given by: δ([u, v], [s, t]) =
[2(ut+ vs), us− vt, us+ vt], which ramifies along {x2 + 4y2 = 4z2} (a conic which
is bitangent to Q = {x2 + y2 = z2}). Note that:

δ∗(C1) =
(
6ut+ 6vs− (3 +

√
3)us− (3−

√
3)vt

)(
6ut+ 6vs+ (3 +

√
3)us+ (3−

√
3)vt

) (
vt− (7− 4

√
3)us

)
δ∗(C2) =

(
6ut+ 6vs− (3−

√
3)us− (3 +

√
3)vt

)(
6ut+ 6vs+ (3−

√
3)us+ (3 +

√
3)vt

) (
vt− (7 + 4

√
3)us

)
δ∗(C3) =

(
6ut+ 6vs−

√
3us+

√
3vt
) (

6ut+ 6vs+
√

3us−
√

3vt
)

(us− vt)
δ∗(Q) =

(
2ut− (1−

√
−3)vs

) (
2ut− (1 +

√
−3)vs

)
δ∗(L) = us+ vt

Corollary 5.10. In notations of the Corollary 3.4 one has the bound K(D =
(d, 1),∆, (P1 × P1) ≥ K(D = (3, 3),∆,P1 × P1) ≥ 4.

Moreover, primitive base-component-free pencils ϕ : P1 × P1 99K P1 of bidegree
(3, 3) and pencils confirming the equality K((3, 3),∆,P1 × P1) = 4 are not unique.

5.2. Completely reducible fibers on a cubic surface. Let S be a smooth
cubic surface in P3. The subsets ∆1 ⊂ NS(S) consisting of the classes of 27 lines
(generating the closure of the effective cone (cf. [4] p.485, section 9.1) is saturated.

Proposition 5.11. Let S ⊂ P3 be a smooth cubic as above, then M(∆1) ≥ 5

Proof. The pencil of planes in P3 containing a fixed line induces a base point free
pencil of residual for this line plane quadrics with 5 reduced fibers each consisting
of 2 lines (cf. [4], section 9.1). Hence M(∆1) ≥ 5.

On the other hand it follows from Proposition (3.3) that M(∆) < 6 (since
di ∈ ∆1 a lines, one has

∑
mie(di) = 2HD).

�

5.3. Completely reducible fibers of pencils on surfaces of higher degree.

Proposition 5.12. For any positive integer d there is a surface Sd ⊂ P3 of degree
d and a pencil on it containing at least d completely reducible curves.

Proof. The following is a well-known fact about how to construct surfaces con-
taining a large number of lines. Consider f(x, y) and g(z, t) two homogeneous
polynomials of degree d with no multiple roots, then the surface

Sf,g = {[x : y : z : t] ∈ P3 | f(x, y) = g(z, t)}

contains at least d2 lines, namely all the lines Li,j , i, j = 1, ..., d joining a point
Pi = [xi : yi : 0 : 0] and a point Qj = [0 : 0 : zj : tj ] where f(xi : yi) = g(zj , tj) = 0.
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The pencil of hyperplanes containing the line L = {x = y = 0} induces a pencil
of curves on Sf,g. Given any point Pi, the hyperplane Hi = {yix = xiy} containing
Pi has to contain the lines Li,1, ..., Li,d. Therefore this pencil contains at least d
completely reducible fibers. �
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