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Homotopy groups of complements to ample divisors 

Anatoly Libgober* 

Abstract. 
Homotopy groups of the complements to divisors with ample 

components on non-singular projective varieties are considered as the 
modules over the fundamental group. We prove a vanishing theorem 
and consider the calculation of supports of these modules by relating 
them to the cohomology of local systems. We review previous work on 
the local study of isolated non-normal crossings. As an application, 
we obtain information about the support loci of homotopy groups of 
arrangements of hyperplanes. 

§1. Introduction 

An interesting problem in the study of the topology of algebraic va-
rieties is to understand the fundamental group of the complement to a 
divisor on a non-singular algebraic variety in terms of the geometry of 
the divisor. Works of Abhyankar ([1]) and Nori ([31]) show that, if C 
is an irreducible curve on a non-singular algebraic surface X, then for 
some effective constant F( C) depending on the local type of singulari-
ties of C, the inequality C2 > F(C) implies that the kernel of the map 
1r1(X- C)--+ 1r1(X) belongs to the center of 1r1(X- C). For example, 
if X is simply connected, then 1r1 (X- C) is abelian. Historically, such 
results were originated in the so-called Zariski problem and we refer to 
[16] fcir a survey. The case of non-abelian fundamental groups of com-
plements, notably when X = P 2 , is also very interesting. The geometric 
information, such as the dimensions of the linear systems defined by sin-
gularities of the curve, becomes essential in descriptions of fundamental 
groups and their invariants (cf. [37], [21] [24]). Recently, analogous ques-
tions about fundamental groups of the complements in the case when X 
is symplectic began to attract attention as well (cf. [4]). 
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In the present work, we shall show that, in appropriate settings, the 
relationship between the topology of the complement and the geometry 
of the divisor can be extended to some higher homotopy groups. Some 
work in this direction already was done. In [22], we show that if V is 
a hypersurface in cn+l with isolated singularities whose compactifica-
tion in pn+l is transversal to the hyperplane at infinity, then the first 
homotopy groups of the complement are the following: 

(1) 1r1 (Cn+1- V) = Z, ?Ti(cn+l- V) for 2::; i::; n -1 

Moreover, the next homotopy group ?Tn(cn+l - V) depends on the lo-
cal type of the singularities and also on the geometry of a collection of 
singularities as a finite subset in cn+l. It can also be described via a 
generalization of the van Kampen procedure in terms of pencils of hyper-
plane sections (cf. [22], [8]). Recently, homotopy groups of arrangements 
were considered in [13] and [32]. 

Below, we shall extend these results in two directions. On the one 
hand, we shall consider complements on arbitrary algebraic varieties 
rather than just in projective space. The latter case, however, appears 
to be the most important one due to a variety of interfaces with other 
areas - e.g. the study of arrangements of hyperplanes. On the other 
hand, we do not assume here that V has isolated singularities, but rather 
that the divisor D has normal crossings except for finitely many points. 
The effect of this is that the fundamental group, which plays the key 
role in the description of higher homotopy, may be abelian rather than 
cyclic, as is the case in (1), and the theory which we obtain is abelian 
rather than cyclic. 

In the next section, we prove the triviality of the action of the funda-
mental group on higher homotopy groups in certain situations ( cf. The-
orem 2.1). This implies that all information about homotopy groups 
in these cases is homological ( ?T1 in these situations is automatically 
abelian). In some instances, as result of homological calculations, one 
obtains a vanishing of homotopy groups in certain range. In particular if 
D is a divisor in pn+l having only isolated non normal crossings and the 
number of components greater than n + 1 then ?Ti(pn+l- D) = 0 in the 
range 2 ::; i ::; n - 1. The results of section 2 also isolate first non-trivial 
homotopy group in the sense that it is a non-trivial?T1-module. 

In Section 3 we define our main invariant of the homotopy group, i.e. 
a sub-variety of the spectrum of the group ring of the fundamental group 
which is the support of the first non trivial homotopy group considered 
as the module over 1r1 . We call these sub-varieties characteristic and 
show that they are related to the jumping loci for the cohomology of 
local systems. The latter have a very restricted structure (cf. [2]),- i.e. 
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they are unions of translated by points of finite order subgroups which 
also suggest the numerical data that describe these varieties completely. 

The methods of obtaining numerical data specifying the character-
istic varieties from the geometry of the divisor are discussed in the Sec-
tion 6. This is done by using the Hodge theory of abelian covers, which 
is studied in section 5, and relies on our local study of the isolated non 
normal crossings in [26] and [14]. The results of these papers are dis-
cussed in the Section 4 where, among other things, we compare cyclic 
theory of isolated singularities with abelian theory of isolated-non nor-
mal crossings having more than one components. In Section 7, we review 
cases to which the results of Section 6 can be applied. In particular, the 
Kummer configuration yields an arrangement of planes in P 3 with non-
trivial 7!"2 of the complement which we calculate. In the final section, 
we show the relationship between the invariants of the homotopy groups 
and the motivic zeta function of Denef-Loeser. 

Part of this work was done during my visit to University of Bordeaux 
to which I wish to express my gratitude. I particularly want to thank 
Alex Dimca and Pierrette Cassou-Nogues for their hospitality. I also 
want express my gratitude to the organizers of the Sapporo meeting 
on Singularities where parts of the results of this paper were presented 
and Alex Dimca for careful reading of the manuscript and his useful 
comments. 

§2. Action of the fundamental group on homotopy groups. 

In this section we discuss homotopy groups, in a certain range of 
dimensions, for a class of quasi-projective varieties. This is done in 
two steps. Firstly, we show that these varieties support a trivial action 
of 7!"1 (in particular are nilpotent in certain range). Secondly, we use 
homological calculations to determine these homotopy groups and to 
describe cases when homotopy groups vanish. 

Recall that homotopy groups 1T"n(X,x) of a topological space X are 
7!"1 (X, x)-modules, with the action given by the "change of the base 
point" (cf. [34]). In the case when 1T"i(X) = 0 for 1 < i < n, this 
action on 1T"n(X), which is isomorphic to Hn(5{) where X is the univer-
sal cover of X, coincides with the action of the fundamental group on the 
homology of the universal cover via deck transformations. A topological 
space is called k-simple if the action of the fundamental group on 1T"i (X) 
is trivial for i :::; k ( cf. [34]). 

Examples of k-simple spaces appearing naturally in algebraic geom-
etry are the following. Locally, they come up when one looks at the 
complement to a union of germs of divisors in cn+ 1 forming an isolated 
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non-normal crossing. This situation was studied in [26]. More gener-
ally ( cf. [14])' instead of divisors in cn+l' one can look at the union of 
germs of divisors in a germ of a complex space Y having a link which 
is (dim Y- 2)-connected. Examples of such local singularities are pro-
vided by the cones over a normal crossings divisor in Pc, in particular by 
cones over generic arrangements of hyperplanes. These k-simple spaces 
(k =dim Y- 2) are, of course, Stein spaces and their theory will be re-
viewed in Section 4. Global k-simple examples are given by the following 
quasi-projective varieties: 

Theorem 2.1. Let X be a simply connected projective manifold and 
D = U Di be a divisor with normal crossings such that its all components 
Di are smooth and ample. Then 7!'1 (X- D) is abelian and its action on 
1T'i(X- D) is trivial for 2:::; i:::; dim X- 1. 

