
REMARKS ON SEMI-SIMPLICITY OF ALEXANDER MODULES
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Abstract. We discuss examples of smooth quasi-projective manifolds with

non-reduced Alexander modules, giving a non-semisimple Alexander module

in one variable case and prove a result giving sufficient conditions for semi-
simplicity.

1. Introduction

Let X be a smooth quasi-projective variety such that the fundamental group
π1(X) admits a surjection ρ : π1(X) → Z onto an infinite cyclic group. The i-th

Alexander module of the pair (X, ρ) is defined as the homology group Hi(X̃ρ,Q)

with closed support of the infinite cyclic cover X̃ρ corresponding to the kernel of
ρ. This vector space, may or may not be finite dimensional but it is a finitely
generated Q[t, t−1]-module with the module structure given by the action as the
deck transformation of the cover Xρ, of a generator t of the infinite cyclic target of
ρ. In the case i = 1, the Alexander module is the abelianzed kernel of ρ (tensored
with Q). If the Alexander module is a finite dimensional Q-vector space it is a
torsion Q[t, t−1]-module and its order as Q[t, t−1]-module is well defined up to a

unit of Q[t, t−1], called the Alexander polynomial. If Hi(X̃ρ) is infinite dimensional,
then the Q[t, t−1]-order of its Q[t, t−1]-torsion submodule is also a useful invariant.

If X is a complement to a divisor on a smooth projective surface, some as-
sumptions of ampleness of irreducible components of this divisor and properties
of ρ imply that the first Alexander module is a torsion module (cf.[9] Theorem
3.3 or Theorem 1.2 below for precise conditions). Again with certain ampleness
assumptions on irreducible components of X̄ \ X, the Alexander polynomial can
be calculated in terms of classes of these components in the Neron-Severi group
and the superabundances of the linear systems defined by the singularities of the
components.

It was pointed out in [7], in the case when X is a complement to a complex affine
irreducible plane curve C ⊂ C2, having singularities with semi-simple monodromy,
and transversal to the line at infinity, one has canonical surjection: ρ : π1(C2\C)→
H1(C2 \ C,Z) = Z and the Alexander module (over R) is isomorphic to a direct
sum ⊕R[t, t−1]/(∆κ) (here ∆κ are the polynomials defined in terms of local type
of singularities and the number of summands given by the superabundances of the
linear systems associated with the singularities). In particular, the first Alexander
module of the complement is a semi-simple R[t, t−1]-module. The semi-simplicity
of the torsion part of the Alexander modules with i ≥ 1 for the complements to
hypersurfaces in affine space was systematically studied in [12] and continued in [4],
[10], [13]. A sufficient condition for semi-simplicity of the first Alexander module
for general Kähler groups was given in [1]. The Alexander invariants of solvable and
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nilpotent quotients of the fundamental groups of the complements to arrangements
of hyperplanes were considered in [11].

A detailed study of the Hodge structures on torsion part of the Alexander mod-
ules of a wider class of quasi-projective manifolds was carried out in [5]. The ques-
tion of semi-simplicity also was considered in this paper and it was shown that the
torsion part of the Alexander modules are semi-simple if X admits a proper holo-
morphic mapX → C∗ and the surjection ρ is the composition π1(X)→ π1(C∗) = Z.
[5] gives also a Hodge theoretical condition for semi-simplicity. In this paper also
the question was raised if non-semisimple Alexander modules exist.

In this note we prove two Theorems concerning the semi-simplicity property.
Theorem 1.1 considers a milti-variable analog of non-semi-simplicity, i.e. the Alexan-
der modules Hi(X̃,C) over the group ring C[Zr] corresponding to a surjection of
π1(X) onto Zr, having an annihilator which is not a radical ideal. A natural invari-

ant of Hi(X̃r,C) is the characteristic subscheme of the torus SpecC[Zr] which is the
affine subscheme corresponding to the annihilator in the ring of Laurent polynomi-
als SpecC[Zr] of the i-th Alexander module. Corresponding reduced subscheme is
the characteristic variety (cf. [8]) and is an analog of the Alexander polynomial in
the one variable case. Calculations of characteristic varieties, not relying on pre-
sentations of the fundamental group, are based on their relation with the homology
of finite abelian covers which use only the reduced part of characteristic scheme
(cf. [9]). Hence the cases when characteristic scheme is differ from characteristic
variety, the difference cannot be detected by the Betti numbers of abelian covers.
Since a module over Q[t, t−1] is semisimple if and only if its support is reduced, the
cases when characteristic schemes are different from characteristic varieties provide
a multivariable counterpart of non-semi-simplicity.

