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Abstract. We describe the symmetries of the braid monodromy decomposi-

tion for a class of plane curves defined over reals including the real curves with
no real points and proving new divisibility relations for Alexander invariants

of such curves.
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1. Preface and statement of results

Alexander polynomial of a projective curve embedded into a smooth algebraic
surface (cf. [14]) is an invariant of the fundamental group of the complement to the
curve. It measures a degree of non-commutativity of the group and can be expressed
in terms of geometric data of the surface and the curve, including the local types
and position of singularities of the curve on the surface. An interesting problem
is understanding which polynomials can appear as the Alexander polynomials of
the fundamental groups of the complements: this is a very special case of the
fundamental problem of understanding the quasi-projective groups.

Divisibility theorems give strong restrictions on the class of polynomials which
can occur as the Alexander polynomials of projective curves. One such result
(cf.[12],[14]) asserts that Alexander polynomial of the fundamental group of the
complement to an ample curve C divides the product of the Alexander polynomials
of links of all singularities of the curve. In particular, if such C has ordinary nodes
and cusps as the only singularities than the global Alexander polynomial has a
form (t − 1)a(t2 − t + 1)b. Focusing on the curves in a complex projective plane
rather than general smooth algebraic surfaces (as we will do in this paper) one can
easily see that a+1 is the number of irreducible components of C (cf. [14]) but the
range of multiplicities b is far from clear. In the case of curves in CP2, the global
Alexander polynomial also divides the Alexander polynomial of the link in the 3-
sphere which is the boundary of a small tubular neighborhood of a line with the
link being defined as the intersection of the curve with this 3-sphere. If this “line
at infinity” is transversal to the curve C then the corresponding link is the Hopf
link with d components where d is the degree of C and the Alexander polynomial
of the latter is (t−1)(td−1)d−2. One obtains that for curves with nodes and cusps
the multiplicity of the factor (t2− t+1) is at most d−2 if 6|d and is zero otherwise
(for a similar divisibility relation on surfaces more general than CP2 see [14]). 1

1A different divisibility relations one obtains if the line at infinity is selected to be non-

transversal to the curve or contains the singularities. This gives divisibility by the Alexander
polynomial of the complement to affine curve which is a complement in CP2 to the union of

the curve and the line. The Alexander polynomial of this affine curve may be different than

1
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This bound is much weaker than what so far was observed in examples. At the
moment, it is unknown if the multiplicity of a primitive root of unity of degree 6 in
the Alexander polynomial of a curve, having ordinary cusps and nodes as the only
singularities has a bound independent of d. The largest known multiplicity is 4 for
a curve of degree 12 with 39 cusps (cf. [2]). It is known that if the Mordell Weil
ranks of isotrivial elliptic threefold (or isotrivial elliptic surfaces) are bounded, the
multiplicities of the factors of the Alexander polynomials of curves in this class,
also are bounded independently of degree (cf. [2] for proof of both assertions).

In this note, we discuss a new type of divisibility relations for the Alexander
polynomials for the complements to curves in CP2 for which the defining equations
have only real coefficients 2. The presence of a real structure imposes restrictions on
the braid monodromy of the curve. The latter is an invariant of a curve C ⊂ CP2

and its projection onto a complex line N ⊂ CP2, given as the homomorphism
π1(N \ Cr, b) → Bd. Here b is a base point, Cr is the subset of N consisting of
points over which the fiber of projection of C has cardinality less than the degree d
of C, and Bd is Artin’s braid group. If one views Bd as the mapping class group of
a disk with boundary and d marked points then the braid monodromy assigns to a
loop in N \ Cr the class of the diffeomorphism is given by the trivialization of the
fibration of the pair (CP2 \ p, C), over this loop (here p is the center of projection
onto N , cf. [18], [14] for a more recent exposition or section 3 below).

In Section 3, we describe symmetry in the structure of this homomorphism de-
pending on the real structure of the curve. It appears that certain operators intro-
duced by Garside (cf. [8]) play important role in the description of this symmetry
and vice versa, the study of braid monodromy of real curves gives geometric inter-
pretation to some of Garside’s identities. In particular, if the projection is defined
over R and the intersection of the finite set Cr with the real locus ofN is empty then
the braid monodromy takes the class in π1(N \Cr, b) (where b is real) represented
by the loop corresponding to RP1 to the Garside word ∆. Braids corresponding to
such loops were considered in [15] in the related context of Hurwitz schemes. If the
real part of the critical set Cr ∩RP1 ̸= ∅, then π1(N \Cr, b) contains three canon-
ical loops: the one containing only critical points in the real part of the critical set
and two loops containing all critical points in each of two connected components of
N \RP1. We describe constraints on corresponding braids and solve the equations
in the braid group to obtain an explicit form of the braids corresponding to these
canonical loops.