The proof is similar to the one presented in the local case in [26]. It 
uses the reduction to the case of normal crossings divisors using Lefschetz 
hyperplane section theorem and then surjectivity of Hi(Di- U#i D1) ----> 

7ri(X- D) which follows from ampleness of the components Di. 
This theorem reduces the calculation of the homotopy group to the 

calculation of homology of the complements. The latter can be done 
using the exact sequence: 

and the isomorphisms 

We obtain hence: 

Corollary 2.2. Let H = zN be a free abelian group generated by 
components of the divisor D. Let 

h: H2(X, Z) ----> H 

given by a ----> L_(a, Di)Di where a E H2 (X), Di E H 2 (X) and (a, D) 
is the Kronecker pairing. Then 7r1(X- D)= Coker h. For example, if 
X = pn+ 1 and one of the components Di ( i = 1, .. , r + 1) is a hyperplane, 
then H1(X- D) = zr. Let X be a hypersurface in pn+l and D be a 
union ofr +!-hyperplanes. Then H 1(X- D)= zr. 

The following result can be used for the calculation of the homology 
of some branched covers of X: 
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Corollary 2.3. LetDi E I.C7''I(i = 1, ... ,r) such thatDi are divisors 
on X having isolated non-normal crossings and Di is the zero set of fi E 
H 0 (X, O(Di)). Let si E H 0 (X, .Ci) -1- 0. Then Um1 , .. ,mr given in the 
total space of (f}.Ci by s7'' = fi is the cover corresponding the surjection: 
¢ : H1(X- D) ____, G = ttJi=lZ/miZ The projection Um1 , .. ,mr ____, X 
induces the isomorphism: Hi(Um1 , ... ,mr) ____, Hi(X) fori ::; n- 1. 

The next theorem is an abelian version of the result in [22] and 
identifies "the first non-trivial homotopy group" in the sense of [22]. 

Theorem 2.4. (a) Let X= pn+I and D be an arrangement ofr+ 1 
hypersurfaces as in Corollary 2. 2 (i.e., such that one of the hypersurfaces 
has degree 1) and having finitely many non-normal crossings. Then 
7ri(pn+l -D) = 0 for 2 ::; i ::; n- 1. If all intersections are the normal 
crossings, then the 7rn(pn+l -D) = 0. 
(b) Let V be a complete intersection in pN and dim V = n + 1. Let 
D be the arrangement of r + 1 hyperplane sections of V having isolated 
non-normal crossings. Then 1r1(V- D) = zr and 1ri(V- D) = 0 for 
2::;i:=;n-l. 

Proof. Consider first (a). The claimed vanishing is a consequence of the 
Lefschetz hyperplane section theorem ( cf. [18]) and the second part of 
(a). The first part follows by induction, with the inductive step being the 
vanishing of 7rn(pn+l- D) where Dis an arrangement of hypersurfaces 
with normal crossings. Taking into account the triviality of the action 
of 1r1(Pn+l_ D) on 7rn, the claim is a consequence of the exact sequence 
(cf. [6]): 

(3) Hn+l(pn+l- D)____, Hn+l(zr) ____, 7rn(pn+l- D)zr ____, 

____, Hn (Pn+l - D) ____, Hn (Zr) ____, 0 

and the calculation of the homology of pn+ 1 - D. The latter can be 
done using Mayer Vietoris spectral sequence ( cf. [26]). The proof of (b) 
is similar. 

§3. Characteristic varieties of homotopy groups 

In this section, we study the support of the first homotopy group of 
quasi-projective varieties from Section 2 on which the action of 1r1 fails to 
be trivial. This support is a subvariety of Spec C[1r1], which we call the 
characteristic variety. We show that in the range 2 ::; i ::; k -1, in which 
the action of 1r1 on 1ri is trivial, the homology Hi of the local systems, 
corresponding to the points of the algebraic group Spec C[1r1] different 
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from the identity, is trivial. Moreover, the first homotopy group outside 
this range, i.e. 7rk, determines the homology Hk of the local systems. 
Vice versa, the (co )homology of local systems determines the support of 
7rk ® C as n1-module. This yields, in the algebra-geometric context, a 
"linear" structure of the characteristic varieties. 

Theorem 3.1. Let X be a topological space such that its fundamen-
tal group n 1 (X) = A is abelian. Assume that for an ideal g:J in C[A] the 
localization of the homotopy groups is trivial for 2 :S i < k: ni(X) 80 = 0. 
Then Hi(X) 80 = 0 for 1 :S i < k and Hk(X) 80 = 7rk(X) 80 

Sketch of the proof The universal cover X of X is a simply connected 
space on which A acts freely. For such a space, the group A acts on 
H1(X,C) for any j and on the homotopy groups n1(X,x0 ) = n1(X,x0 ) 

(j 2) so that the Hurewicz map: n1(X)---+ H1(X) is n1(X)-equivariant 
(cf. [34] Ch.7, Cor. 3.7). 

Let us consider a simply connected CW-complex Y on which an 
abelian group A acts freely. The group A then acts on the homotopy 
groups via composition of the map 7rn(Y, x)---+ 7rn(Y, a(x)) and the iden-
tification 7rn(Y, a(x)) and 7rn(Y, x), which is independent of the choice 
of a path connecting x and a( x) due to n1 (Y) = 0. The claim is that, 
if 1ri(Y) 80 = 0 for 1 < i :S n- 1, then 7rn(Y) 80 = Hn(Y) 80 • The theorem 
above will follow for Y =X and G = n1(X). 

The claim can be obtained by induction over n as follows. Consider 
the fibration of path space Maps( I, Y) ---+ Y x Y. This fibration is 
equivariant (where the action onYx Y is diagonal). Space Maps(!, Y) 
is homotopy equivalent to Y. We have the spectral sequence: 

This spectral sequence is equivariant. The action on the homology of 
fiber is given by av = p*a*(v) where a* : Hi(rlxY) ---+ Hi(0.9 xY) and 
p* is the natural identification of the homology of different fibers in a 
fibration with a simply-connected base. Localizing at g:J, due to inductive 
assumption on Y, we obtain that the terms with 0 < p ::; n- 1 and 
0 < q :S n - 2 are zeros. In localized spectral sequence we can identify 
the map Hn(Y) 80 ---+ E;;,;0 = Hn(Y x Y) 80 ---+ Hn-1(0.Y) 80 with 
the map it:. : Hn(Y) 80 ---+ Hn(Y x Y) 80 corresponding to the diagonal 
embedding. Moreover, is surjective (since Hn_ 1(Y) 80 = 0). Hence 
we have an exact sequence: 
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and since cokernel of Hn(Y) 80 --+ Hn(Y x Y) 80 = Hn(Y) 80 EElHn(Y) 80 is iso-
morphic to Hn(Y) 80 , due assumed vanishing, we obtain that Hn(Y) 80 = 
Hn-l(f!Y)go = 7l"n(Y)w 