Theorem 1.1 gives examples of quasi-projective varieties which have contractible
universal covers, the 2-step nilpotent groups as their fundamental groups and have
non-radical annihilator of the Alexander modules. Construction of [3] and [2] shows
that there exist even projective groups with such property. Note that in examples of
Theorem 1.1 with a non-semi-simple Alexander C[t, t−1]-module, unlike in the cases
considered in [5], the surjection of the fundamental group onto Z is not induced
by a holomorphic surjection onto C∗. Existence of the later is an additional strong
contraint on X

The Theorem 1.2 gives sufficient conditions for semi-simplicity of one variable
Alexander modules. This is a generalization of the results in [4] and the argument is
close to the one used in the proof of divisibility theorems for Alexander polynomials
(cf. [9] for a recent account of those). The specific statements are as follows.

Theorem 1.1. Let A be polarized abelian variety of dimension n and ω ∈ Λ2H1(A,Z)
be a polarization. Let Xω

n be the complement to the zero section in a corresponding
positive definite line bundle. Then π1(Xω

n ) is a subgroup of a finite index in the
Heisenberg group Hn with presentation:

(1) {xi, yi, z|[xi, xj ] = [yi, yj ] = [xi, z] = [yi, z] = 1, [xi, yi] = z, ∀i, j,

[xi, yj ] = 1(i 6= j)i, j = 1, .., n}
and π1(Xω

n ) = Hn, if polarization is principal. Let ρ : Hn → Zn be the sur-
jection with the kernel being the normal closure of the subgroup of Hn generated
by y1, .., yn, z. Then the annihilator of the corresponding to ρ Alexander module
Hi(X̃

ω
n ,C)), i ≥ 1 is m2 where m is the maximal ideal of the identity of the torus
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SpecC[Zn]. In particular for n = 1 one obtains a quasi-projective groups with cor-
responding Alexander module being not semi-simple with the action of a generator
of Z having one 2× 2 Jordan block.

Theorem 1.2. Let X be a smooth projective variety of dimension greater than one
and let D = D1 ∪D0 be a reduced divisor on X. Assume that

(i) D0 is irreducible, smooth and ample.
(ii) D0 intersects D1 transversally (in particular only at smooth points of the

latter).
(iii) One has surjection ρ : π1(X \ D) → Z which takes the meridian of D0 to

non-zero.

Then Hi( ˜(X \D)ρ,C), where ˜(X \D)ρ is the cyclic cover corresponding to Kerρ,
is a semisimple C[t, t−1]-module.

These results are proven in the next section where also illustrating examples are
given. I am grateful to L.Maxim for his comments on an earlier version if this note.

2. Proofs of the Theorems 1.1 and 1.2

2.1. Proof of Theorem 1.1. The description of π1(Xω
n ) follows immediately from

the exact sequence of locally trivial C∗-fibration:

(2) 0→ Z→ π1(Xω
n )→ Z2n → 0

since the class of this extension can be identified the symplectic form corresponding
to polarization (cf. [3]; in fact sect. 5 of this paper shows that for appropriate
polarization and n ≥ 4, a generic linear section of the total space of such bundle
gives projective surface with fundamental group being the Heisenberg group (2);
cf. [2] for another version of the argument of projectivity of these groups).

It follows form (1) that the subgroup of Hn generated by y1, ..., yn, z is abelian
and normal. Denote by t1, ..., tn generators of the quotient corresponding to x1, .., xn.
Then we have:

(3) tiyj = yj (i 6= j), tiyi = yi + z 1 ≤ i ≤ n
In the case when polarization is not principal, the second part in (3) is given by
tiyi = yi + αiz (an explicite form of αi can be obtained in terms of elementary
divisors of the symplectic form corresponding to polarization, using matrix form of
Heisenberg group, cf. [3], Sect. 5). In particular the Alexander module is generated
by y1, .., yn satisfying the relations:

(4) αj(ti − 1)yi = αi(tj − 1)yj (ti − 1)yj = 0, (i 6= j)

Therefore, the annihilator coincides with m2. Finally, it follows that the abelian
cover X̃ω

n is homotopy equivalent to a torus and hence higher Alexander modules
are the exterior powers of the first one. The claim follows.