In section 4.1 we prove that the fundamental group of a curve over R is a quotient
of the fundamental group of a link which is one of the closed braids attached to
the curve in section 3. The argument here is purely topological, does not use an
algebro-geometric structure, and can be used in a different, for example symplectic,
context.

In Section 5 we show that the global Alexander polynomial of a curve over R
divides the Alexander polynomial of a link which is the closure of a braid associated
with the real structure and discussed in two previous sections. We calculate these
Alexander polynomials in some cases and make the divisibility relations explicit.

the Alexander polynomial of the projective curve. A slightly better than d − 2 bound on the
multiplicity is given in [2] Cor.3.13.

2in the case of reducible curves, this allows for irreducible components not to have R as the
field of definition; we do not make any assumptions about the reality of the critical values of

projections used to construct the braid monodromy as was customary in previous works, cf. [11]
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For example for real curves without real points at all, the Alexander polynomial

divides (td−1)
d−2
2 (t

d
2 +1)(t−1). This gives d

2−1 as a new bound on the multiplicity

of the factor t2− t+1 in the Alexander polynomial of a curve with nodes and cusps
over R and no real points. Moreover, we show that this bound is sharp at least
for such sextics. The last section also contains a discussion of braid monodromy of
arrangements defined over reals, i.e. such that the equation of the union of all lines
is defined over R, but having only finitely many real points. Such arrangements
are perhaps of interest on their own. Note that the effect of complex conjugation
on braid monodromy was considered earlier in [3] (in connection with a study of
MacLane arrangements).

Part of this work was done while the author participated in “Braids” pro-
gram at ICERM in the spring of 2022. The author thanks B.Guerville-Balle and
A.Degtyarev for very useful comments and references in connection with the earlier
version of this note.

2. Complex conjugation and braid groups

Let PN = {P1, · · ·PN} be an invariant under conjugation subset in C. Let P0 ∈
R. Complex conjugation induces on free group π1(C \PN , P0) an automorphism of
order 2. In the following system of generators, this automorphism has a particularly
simple form.

Recall that a good ordered system of generators of π1(C \ PN , P0) is given by
N loops each consisting of a segment Ii running from P0 to the vicinity of one of
the points Pi, followed by a counterclockwise loop running along the boundary of
a small circle centered at Pi and then returning to P0 along Ii. Moreover, it is
assumed that these loops are non-intersecting and ordered by the counterclockwise
ordering of their intersection points with a small circle centered at P0.

Without loss of generality, we assume that the points in PN are ordered so that
P1, · · ·Pk ∈ H+, PN , · · ·PN+1−k ∈ H−, Pi is the complex conjugate of PN+1−i, i =
1, · · · , k, Pk+1, · · ·PN−k form an increasing sequence of real numbers with P0 >
PN−k and exist an interval I ⊃ PN such that the order in PN is given by an
orientation of I. We select a good ordered system of generators x1, · · · , xN−k of the

fundamental group π1(H
+
ϵ \

⋃N−k
1 Pi, P0) of the complement to the set P1, · · ·PN−k

in a ϵ-neighborhoodH+
ϵ of the closure ofH+ in CP1 and extend it to a good ordered

system x1, · · · , xN adding loops as sets being the conjugates of the first k loops
in the already selected system but using orientation and the order given by the
above definition of a good ordered system. With these notations, the involution on
π1(C \ PN , P0) induced by the complex conjugation γ → γ̄ of the oriented loops is
given by (writing from the left):
(1)
x̄i = x−1

N+1−i, i = 1, ...k x̄i = xN−k · · ·xi+1x
−1
i x−1

i+1 · · ·x
−1
N−k, i = k + 1, · · ·N − k

Note that if at most one of Pi, i = 1, · · ·N is real, then the action is just x̄i = x−1
N−i.