We shall apply this theorem to ( n - 1 )-simple spaces. For such 
a space the support of 7l"i(X) 18lz C as a C[7r1(X)] module belongs 
for 2 :::; i :::; n - 1 to the maximal ideal of the identity of the group 
Spec C[7r1(X)] = Char[7rl(X)]. This maximal ideal is just the augmen-
tation ideal of the group ring. Hence the localization at a prime ideal not 
belonging to the maximal ideal of the identity satisfies (after tensoring 
with C) the assumption of Theorem 3.1. This allows, for ( n - 1 )-simple 
spaces, to express the homology of the local systems in terms of the 
homotopy groups 7rn(X): 

Theorem 3.2. Let p E Char7r1(X) be a character of the funda-
mental group different from the identity and let Cp be C considered as 
C[7r1(X)] module via the character p. Then 

Hi(X, p) = 0 (i:::; n- 1) Hn(X, p) = 7rn(X) 18lc[n1 (X)J Cp 

Proof. The proof is similar to the one in the case when X is a complement 
to a plane curve (cf. [24]) and the local case (cf. [26]). Consider the 
spectral sequence (cf. [7], ch.XVI, th.8.4): 

Hp(7rl(X), Hq(X)p) =;. Hp+q(X, p) 

where H*(X)p is the homology of the complex C(X)I8lzC with the action 
of 71"1 (X) given by g(el8la) = g·el8lp(g- 1 )a. We can localize this spectral 
sequence at the maximal ideal g;Jp of Spec C[7r1(X)] corresponding to the 
character p. The resulting spectral sequence has = 0 for 1 :::; j :::; 
n - 1. The exact sequence of low degree terms yields: Hn(X, p) = 
Hn(X) 18lc[n1 (X)] Cp which together with Theorem 3.1 proves the claim. 

Now we are ready to define the main invariant. 

Definition 3.3. The k-th characteristic variety Vk(7rn(X)) of the 
homotopy group 7l"n(X) is the zero set of the k-th Fitting ideal of 7rn(X), 
i.e. the zero set of minors of order (n- k + 1) x (n- k + 1) of <I> in a 
presentation 

of 7r1(X) module 7rn(X) via generators and relations. Alternatively 
(cf. Theorem 3.2) outside of p = 1, Vk(7rn(X)) is the set of characters 
p E Char[7r1(X)] such that dimHn(X, p) k. 

Theorem 3.2 combined with the results of [2] yields the following 
strong structure property (for possibly non-essential characters): 
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Theorem 3.4. The characteristic variety Vk(7rn(X -D)) is a union 
of translated subgroups Si of the group Char 11"1 (X- D) by unitary char-
acters Pi: 

This is an immediate consequence of the interpretation 3.2 and the 
following theorem applied to a resolution X of non-normal crossings of 
D: 

Theorem 3.5 (Arapura [2]). Let X be a projective manifold such 
that H 1(X, C) = 0. Let D be a divisor with normal crossings. Then 
there exists a finite number of unitary characters Pi E Char7r1(X- D) 
and holomorphic maps fi : X-D --> Ti into complex tori Ti such that the 
set L,k(X-D) = {p E Char 71"1 (X- D) I dim Hk (X- D, p) 2: 1} coincides 
with UPiftH 1(Ti,C*). In particular, L,k is a union of translated by 
unitary characters subgroups of Char 71"1 (X - D). 

The components of L,1 can all be obtained using the maps X -
D onto the curves with negative Euler characteristics (cf. [2]). In the 
case k > 1, maps onto quasi-projective algebraic varieties with abelian 
fundamental group and vanishing 71"i for 2 :0::::: i :0::::: k - 1 allow one to 
construct components of V(7rk) (cf. Example 7.4 below). 

§4. Review of local theory of isolated non-normal crossings 

Local theory of isolated singularities of holomorphic functions pro-
vides a beautiful interplay between algebraic geometry and topology 
and in particular the topology of (high dimensional) links (cf. [30]). The 
main structure is the Milnor fibration 8B, - VJ n 8B, --> S 1, where 
VJ is the zero set of a holomorphic function f(xb .. , Xn+d and B, is a 
ball of a small radius f about 0 (the fibration exist even in the non-
isolated case). If the singularity off at 0 is isolated, then the fiber Mt 
of this fibration (the Milnor fiber) is homotopy equivalent to a wedge 
of spheres: sn v ... v sn. Going around the circle, which is the base of 
Milnor's fibration, yields the monodromy: Hn(MJ) --> Hn(MJ ). It has 
as its eigenvalues only the roots of unity exp(27ri,;) (,; E Q). Moreover, 
there are several ways to pick a particular value of the logarithm ,; of an 
eigenvalue of the monodromy so that the corresponding rational number 
will have some geometric significance. One of the ways to do this de-
pends on the existence of a Mixed Hodge structure ( cf. [35]) on Hn ( M f). 
The value of the logarithm is selected so that its integer part is deter-
mined by the degree of the component of Gr!' Hn(Mt) (graded space 
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associated with the Hodge filtration) on which particular eigenvalue of 
the semi-simple part of the monodromy appears. 

Some of the data above can be obtained by considering the infinite 
cyclic cover of 8B,- VJ n 8B, instead of Milnor fibration. Such a cover 
is well-defined since H1(8B,- VJn8B" Z) = Z for n > 1. For example, 
the universal cyclic cover is diffeomorphic to the product MJ x R. The 
monodromy can be identified with the deck transformation of the infinite 
cover. 

With such reformulation, the Milnor theory can be extended to the 
case of germs of isolated non-normal crossings in cn+l (cf. [26]), i.e. 
germs of functions h · ... · fr such that the intersection points of divisors 
h = 0, ... , fr = 0 are normal crossings except for the origin 0 (more 
general case of germs of complex spaces with isolated singularities con-
sidered in (cf. [14]). The results, using infinite covers as a substitute 
for the Milnor fiber, are parallel to the above mentioned results in the 
isolated singularities case. Notice, however, that though the theory of 
Milnor fibers is applicable to germs ofiNNC, much less detailed informa-
tion can be obtained since these singularities are not isolated for n > 1. 
For example, the Milnor fiber is not even simply-connected (cf., below 
however, where quite a bit of information about the Milnor fiber can be 
obtained as a consequence of the present approach). 