2.2. Proof of the Theorem 1.2. Note that assumptions (i),(ii),(iii) imply that
the first Alexander module is a torsion (cf. [9] Theorem 3.3 1). Let T (D0) be a small
regular neighborhood of D0. Let D′0 be a small deformation of D0 which is smooth
member of the linear system L(D0) and which is a smooth closed submanifold of
T (D0) transversal to all components of D1 at smooth points of the latter. It follows

1in fact the proof of semi-simplicity below is close to the one used in this reference to show
this property
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from (stratified) Lefschetz hyperplane section theorem for quasi-projective varieties
that the spaces X \D0∩D1 and D′0\D′0∩(D0∩D1) have the same (n−2)-homotopy
type i.e. X \D0 ∩D1 is homotopy equivalent to a CW-complex which is a union of
a CW -complex homotopy equivalent to D′0 \D′0 ∩ (D0 ∩D1) and cells of dimension
i ≥ n − 1. Hence the infinite cyclic covers of these both spaces, corresponding to
ρ : π1(X \ D) → Z and surjection ρD′O : π1(D′0 \ D′0 ∩ (D0 ∩ D1) → Z induced

by embedding D′0 \ D′0 ∩ (D0 ∩ D1) → X \ D0 ∩ D1 and ρ, also have cellular
decompositions identical up to dimension n − 2. Hence one has isomorphism of
C[t, t−1]-modules up to dimension n− 2 and surjection for i = n− 1:

(5) Hi([ ˜D′0 \D′0 ∩ (D0 ∩D1)]ρD0
)→ Hi([ ˜X \D0 ∩D1]ρ,C))

where [̃·]ρ denotes the infinite cyclic covers corresponding to the surjection onto Z
indicated by the subscript.

Next notice that T (D0)\ (D0∪ (D1∩T (D0))) is diffeomorphic to a locally trivial
fibration

T (D0) \D0 ∪ (D1 ∩ T (D0))
D∗→ D0 \D0 ∩D1

over D0 \D0∩D1 having a punctured disk D∗ as a fiber. Let d = ρ(γD0) ∈ Z where
γD0 ∈ π1(T (D0) \ (D0 ∪ (D1 ∩T (D0)))) is the class meridian in the component D0.
The sequence of the fundamental groups induced by this fibration and surjections
on the cyclic groups induced by ρT (D0) gives the diagram:

(6)
Z → π1(T (D0) \ (D0 ∪ (D1 ∩ T (D0)))) → π1(D0 \D0 ∩D1) → 0
↓ ρT (D0) ↓ ρ′ ↓
Z → Z → Z/dZ → 0

It follows from the Lemma 3.1 of [6] that the infinite cyclic cover

[ ˜T (D0) \ (D0 ∪ (D0 ∩D1))]ρT (D0)

fibers over the d-fold cyclic cover of D0 \ D0 ∩ D1) corresponding to surjection
ρ′ in the last column of the above diagram. This fibration has contractible fiber

C̃∗ and the action of the deck transformation on [ ˜T (D0) \ (D0 ∪ (D0 ∩D1))]ρT (D0)

factors through the action of a finite cyclic group. Hence the Alexander modules

Hi([ ˜T (D0) \ (D0 ∪ (D0 ∩D1))]ρT (D0)
are semi-simple.

Finally, consider the diagram:

(7)
Hi([ ˜D′0 \D′0 ∩ (D0 ∩D1)]ρD0

) → Hi([ ˜T (D0) \ (D0 ∪ (D0 ∩D1))]ρT (D0)

↘ ↓
Hi([X̃ \D]ρ)

in which all arrows are induced by respective embeddings. Since the map (5) is

an isomorphism, it follows that the vertical map is surjective. Hence Hi([X̃ \D]ρ),
being the quotient of a semisimple module, is semisimple as well. �

3. Miscellaneous comments.

3.1. Non-semisimple Alexander modules and Heisenberg groups.

Proposition 3.1. Let ρ : G→ Z be surjection such that the corresponding C[t, t−1]
Alexander module G′/G′′⊗C has a 2×2 Jordan block corresponding to the eigenvalue
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1 in a basis belonging to the lattice (G′/G′′)/Torsion ⊂ G′/G′′ ⊗ C. Then G has
as a quotient a subgroup of finite index in the Heisenberg group