In particular, one has

xN · · ·x1 = (xN · · ·x1)
−1

Let Diff(D2,PN ) be the group of diffeomorphisms of a conjugation invariant
disk in C containing PN and taking the set PN into itself. Let Diff+(D2,PN , ∂D2)
be its subgroup consisting of diffeomorphisms which are orientation preserving and
constant on the boundary of the disk. The latter is a normal subgroup of the former
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and the same is the case for the groups of connected components of each of these
groups. The group π0(Diff+(D2,PN , ∂D2) is Artin’s braid group BN . The com-
plex conjugation is an orientation-reversing element in Diff(D2,PN ) and conjuga-
tion by this element, acting as an inner automorphism of π0(Diff(D2,PN )), acts
as the outer automorphism of the normal subgroup BN = π0(Diff+(D2,PN , ∂D2).
We denote this automorphism as β → β̄, β ∈ BN . The group BN is a subgroup of
the group of automorphisms of π1(C \ PN , P0) and from the above definition, one
has

(2) β̄(x) = β(x̄) x ∈ π1(C \ PN , P0), β ∈ BN

It is immediate that (2) implies for standard generators s1, · · · sN−1 of BN , i.e.
the counterclockwise Dehn half-twists corresponding to line segments connected
consecutive points in PN , the following:

(3) s̄i = s−1
N−i i = 1, .., k − 1, N − k + 1, · · · , N − 1;

(4) s̄i = s−1
i i = k + 1, · · ·N − k − 1

Conjugates of generators in the remaining pair are given by:
(5)
s̄k = s−1

k+1 · · · s
−1
N−k−1s

−1
N−ksN−k−1 · · · sk+1; s̄N−k = s−1

n−k−1 · · · s
−1
k sk+1 · · · sN−k−1

Conjugation on the braid group depends on the set PN and has particularly form
(3) if Card(PN ∩ R) ≤ 1 or (4) if PN ⊂ R (the latter is the case considered in [3]).

Following Garside (cf. [8] sec. 1.2 and 2.1) we will use the involution R : si →
sN−i and the anti-homomorphism rev : BN → BN which is rewriting a word
in generators si of the braid group or their inverses in reversed order. One has
rev(gh) = rev(h)rev(g),∀g, h ∈ BN . We will use similar operations Rxi = xN+1−i

and rev on generators x1, .., xN of a free group. In particular, if CardPN ∩ R ≤ 1
(equivalently k = N

2 or k = N−1
2 , N odd) i.e. the action is given by (3) then

(6) s̄i = R(si)
−1 x̄i = R(xi)

−1

It follows from [8] that with such restriction on k, the action of complex conjuga-
tion on Garside word satisfies ∆̄ = ∆. Also, note that the complex conjugation and
inner automorphisms generate AutBN cf. [7]: the automorphism ϵn in that paper is
the product of R and complex conjugation; in the case PN ∈ R, the automorphism
ϵn is the complex conjugation cf. (4).

Note the following property of anti-homomorphism Rrev:

Proposition 2.1. The equality

(7) Γ1Rrev(Γ1) = Γ2Rrev(Γ2)

implies that Γ1 = Γ2.

Proof. In the case Γ2 = ∆, since Rrev∆ = ∆ and Γ∆ = ∆RrevΓ (cf. [8], Lemma
2) i.e. ∆(RrevΓ)−1 = Γ−1∆ one has from (7): ∆−1Γ1 = ∆(RrevΓ1)

−1 = Γ−1
1 ∆ =

(∆−1Γ1)
−1. Hence ∆−1Γ1 has order 2 and since braid groups have no torsion we

obtain ∆ = Γ1.
Now consider the general case. The map Γ → Rrev(Γ−1) is an automor-

phism of Bd (it is a composition of an automorphism and two one-to-one anti-
homomorphisms Γ → rev(Γ) and Γ → Γ−1). Hence (7) implies that

Γ−1
2 Γ1 = Rrev(Γ2)(Rrev(Γ1))

−1 = Rrev(Γ2)Rrev(Γ−1
1 ) =
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Rrev(Γ−1
1 Γ2) = Rrev(Γ−1

2 Γ1)
−1

If Γ satisfies ΓRrevΓ = 1 then

∆2 = (∆Γ)[(RrevΓ)∆] = [(RrevΓ)∆)][(RrevΓ)∆]

and above special case implies that RrevΓ∆ = ∆ i.e. Γ = 1. Applying this to
Γ = Γ−1

2 Γ1 the claim follows. □

3. Braid monodromy of curves over R

Recall the definition of braid monodromy in the context of real curves. Let
P ∈ RP2, pR : RP2\P → NR be the projection from P onto a line NR and LR be the
corresponding pencil of lines in RP2. For each of these objects, the corresponding
complexification will be denoted by the same letter but with R changed to C.
Complex conjugation acts on the set of C-points of each of these sets, having the
set of real points as the fixed point set. The fiber of projection pC over c ∈ NC will
be denoted LC,c.