Let D be a germ of INNC which belongs to a ball B, about 0 
and which has r irreducible components. We have the isomorphism 
H1(8B,- D, Z) = zr and hence the universal abelian cover of 8B,- D 
has zr as the covering group. The replacement of fiber in 
this abelian situation is the universal abelian cover 8B, -D. Notice 
that a locally trivial aBE - D over a torus does not exist 
in general since typically 8B, - D has the homotopy type of an infinite 
complex. We have the following (cf. [26]): 

Theorem 4.1. For n > 1, the 1r1(8B,- D) is 
free abelian. The (abelian) cover8B,- Dis (n-1)-connected. 
In particular, Hn(8B,- D, Z) is isomorphic to the homotopy group 
7rn(8B,-D). The latter isomorphism is the isomorphism ofZ[7r1(8B,-
D)]-modules where the module structure on the homology is given by 
the action of 1r1(8B,- D) on the universal cover via deck transforma-
tions and the action on the homotopy is given by the Whitehead product 
(cf [34]). 

Notice that the case when Dis a divisor with normal crossings is "a 
non-singular" case since the universal cover is contractible. The simplest 
example of INNC is given in cn+l by the equation h · ... · lr = 0, where 
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li are generic linear forms (i.e. a cone over a generic arrangement of 
hyperplanes in pn). Since the complement to a generic arrangement of 
r hyperplanes in pn has a homotopy type of n-skeleton of the product of 
r -1-copies of the circle S1 (in minimal cell decomposition in which one 
has cells of dimension i) one can calculate the module structure 
on the 7rn of such skeleton. Its universal cover is obtained by removing 
the zr-l orbits of all open faces of a dimension greater than n in the 
unit cube in Rr-l. Hence 7rn(8Be- D)= 
is the universal cover). The chain complex of the universal cover of 
( S 1 y- 1 can be identified with the Koszul complex of the group ring 
of zr-l = zr /(1, ... , 1) (so that the generators of zr correspond to the 
standard generators of H1(8Be- D) ). The system of of 
this Koszul complex is (h - 1, .. , tr - 1). Hence Hn(8Be- D, Z) = 
KerAnR---. An-lR where R = Z[tl, .. ,trl/(h · ... ·tr -1). As a result, 
one has the following presentation: 

(4) A n+l(z[tb t1 1 , ... , tn t; 1]/(tl···, tr - 1n ___. 

A n(z[tb t1 1 , ... , tr, t; 1]/(tl···, tr - 1n ---. 7rn(cn+l - U Di) ---. 0 

In particular, the support of the 7rn is the subgroup h · ... · tr = 1. 
We summarize the similarities between the case of hypersurfaces 

with isolated singularities and INNC in the table 1 in the next page 
(with 4.1 justifying the first three rows): 

In the case of isolated singularities one has the isomorphism: 1r n ( 8 Be-
D)= D) as Z[t, r 1]-modules, where the module structure on 
the right is given by the monodromy action. In particular, it is a torsion 
module and its support is a subset of Char Z = C* consisting of the 
eigenvalues of the monodromy of Milnor fibration. Monodromy theo-
rem ([30]) is equivalent to the assertion that eigenvalues are the torsion 
points of C*. A generalization of this is the following: 

Conjecture 4.2. The support of 7rn(8Be- D) is a union of trans-
lated subgroups of Char 1r1 ( 8Be - D) by points of finite order. 

4.2 is a local analog of the result 3.4 in the quasi-projective case. 
Now let us describe a partial result in the direction of 4.2 describing some 
components of a characteristic variety which satisfy 4.2, and which also 
will explain last two rows in the above table. 

As already was mentioned, the cohomology group of the Milnor fiber 
Hn(MJ, C) of an isolated singularity support a Mixed Hodge structure 
(cf. [35]). The monodromy splits into the product of the semi-simple and 
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Isolated singularities INNC 

Milnor Infinite 
fiber abelian cover 

Homology of 1r n 
Milnor fiber 

Monodromy rr1 - module structure 

Eigenvalues 
of monodromy 

Monodromy 
theorem 

Multiplier 
Ideals 

Spectrum 

on 7rn 

Characteristic 
varieties of 1r n 

Translated 
subgroup Property 

Multivariable Ideals of 
Quasiadjucntion 

Table 1 

Polytopes of 
quasiadjunction 

the unipotent part. The semi-simple part leaves the Hodge filtration 
invariant. The latter allows one to split the eigenvalues into groups 
corresponding to the components of GrF Hn(MJ, C), depending on the 
graded piece on which the eigenvalue appears. As a consequence, one 
can assign a rational number to each eigenvalue, i.e., its logarithm so 
that its integer part is determined by the group to which the eigenvalue 
belongs (we refer to (35] for the exact description). In other words, we 
obtain a lift of the support of the homotopy group of the Milnor fiber 
into the universal cover of the subgroup of unitary characters of Z (the 
eigenvalues of the monodromy having a finite order are unitary). 

In the abelian (local) case, we have the following. Let us consider 
the universal cover of the subgroup Charu(1r1(8B, -D)) of unitary char-
acters. It is isomorphic to Rr and one can take the unit cube as the 
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fundamental domain of the covering group (i.e. zr). We assign an ele-
ment in the fundamental domain to a unitary character x having finite 
order using the following interpretation of the unitary characters from 
Vk(7rn(8B,- D)) (cf. [26] Prop. 4.5). 

Proposition 4.3. Let G = be a finite quotient of 
1r1(8B,- D) and let X E Char(1r1(8B,- D)) which is the image of 
a character of G. Then the link Xm1 , .. ,mr of the isolated complete inter-
section singularity: 

is an- !-connected 2n +!-manifold, which is a cover of 8B, branched 
over INNC D. The condition: X E Vk(7rn(8Be- D)) and x is essential 
( cf 5.3) is equivalent to 

k = dim{v E Hn(Xml,···,mJ I gv = x(g)vVg E G} 

Note that the covering map Xm1 , .. ,mr --+ 8B, is just a projection 
(zt, ... ,zr,Xl,··,xn+d--+ (x1, ... ,Xn+l)· Next, we shall use the Mixed 
Hodge structure on the cohomology of the link (5) (cf. [36]). The Hodge 
filtration 

is preserved by the group G. The logarithms of characters which appear 
on the subspace pn Hn(Xm1, ... mr) (i.e., the vectors log X = (6, .. , 
with 0 :'S < 1, Vi such that exp(27ri6), ... is a character x 
of H1(8B,- D) in coordinates given by the generators H1(8B,- D)) 
form a polytope in the sense of the following 

Definition 4.4. A polytope in the unit cube U = { x = ( x 1, ... , Xn) I 
0 :'S Xi :'S lVi} is a subset of U formed by the solutions of a system of 
inequalities ak · x :'S Ck for some constants Ck ( resp. vectors ak) such 
that ak = (al, ... ,at, ... , ak), 0 :'S at E Q and 0 :'S Ck E Q, Vi, k. A face of 
a polytope P is a subset of its boundary 8P which has the form 8P n H 
for a hyperplane H different from one of 2n hyperplanes Xi = 0, 1. 