(8) {x, y, z|[x, z] = [y, z] = 1, [x, y] = z}

Proof. Let x ∈ G be such that ρ(x) is the generator t multiplicative infinite cyclic
group and y1, ..., yN ∈ G′ be representatives of a basis of G′/G′′, such that the first
two elements of this basis ȳ1, ȳ2 ∈ G′/G′′ of form the 2 × 2 Jordan block i.e. the
action of t as the form tȳ1 = ȳ1, tȳ2 = ȳ2 + αȳ2. Let K be the subgroup of G′

generated by representatives y3, ..., yN , of remaining elements of Z- basis of G′/G′′.
It follows that G/K is isomorphic to the group of 3× 3 unipotent matrices over Z
and hence is a subgroup of finite index in the group (8). �

.

3.2. A group with non-semi-simple Alexander module. While this paper
does not contain examples of a quasi-projective groups having nilpotent quotients
with rank of the center being greater than 1, one can construct a 2-step nilpotent
group obtained as extension (2) in which one replaces Z by a free group Zk. If
one takes as cocycle in H2(Z2n,Zk) = ⊕k1H2(Z2n,Z) and the collection of k integer
2-forms of rank 2, with null spaces belonging a codimension 1 subspace (i.e. the
forms ω ∧ ηi, i = 1, ..., k with ω0, ηi being 1-forms), it is easy to check that such
group has the Alexander module corresponding to k Jordan blocks. It is not clear,
at the moment of this writing, if such a group is quasi-projective.

3.3. Example. A semi-simple Alexander module of a Zariski open subset of a gen-
eral simply connected smooth projective surface. This is Alexander modules version
of the example in section 4.6 of [9]. Let X be a smooth simply connected projec-
tive surface and D0 be a smooth ample divisor with the class [D0] ∈ H2(X,Z).
Let p, q ∈ Z>0 be such that there exist sections s1 ∈ H0(X,OX(pD0) and s2 ∈
H0(X,OX(qD0) which are smooth, transversal to each other, and are also transver-
sal to D0. Let D be the zero set of the section sq1 + sp2 ∈ H0(X, pqD0). It follows
from [9] (1.6), that H1(X \D ∪D0,Z) has rank 1 with torsion group having order
l, which is the greatest common divisor of of the integers ([D0], E), E ∈ H2(X,Z).
Surjection of π1(X \ D ∪ D0) onto Z, given by abelianization followed by taking
the quotient by the torsion subgroup allows to define the corresponding Alexander
module. D has pqD2

0 singularities each having the local equation xp + yq = 0 at
the subscheme SingD of X which is the complete intersection s1 = s2 = 0. Cal-
culation as in [9] section 4.6 shows that the sheaf of ideals of quasi-adjunction for
D ∪D0 is the ideal of the zero dimensional reduced scheme Sing(D) and that the
superabundance of the linear system H0(X,KX ⊗ (p + q)D0 ⊗ ISing(D)) is equal
to 1. It follows from theorem 1.2, that the ideal of reduced support of Alexander
module the annihilator of the Alexander module:

(9) [π′1(X \D ∪D′)/π′′1 (X \D ∪D′)]⊗Q = Q[t, t−1]/(
(tpq − 1)(t− 1)

(tp − 1)(tq − 1)
)

In the case when X = P2, D0 = P1, the fundamental group P2 \D (D can be take
to be a curve with equation (xp + yp)q + (xq + z)p = 0) is the free product of
Zp ∗ Zq which implies the isomorphism (9). It would be interesting to calculated
the fundamental groups π1(X \ (D ∪D0)) for other simply connected surfaces.
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3.4. Example. One variable Alexander modules of Campana-Carlson-Toledo groups
Let us consider one variable Alexander modules of groups discussed in Theorem 1.1.
Subgroup K generated by z, yi, i = 1, .., n, x2, ..., xn is normal and π1(Xn)/K = Z.
Abelianization of K is a free abelian group of rank 2n − 1 and the action of x1
on it by conjugation for n > 1 is trivial. Hence the Alexander module is just
[Q[t, t−1]/(t − 1)]2n−1. As shown in Theorem 1.1, in the case n = 1, one obtains
non-semisimple module Q[t, t−1]/(t− 1)2
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