Let b ∈ NR be a point selected so that LC,b is transversal to the complexification
CC of a curve CR. Let Cr ⊂ NC be the subset of the points c such that Card(p−1(c)∩
CC) < d, d = deg(C).

Let γ(t) be a loop in NC with initial and endpoints being at b ∈ NR and situated

in the upper half plane of NC. Let γ̄(t) = γ(t) be its conjugate. Consider a trivi-
alization of projection of the pair: p : (p−1

C (γ), CC ∩ p−1
C (γ)) → γ i.e. a continuous

map of pairs Φ : (I × C, I × [d]) → (p−1
C (γ), CC ∩ p−1

C (γ)) (here I = [0, 1] and [d] is
a fixed subset of C of cardinality d) such that

(i) Φ is compatible with projections of its source and target onto I and γ
respectively and in particular Φ(0, z) = Φ(1, z) ∈ p−1

C (b) for any z ∈ C.
(ii) Restrictions of Φ onto [0, 1) × C and (0, 1] × C are homeomorphisms onto

their targets.
(iii) The trivialization is constant outside of a disk in LC,b containing LC,b ∩ C

(in particular, for any x ∈ LC,b outside of this disk and z ∈ C such that
Φ(0, z) = x one has Φ(1, z) = x).

The monodromy along the loop γ(t) is a diffeomorphism of the pair (LC,b, CC∩LC,b)
into itself sending x ∈ LC,b to Φ(1, z(x)) where z(x) is the solution to Φ(0, z(x)) = x.
For a trivialization satisfying (i), (ii), (iii), the braid corresponding to the isotopy
class of such diffeomorphism via identification of Artin’s braid group with the map-
ping class group of a disk with marked points will be denoted as β(γ).

Definition 3.1. The braid monodromy of a plane curve is the homomorphism
π1(NC \ Cr, b) → Bd which assigns to the class of a loop the braid in Artin’s braid
group corresponding to the diffeomorphism given by the monodromy obtained from
a trivialization over the loop as described above.

Following [18] we present braid monodromy as a factorization of the word ∆2

written as the product of braids representing the value of braid monodromy on a
sequence of a good ordered system of generators of the fundamental group of the
complement π1(NC \ Cr, b).

Complex conjugation acts on trivializations as follows. Clearly, since C is defined
over R, for a loop γ with a base point b ∈ R, one has

(p−1
C (γ), CC ∩ p−1

C (γ)) = (p−1
C (γ̄), CC ∩ p−1

C (γ̄))
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Definition 3.2. Conjugate of a trivialization Φ : (I × C, I × [d]) → (p−1(γ), CC ∩
p−1
C (γ)) is the trivialization of pC over the loop γ̄ given by

(8) Φ̄(t, z) = Φ(t, z)

In particular, the monodromy diffeomorphism of (p−1
C (b), C ∩p−1

C (b)) corresponding

to trivialization Φ̄, in terms of trivialization Φ is given by: x → Φ(1, z̃), x ∈ p−1
C (b)

where z̃ is determined by Φ(0, z̃) = x̄ ∈ p−1
C (b)

Remark 3.3. In general, it is impossible to trivialize over a loop the pair (p−1
C (b), C∩

p−1
C (b)) together with involution given by conjugation. The type of involution (given

by the number of fixed points, i.e. the number of real points in the fiber) changes
while one moves along γ, but this procedure provides a well-defined diffeomorphism
of pairs with involution.