We have the following: 

Theorem 4.5. To each germ of INNC D and l, 0 ::; l ::; n corre-
sponds a collection P1 of polytopes Pk,l E P1 such that a vector log X E 
qr in unit cube belongs to one of the polytopesPk,l if and only ifdim{v E 
F 1jF1+1Hn I gv = x(g)v} = k. In particular, Vk(7rn(8B,- D)) = 
Uk exp Pk,l where Rr --+ Charu H1 ( 8B, - D) is the exponential map. 
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In the cyclic case, each of Pk,l is a rational number such that 
is an eigenvalue of the monodromy having a multiplicity k 

which appears on F 1 / pl+l Hn(MJ ), i.e. is an element of the spectrum 
having a multiplicity k (in the case l = n one obtains the constant of 
quasi-adjunction from [20]). 

Remark 4.6. In the case n = 1, i.e., the case of reducible plane 
curves, we have the polytopes of quasi-adjunction studied in [25]. In 
particular, these polytopes are related to the multi-variable log-canonical 
thresholds and multiplier ideals ( cf. remark 2. 6 and section 4. 2 respect. 
in [25]). Similar relations exist in the case of INNC discussed here. In 
particular, to each face F of a polytope of quasiadjunction for INNC cor-
responds the ideal of quasiadjunction AF in the local ring of the singular 
point of INNC used below (cf. (6.3)). 

In the case of isolated singularities, there are very explicit and beau-
tiful calculations of the eigenvalues of the monodromy and spectrum of 
singularities. We would like to pose the following problem: 

Problem 4. 7. Calculate the characteristic varieties of INNC with 
C* -actions and in the case when Di are generic for their Newton poly-
topes. What are the polytopes described in Theorem 4.5'? 

This should be a generalization of the case, discussed above, of the 
cone over a generic arrangement and the example in [26] of the cone over 
a divisor with normal crossings in pn. 

§5. Homology of abelian covers 

In this section, we return to the global case of divisors with ample 
components having only isolated non-normal crossings. 

5.1. Topology of unbranched covers 
The characteristic varieties Chari(7rn(X- D)) contain information 

about both branched and unbranched abelian covers. 

Lemma 5.1. Let G be a finite abelian quotient of n 1 (X- D) and let 
Ua be corresponding unbranched covers of X -D. Let x E Char(n1(X-
D)) be a pull back of a character of G (we shall considered it as a char-
acter of the latter). Let Hn(Ua)x = {v E Hn(Ua) I g · v = x(g)v(g E 
G)} Then Hn(X- D,Cx) = Hn(Ua)x· In particular, X E CharG C 
Chari(nn) if and only if Hn(Ua)x i. 

A proof can be obtained, for example, from the exact sequence of 
low degree non-vanishing terms in the spectral sequence of the action of 
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_...-.._-

the group K = G on the universal cover X- D (for 
which we have X- D/K = Ua): 

_...-.._-

Hp(K, Hq(X- D))::::} Hp+q(Ua) 

(cf. [7]). This is a spectral sequence of C[71'1(X- D)]-modules where 
the C[11'1(X- D)]-module structure on C[G] module Hp+q(Ua) comes 
via surjection: C[71'1(X- C[G]. The localization of this spectral 
sequence at a point X of Char G C Char 11'1 (X- D) yields the claim using 
3.2, since the localization of Hn(Ua) at x has the same x-eigenspace as 
Hn(Ua). 

Now, let us consider the effect of adding (ample) components to D. 

Lemma 5.2. Let D' an ample divisor such that DUD' is a divisor 
with isolated non-normal crossings. Then the homomorphism of 11'1(X-
D) modules: 11'i(X - D U D') 11'i(X - D) is surjective for 1 :::; i :::; 
dim X -1. In particular, if one considers Spec C[71'1 (X- D)] as a subset 
in SpecC[71'1(X -DUD')], then the intersection ofVk(11'n(X -DUD')) 
with Spec C[11'1(X- D)] contains Vk(11'n(X- D)). 

Sketch of the proof Let T(D') be a small neighborhood of D' in 
X. Then by the Lefschetz theorem, 11'i(T(D') - D' n D) surjects onto 
11'i(X -D). On the other hand, this map can be factored through 11'i(X-
D U D') which yields the claim. 

Lemma 5.2 suggests the following definition: 

Definition 5.3. The components ofVk(X -D) where Dis a union 
of a proper collection of Di 's forming D and which are considered as 
subsets in Spec C[11'1(X - D)] called the non-essential components of 
Vk(X- D). The remaining components are called essential. 

A character x is called essential if x('y) -# 1 for each element 'Y E 
11'1 (X - D) which is a boundary of a small 2-disk transversal to one of 
irreducible components of D. 

We shall see in the next section that only essential characters con-
tribute to the homology of branched covers. 

5.2. Hodge theory of branched covers. 
The relationship between the homology of branched and unbranched 

covers is more subtle in the present case than in the case of plane curves 
considered in [24] and the local case of Section 4. One of the reasons is 
that there is no prefer non-singular model for the abelian global case. 
Only the birational type of branched cover is an invariant of X- D, 
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and hence the Betti numbers of branched covers depend upon compact-
ification of the unbranched cover. However, the Hodge numbers hi,O are 
birational invariants (in the case dim X = 2, they determine the rele-
vant part of homology of branched cover completely due to the relation 
b1 = 2h 1•0 ) and one can expect a relation between the Hodge numbers 
hi,O and the homology of unbranched covers. 

Recall that the cohomology of unitary local systems supports a 
mixed Hodge structure (cf. [38]). We shall denote 

hp,q,k (.C) = dim (Hk (.C)) 

the dimension of the corresponding Hodge space. In the case of a rank 
one local system having a finite order, one has the following counterpart 
of 5.1: 

Theorem 5.4. Let, as in 5.1, X E Char(7rl(X -D)) be a character 
of a finite quotient G of 11"1(X- D). Let Ua be a G-equivariant non-
singular compactijication of Ua and let Hp,q(Ua)x be the x-eigenspace 
of G acting on Hp,q(Ua). Then 

hn,O,n(.Cx) = hn,O(Ua)x 

Sketch of the Proof. The functoriality of the Hodge structure on coho-
mology of local systems yields that the isomorphism in 3.2 is compatible 
with the Hodge structure: hn,O,n(X -D, .Cx) = hn,O,n(Ua)x where in the 
RHS are the Hodge numbers of the Deligne's MRS on the cohomology 
of non-singular quasi-projective manifold (cf. [11]). Let E = Ua- Ua, 
which we assume is a divisor with normal crossings. In the exact se-
quence of MRS: Hn(Ua, Ua) -f Hn(Ua) -f Hn(Ua), which splits into 
corresponding sequences of x-eigenspaces, the image of right homomor-
phism is WnHn(Ua) (cf. [11]3.2.17). This result is a consequence of the 
identity: Ker Hn(Ua) -f Hn(Ua) n Hn,o = 0 To see the latter, notice 
that using the duality Hn+2(E) x Hn(Ua,Ua) -f C( -n- 1) (C( -k) 
is the Hodge-Tate) we obtain hn,o,o(Ua, Ua) = hn+l,l,n+2 (E). On the 
other hand, for each smooth component Ei of E one has hi,J,n+2 f:. 0 
only when 0 :::; i, j :::; n and the Mayer Vietoris sequence of MRS yields 
the same conclusion for E. Hence Hn(Ua) -f Hn(Ua) is injective on 
Hn,o and the result follows. 

§6. Conjecture and results on the structure of characteristic 
varieties. 

Now we return to the situation discussed in Section 2 and consider 
the complements to divisors D with isolated non-normal crossings on 
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projective manifolds X (dim X = n + 1). Our goal is to calculate the 
components of Yi(7rn(X- D)). The procedure described below is a 
generalization of the one outlined in [24]. 

Let us assume that H 1 (X- D) = zr (i.e., to avoid mainly notational 
complications, assume that H 1 (X -X, Z) is torsion free) and consider 
the covering corresponding to the homomorphism H 1 (X - D) ---> G = 

Let ki be the orderinG of the element of H 2n(D) correspond-
ing to Di so that we have the surjective map H 2n(D) ---> EBi=l, .. Nzki and 
also the surjection G' ---> G where G' = EBZki. Let K = ker G' ---> G. We 
have the following diagram (the left column is the part of the sequence 
(2) ): 

0 0 
r r 

H1(X- D, Z) ___, G 
r r 

H 2n(D, Z) ___, G' 
r r 

ImH2(X, Z) ___, K 
r r 
0 0 

Dualizing, we obtain: 

0 0 0 
l l l 

H 1(X- D,R) ___, Char H 1 (X - D) ,__ CharG 
l l l 

(6) H2n(D,R) ___, Char H 2n(D) ,__ CharG' 
l l l 

Hom(ImH2(X), R) ___, CharimH2(X) ,__ CharK 
l l l 
0 0 0 

with the maps from the left to the middle column on (6) induced by the 
universal covering map R ---> S1. The left column itself is the part of 
the cohomology sequence of the pair (X, X- D). 

Consider the preimage of Char G' C Char H 2n(D, Z) under the map 
H 2n(D, Q) ___, H 2n(D, S 1) and select the fundamental domain for the 
action of the kernel of the latter map i.e. the action of H 2n(D, Z) on 
H 2n(D, Q). We shall assume that this domain is the unit cube U : 
{(j1, ... ,jN) I 0::; ji < 1} in QN (N = rkH2n(D,Q)) with coordinates 
corresponding to the components of D. Selection of the fundamental 
domain allows to attach to each x E Char G' unique element in U. The 
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preimage of Char G is a subgroup of H 2n(D, R). The image of this 
subgroup in Charlm H 2(X, Z) is trivial and hence belongs to 

Hom(ImH2(X,Z),Z) c H 2(X,Z). 

In particular, any character X of G determines the element £x of Pic( X). 
These bundles satisfy: Lx@ Lx-1 = @0(D8 ) where D 8 is the collection 
of irreducible components of D such that X('YDJ -:/- 1 (/'Ds is the image 
in HI (X -D) of the generator of the summand of H 2n(D) corresponding 
to D 8 ). One can show that if Xa -+ X is a branched cover then the 
divisorial components of f.(Ox 0 ) are We have: f.(nk:I) = 
EBxD1+I @ Lx-1. Also, for a given V E Pic(X) the collection of lifts of 
characters X E Char H 2n(D) to H2n(D, R) such that Lx-1 = V form an 
affine subspace Lv of H2n(D, R). 

Example 6.1. Let X = pn+I and let D be an arrangement of r + 1 
hyperplanes Hi, i = 1, ... , r (i.e., HI (Pn+I_ D, Z) = zr). The characters 
of H 2n(D, Z) which factor through (Z/nZt correspond to the collections 
Xi E Z, i = 1, , , , r + 1, 0 ::; Xi < n such that 2::: Xi = 0 mod n. Let us con-
sider a covering Xa with the Galois group G = (ZjnZt corresponding to 
the homomorphism HI(Pn+I- D, Z)-+ Zjnzr+I j(Z/nZ) (quotient by 
the diagonally embedded cyclic subgroup K of G' = (Zjnzr+I) sending 
the boundary of a small disk transversal to Hi to a generator of the i-th 
summand. We have f.(Ox0 ) = EB£x with Lx = 0((- 2::: More-
over, Lx-1 = 0(2:::(1 - Taking ramification into account, the 
assignment the characters of HI(X- D, Z) to elements of H 2n(D) can 
be done so that to (xi, ... , Xr+d corresponds the character exp(2:(1 -
x,+I )) and so that: f (nn+I) = EB nn+I @ 0((1 - Xl +I )H) n * X!, .. 1X·r+l pn+l n 
for (xb ... , Xr+I), 0 ::; Xi < n selected so that 2::: x,;;I E Z. We have 
Pic(X) = Z and the preimage of O(l) E Pic(X) is the hyperplane in 
H 2n(X, R) corresponding to the latter lift. It is given by x 1;;I + ... + 
xr+I = l where xi's are the coordinates corresponding to the basis of n 
H 2n(X, Z) given by the cycles dual to Di 's 

Now, with each S E S, we associate a polytope in the unit cube 
in Rr as follows. For any S E S, one has the map HI(B,- D) -+ 
HI(X- D) and hence the map Char HI(X- D) -+Char HI(B,- D). 
The latter lifts to the map of universal covers: Rr -+ Rs where s 
is the number of components of D containing S. This can be de-
scribed in coordinates as follows. A vector 2 : (l'i:I, .. , !'i:r) E Qr(o ::; 
l'i:i < 1) for any collection (ji, ... ,j8 ) determines the vector: 211 , .. ,j, = 
( {2::: ai,j1 1'i:i}, .... , {2::: ai,]ll'i:i}) E qr ( {} is the fractional part of a ratio-
nal number). For each S E S, we consider subsets consisting of 
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vectors 3 = (K1, .. , Kr) such that g]t, .. ,j. E 'Ps where Dj1 , ., Dj. are the 
components of D passing through S E S and 'Ps E Q8 is a face of a 
polytope of quasi-adjunction of INNC formed by Dj1 , •• , Dj •. 

Definition 6.2. LetS C X be the collection of non-normal cross-
ings of the divisor D. Global polytope of quasi-adjunction corresponding 
to s is nsES A global face of quasi-adjunction is a face of a global 
polytope of quasiadjunction. A divisor V = L: aiDi E Pic X, ai E Q is 
called contributing if the corresponding subset Lv of the elements of the 
universal cover ( cf definition before Example 6.1) contains a global face 
of quasi-adjunction :F and H 1 (A:F ® !1"k+l ® V) =1- 0. Here A.r is the 
ideal of quasiadjunction corresponding to the face :F ( cf Remark 4. 6). A 
global face of quasi-adjunction :F is contributing if there is a contributing 
divisor such that the corresponding subspace Lv contains :F. 

Conjecture 6.3. Zariski closure of exp(:F) C Char H 1 (U, Z) is a 
component of chamcteristic variety Vk where k = dim H 1 (A:F ® !1"k+l ® 
V) if :F is a contributing face of a polytope of quasiadjunction. 