Remark 3.4. An alternative way to define a braid monodromy is to use the so-called
coefficient homomorphism defined as the holomorphic map assigning to an affine

plane curve given byWeierstrass polynomial yd+
∑d−1

i=0 ai(x)y
i = 0 the map C → Cd

given by x → (ad−1(x), · · · , a0(x)). The restriction of this map to the complement
to the set of critical values of projection of this curve onto x-plane takes it to the
space of the coefficients of polynomials in one variable without multiple roots i.e. the
complement in Cd to the discriminant hypersurface Discrim. This complement is
the base of a locally trivial fibration of the complement in Cd+1 to the hypersurface
given by equation yd + ad−1y

n−1 + · · · + a0 ∈ Cd+1 onto Cd with coordinates
(ad−1, · · · , a0). The action of the fundamental group π1(Cd \ Discrim, b), which
is isomorphic to Artin’s braid group, is induced by its action on the fundamental
group of the fiber of this fibration over the base point b. If b ∈ Rd then the complex
conjugation acts on the braid group (since discriminant hypersurface is defined over
R) but the specific form of this action on generators depends on the choice of b.
This complex conjugation on Bd is given by (3) and (4) with d = N and depends
on the number of real roots of yd + ad−1(b)y

n−1 + · · ·+ a0(b). In particular, if the
number of real roots is at most one, the action is given by (6) and if all roots are
real then one has si → s−1

i for all i (as in [3]).

Definition 3.2 implies the following relation between the braids that the braid
monodromy assigns to conjugate loops:

Proposition 3.5. Let β : π1(NC \ Cr) → Bd be the homomorphism of braid
monodromy of a plane curve over R and let γ̄ be the complex conjugate of a loop
γ ∈ π1(NC \ Cr, b). Then

β(γ̄) = β(γ)

and depending on Card(p−1(b) ∩ CR) the action of the complex conjugation on a
factorization of β(γ) is given by (3),(4),(5). In particular, if p−1

C (b) has at most
one real point then

(9) β(γ̄) = (Rrev(β(γ)))−1

If all points of p−1
C (b) are real then one has:

(10) β(γ̄) = (rev(β(γ)))−1

i.e. coincides with the outer automorphism ϵd used in [7] [3].
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Proof. Indeed, the braid β(γ̄) being interpreted as an automorphism of the free
group π1(p

−1
C (b)\p−1

C (b)∩C, b) is the composition of conjugations, the automorphism
corresponding to β and the conjugation i.e. is β̄. The equalities (9) and (10) follow
from the identities (6) (or (3)) and (4). □

Next, we will find a conjugation invariant form of the braid monodromy fac-
torization of a real curve. Singularities of such a curve CC are either points with
real coordinates or come in complex conjugate pairs. So are the critical values of
projections on the complex locus of a R- line: they are values at real critical points
or come as complex conjugate pairs. Recall that the image of c ∈ C of projection
on x-axis N from a point in RP2 ⊂ CP2 is a critical value if the line through the
center of projection and c intersects C in fewer than degC points.

The following Proposition describes which critical points of generic projection
are unavoidable on the real part of x axis (the target of the projection map).

Proposition 3.6. Let C be a projective plane curve over R transversal to the line
at infinity. Let, as above, pP : CP2 \P → NC be a projection from a point P ∈ RP2

onto a fixed line N over R which we assume is given by equation y = 0 in a generic
coordinate system in RP2. If P is generic then the only critical points of pP on the
real locus RP1 ⊂ NC are either singular points of C with coordinates both being real
or images of critical points of restriction of pP on the real locus CR of C.

Proof. First, notice that if a coordinate system in RP2 is sufficiently generic then
each singular point either has both coordinates real or both coordinates have non-
zero imaginary parts. We assume that C is in a such coordinate system. Then note
also that the number of real lines through a point (z, w, 1) ∈ C2 ⊂ CP2 is either
infinite (if (z, w) ∈ R2) or is either 1 (z, w are on a line C = R2 defined over R)
or zero. Consider the incidence correspondence I ⊂ NC × RP2 consisting of pair
(a, P ) such that a is the image of a critical point of projection onto NC from P .
The projection I → RP2 is a finite cover and I is a real two-dimensional manifold.
Each real tangent transversal to the real locus of C either is a bitangent or contains
singular points with one of the coordinates being not in R. There are no points
in the latter class by genericity assumption and only a finite set of points in the
former class. Taking P ∈ RP2 which pre-image in I has an empty intersection with
this finite set in I we get the required projection. □

We select coordinates in CP2 so that the base point of the pencil is at infinity
and the lines of the pencils are the lines x = c (i.e. the center of projection is
(0, 1, 0)) and we have the projection p : C2 → Cx onto the x axis given by y = 0.
Moreover, the trivialization of p over Cx = {y = 0, z ̸= 0} is given by projection
(x, y) → y onto y axis Cy.