I don't know if such components are all essential components of the 
characteristic variety. 

The supporting evidence is the following. This conjecture is shown 
in [24] in the case of curves and in the case X = pn+l and D is a 
hypersurface with isolated singularities in [23]. Both of these results can 
be generalized as follows (the proof, based on the methods used in these 
two papers will appear elsewhere). 

Theorem 6.4. Let D C pn+l be a union of hypersurfaces Do, 
Dt, ... , Dr of degrees 1, d1. ... , dr respectively, which is a divisor with 
isolated non-normal crossings. Let :F be a face of global polytope of 
quasi-adjunction, i.e. a face of an intersection of polytopes of quasi-
adjunction corresponding to a collection S of non-normal crossings of 
D. Let d1x1 + ... + drXr = l be a hyperplane containing the face of 
quasiadjunction :F. If H 1 (A:F ® O(l- 3)) = k, then the Zariski closure 
of exp(:F) C Char H1(pn+I- D) is a component of Vk(7rn(X- D)). 

A consequence of the conjecture is the corollary. 
Conjecture 6.5. Let X E Char 1r1 (X- D) be a chamcter of a finite 

quotient of G of the fundamental group. Let, as in Lemma 5.4, Ua 
be a G-equivariant compactification of the unbmnched cover of X - D 
with the Galois group G and let be the x-eigenspace of the G 
acting on Hn·0 (Ua). Then = 0 unless the lift of x belongs to 
a contributing global face of quasi-adjunction :F and in which case one 
has: 
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where D E Pic(X) is the divisor corresponding to the lift of character X· 

In the case when there are bundles £i such that £7i = O(Di) and 
the cover corresponds to the group Zn1 x ... x Znr, using the arguments 
similar to those used in [39], one obtains (in agreement with the con-
jecture) the following: the eigenspace of the action of G corresponding 
to the dimension of the eigenspace corresponding to ( , ... , e21ri!i;-) 
is dimH1 (A.r 0 0 £f1 0 ... 0 £¥r). In the case when r = 1 the 
condition that ( E!., ... , 1!:!:..) belongs to the face of quasi-adjunction be-

nl nr 
comes the condition that ; is an element of the spectrum of one of the 
singularities of the divisor D and one obtains the result from [39]. 

§7. Examples 

7.1. Local examples 
Example 7.1. Germs of curves. -----In the case of curves, the support of H 1(8B,- D, C) is the zero set 

of the Alexander polynomial. There are extensive calculations of this 
invariant using knot-theoretical methods ( cf. [15]). Hodge decomposition 
is considered in [25]. For example, for the singularity xr - yr = 0, the 
characteristic variety is lt · · · tr = 1 ( cf. the calculation for the cone over 
the generic arrangement in Section 4). The faces of the polytopes of 
quasi-adjunction are the hyperplanes x 1 + ... + Xr = l, (l = 1, .. , r- 2). 

Example 7.2. Cones. 

A generalization of the example of arrangements of hyperplanes con-
sidered in Section 4 is given by a union of non-singular hypersurfaces in 
pn which form a divisor with normal crossings ( cf. [26]). If the degrees 
of hypersurfaces are d1, .. , dr respectively then V1 = Supp(7rn(Cn+l -
D) 0 C) is given by tt1 • ••• • - 1 = 0. 

7.2. Global examples 
Example 7.3. Plane curves 

We refer to [24] for examples of characteristic varieties for pencils 
quadrics (Ceva arrangement offour lines) and pencils of cubics (arrange-
ment of nine lines dual to inflection points of a non-singular cubic and 
the arrangement of 12 lines containing its inflection points). Papers [27], 
[28] and [10] describe a combinatorial method to detect components of 
characteristic variety and in [9] a generalization to arrangements of ra-
tional curves is considered. Papers [3] and [5] contain applications of 
characteristic varieties to geometric problems. 
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Example 7.4. Arrangement in P 3 with isolated non-normal cross-
ings for which 1r2 of the complement which support has non-trivial es-
sential components. 

Consider the arrangement D 8 ,4 of hyperplanes in P 3 which is an 
(8,4) configuration (cf. [17]). It includes a plane containing 4 generic 
points Q1 , ... , Q4, six generic planes Hi,j each passing through the line 
QiQj and also the plane containing the four coplanar (by Desargue the-
orem) points Hi,j n Hj,k n Hi,k· Recall (cf. [17]) that this configuration 
contains eight planes and eight points such that every plane contains four 
points and every point belongs to exactly four planes. Denoting eight 
points by 1, 2, 3, 4, 1', 2', 3', 4' and eight planes by 1, 2, 3, 4, 1', 2', 3', 4' 
the incidence relation is given by the diagram: 

1 1' 
2 2' 
3 3' 
4 4' 

1 1' 
2 2' 
3 3' 
4 4' 

where the plane in position ( i, j) contains all points in row i and column 
j except for the point in position (i,j). 

This arrangement of eight hyperplanes has only isolated non-normal 
crossings. From 2.2, we infer that H1 (P3 - D8,4 ) = Z7 . Moreover we 
have the rational map: 

where I is the ideal sheaf of the collection of eight points in P 3 forming 
this configuration. The indeterminacy points are the eight points of 
configuration. In order to calculate the IT-image of the hyperplanes of the 
arrangement, notice that the points in the target of the map correspond 
to the pencils of quadrics in the web, the image of a point is the pencil 
of quadric in the web containing this point and the lines correspond to 
quadrics in H 0 (P3 ,I(2)) i.e. are the collections of pencils containing a 
quadric. In particular, the image of a point Pin a hyperplane HE Ds,4 
is a pencil of quadrics from H 0 (P3 ,I(2)) containing P. This pencil 
contains the quadric among the four quadrics containing P, mentioned 
earlier. Hence the image of P belongs to the union L of four lines in 
P(H0 (P3 ,I(2)))* corresponding to above four quadrics. Therefore we 
have a regular map: II : P 3 - D8,4 ---> P 2 - L. 

Let us calculate the cohomology of local systems II*(£), where £ 
is a local system on P 2 - L. We have the Leray spectral sequence: 
HP(P2 - L,Rm(IT*£)) =? HP+Q(P3 - Ds,4,II*£). Using Rm(£) = 
£ Q9 (C) and looking at the critical set of II, one checks that H 0 (P2 -
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L,£ Q9 RIT!(C)) = H 1 (P2 - L,£ Q9 RII!(C)) = 0 for a Zariski dense 
set of local systems. Hence this spectral sequence degenerates for those 
local systems £ on P 2 - L. This yields that H 2(P3 - D8 ,4 , II*(£)) = 
H 2(P2- L, C) = C 3 for a Zariski dense set of local systems£ on P 2 - L. 

The above calculation shows that, since 

the support of the homotopy group: n2(P3 -D8,4 )18lC has a 3-dimensional 
component. Projections from each of eight vertices of this configuration 
yield linear maps of P 3 - D8 ,4 onto the complement in P 2 to four lines 
in a general position and hence a 3-dimensional component. We obtain 
hence in Spec C[HI(P3 - D 8,3 )] nine 3-dimensional components of the 
support of n2(P3 - Ds,3) Q9 C. 

The component corresponding to the web of quadrics can be de-
tected using Theorem 6.4. Indeed local face of quasiadjucntion has the 
form Xi 1 + Xi2 + Xi3 + Xi4 = 1 where Xi1 correspond to the planes con-
taining one of the above 8 points. The intersection of these hyperplanes 
in R 8 has dimension 3 and belongs to the hyperplane x 1 + .... + x 8 = 2 
since adding relations Xi 1 + Xi2 + Xi3 + Xi4 = 1 for all 8 points yield the 
relation 4x1 + ... + 4x8 = 8 since each point belongs to 4 hyperplanes. 
This intersection will be contributing iff dim H 1 (.:7(8- 4- 2) -j. 0 where 
Op3 / J has support at the above 8 points and and the stalk of J at each 
of those is the maximal ideal of Op3. The sheaf .J has Koszul resolution: 

0 Op3(-6) Op3(-4)3 Op3(-2) 3 .J 0 

which yields dim H 1 (P3 , .:7(2)) = 1 i.e. the above face of quasiadjunction 
is contributing. 

§8. Betti and Hodge realizations of multi-variable motivic zeta 
function 

The purpose of this section is to relate the motivic zeta function of 
Denef and Loeser in the case of local INNC to the invariants considered 
in Section 4. 

Recall that, to a smooth variety X over C and r holomorphic func-
tions fi : X C, one associates a multi-variable motivic zeta-function 
Zfi, ... ,J, (T1, .. , Tr) which is a formal series in Mx0 xG;;, [[T1, ... , TrlJ· Here, 
as in [12], X 0 = ni fi- 1 (0), Gm is the multiplicative group of the field 
C and for a variety S the ring Ms is obtained from the Grothendieck 
group K 0 (V ars) of varieties overS by inverting the class L of A}, x S E 
K 0 (Vars). More precisely, denote £(X) (resp. £n(X)) the arc space of 
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X (resp. arc space mod n) whose points are the maps Spec C[[t]] --t X 
(resp. Spec C[[t]]/(tn+l) --t X). Let 

Xnt, ... ,nr = {¢ E .Cn(X), n = L nj I ordt¢*(Ji) = nj j = 1, ... , r} 

and ac(f) = (ac(fl), ... ,ac(fr)): Xn 1 , .. ,mr --t assigns to an arc in 
Xnt, .. ,n.r the vector which j-th component is the coefficient of tni in 
¢*(fi). Together with 7ro : Xn 1 , •• ,nr --t X which assigns to an arc the 
image in X of its closed point Spec C --t Spec C[[t]], this makes Xn 1 , •. ,nr 
into x Xo-manifold. Then 
(7) 

One has the canonical maps (resp. Betti and Hodge realizations): etop : 
K 0 (Varc) --t Z and eh : Ko(Varc) --t Z[u, v] induced by the maps 
assigning to a variety V its topological euler characteristic and the E-
function Li ( -1 )i dim (both F and W filtration 
are coming from Deligne's Mixed Hodge structure on V). We also will 
use the equivariant refinement of etop and eh defined for V E V arc sup-
porting an action of a finite group G via biholomorphic transformations. 
For x E Char G, those refinements pick the corresponding eigenspaces: 
(8) 
etop,x(V) = L(-1)idimHi(V)x and eh,x(V) = L(-1)iGr:FHi(V)x 

i 

The function (7) can be expressed in terms of a resolution of singular-
ities of JI,, fr as follows (cf. [12]). Let Y --t X be a resolution of 
singularities of D, i.e. the union of the exceptional set uiEJ Ei and 
the proper preimage of an INNC D is a normal crossings divisor. For 
I c J, let E[ = niEIEi- UjEJ-IEj, ai,k (resp. Ck) is the order along 
the exceptional component of the pull-back on Y of function fi (resp. 
the order of the pull back of the differential dx1 1\ ... 1\ dxn+d· Let Ui 
be the complement to the zero section of the normal bundle to Ei in Y, 
and U1 is the fiber product of UiiEy over EJ. Then: 
(9) 

L -c;-lTai,l ,.,.,ai,r 
""" r 1 · .. .Lr 

Zft, .. Jr(Tb .. ,Tr) = L.)UJ/Gm x Xo]IIiEI 1 _ L-c;-lT1a;,t ... r:••r 
ICJ 

We have the following: 

Theorem 8.1. Betti realization of Zft, ... ,J)Tl, ... , Tr) determines 
the essential components of the characteristic variety V1. More precisely, 
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for an essential X: 

(10) 

Proof One can deduce this from C. Sabbah's results in [33] similarly 
to [19] since, due to the vanishing theorem 4.1, the multi-variable zeta 
function studied in [33] determines the support of the 1r1 (Be- D) module 
7rn(Be- D). 

In the cyclic case, the Hodge realization of the motivic zeta function 
is equivalent to the spectrum (cf. [12]). At least in the case of curves, 
one has the Hodge version in the abelian case as well (as was suggested 
in [29]): 

Theorem 8.2. For n = 1, the Hodge realization of (7) determines 
the polytopes of quasiadjunction. 

Proof Let Xm,, ... ,mr be the link of an abelian cover Vm,.,.,mr 
given by the equations (5) with n = 1. A resolution of this com-
plete intersection singularity in the category of spaces with quotient 
singularities (in the case of ADE singularities) can be 
obtained as the normalization Vm,, .. ,mr of Vm,, .. ,m+r Xs, YD, where 
YD ----+ Be is an embedded resolution of the singularities of D. The ex-
ceptional locus E of the resolution of ( 5) supports the action of the group 
G = Zm, x ... x Zmr· We have the following sequence of MHS (cf. [36]): 
0----+ H};(V;;::::.r) ----+ H 1(E) ----+ H 1(Xm,, ... ,m,) ----+ 0, which in the case 
n = 1 yields the equivariant isomorphism H 1 (Xm,, ... ,mr) = H 1(E) of 
MHSs. Since the MHS on H 2 (E) is pure, we have: 

(11) dimF1H 1 (Xm,, .. ,mr)x = dimGr}H1 (L)x = eh,X(E) 

The latter is determined by the Hodge realization of (9), since the pull-
back of [Ui] via the map Mc;:;.,xx0 ----+ Mc;;.xx0 corresponding to the 
map x X 0 ----+ x X 0 given by Zi = u",('i is equivalent to the un-
branched cover of 8Be - D, which is preimage of c cr for the 
projection of (5) onto the space of z-coordinates. In particular, it de-
termines the class of the exceptional set Ei in Me. It follows from (11) 
that dimF1 H 1 (Xm,, .. ,mr)x 2: 1 iff eJ..x(E) 2: 1. QED. 
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