Let Cr ⊂ Cx be the critical set of the projection and N = CardCr. Let us view
Cr as a subset PN discussed in Section 2, select an order in Cr, a base point b, and
a good ordered system of generators in π1(C \ Cr, b) as described there. We call
this a complete good ordered system of generators compatible with the real structure
and denote its elements3

(11) γ1, · · · γh, γr
l , · · · , γr

1 , γ̄
−1
h , ....γ̄−1

1

3the order of the loops in this system is from the left to the right but subscripts specify the
points in the set Cr with the ordering described above.
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Here γ̄ is the class of the loop containing the image of the conjugation map H+ →
H− applied loop to γ.

Finally, we will denote by Dc ⊂ Cx be a closed subset bounded by a loop with
base point b and such that Dc ∩ Cr is the set of real critical values.

Definition 3.7. The factorization

β1 · · · · · ·βN = ∆2, N = 2h+ l

where the braids βi are the images of the braid monodromy homomorphism π1(Cx\
Cr, b) → Bd corresponding to the loops (11) will be called compatible with the real
structure.

The product of the braids corresponding to the loops γ1, · · · , γh will be denoted
BH+ , the product of the braids corresponding to γr

l , · · · , γr
1 we denote BR, and

the product of the braids corresponding to the remaining loops in this system we
denote BH− so that

∆2 = BH+BRBH−

Proposition 3.8. Let C be a projective plane curve over R. Let p : C2 → C = NC
be a projection of the affine part of CP2 with the line at infinity being transversal
to CC. Let b be the base point in the real locus of NC such that Cardp−1

C (b) ∩CR ≤
1. The braid monodromy factorization corresponding to a good ordered system of
generators of π1(NC \ Cr, b) compatible with real structure induces decomposition

(12) ∆2 = BH+ ·BR ·R(rev(BH+))

where the braids BH+ ,BR are as in Definition 3.7.

Proof. Since BH− = γ̄−1
h ...γ̄−1

1 , using Proposition 3.5 this braid can be written as:

(R(rev(β(γh)))
−1)−1 · · · (R(rev(β(γ1)))

−1)−1 = R(rev(β(γh)))....R(rev(β(γ1)))

= R(rev(β(γh))rev(β(γh−1)) · · · rev(γ1)) = R(rev(β(γ1) · · ·β(γh))) =

Re(rev(BH+))

as claimed. □

We would like to describe the braid BH+ (and hence BH−) in terms of the braid
BR corresponding to the real part of the critical locus. The next examples describe
two such results following from Prop. 3.8 and Prop. 2.1.

Example 3.9. Consider the case when the projection of C does not have real
critical values. In this case ∆ = R(rev(∆)) (cf. [8] Lemma 3) and in decomposition
(12) BH+ = BH− = ∆.

Example 3.10. The factorization (12) yields the following (since Rrev(∆)) = ∆):

(13) BR = B−1
H+∆∆(Rrev(BH+))−1 = (B−1

H+∆)((Rrev(∆))(R(rev(B−1
H+))) =

(B−1
H+∆)Rrev(BH+)−1∆)

(the last step uses that R and rev are homomorphisms and anti-homomorphism
respectively). Therefore:

(14) BR = (B−1
H+∆)Rrev(B−1

H+∆)
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For example, ifBR is the full twist on the symmetric subset of k consecutive elements
in [1, d] embedded into C relative to involution i → d+1−i then twist by 180 degrees
∆k is the solution to the equation Γ:

(15) BR = Γ ·Rrev(Γ)

and hence ∆k = Γ = B−1
H+∆d. Therefore, BH+ = ∆d ·∆−1

k is uniquely determined
(here d = degC and the subscript denotes the number of strings in the braid).

4. Presentations of fundamental groups of real curves.

Recall that van Kampen’s theorem (cf. [20],[18]) gives the following presentation
in terms of the braids βi described in definition (3.7).

(16) π1(C2 \ C) = {x1 · · ·xd|βi(xj) = xj} j = 1, · · · d, i = 1, . . . ,CardCr

In this section, we show that for curves over R, the fundamental groups of the
complement to CC are quotients of geometrically defined and depending on real
structure groups admitting van Kampen type presentations but requiring fewer
relations than in (16).

With notations as in Section 3, let CrR ⊂ Cr ⊂ NC be the subset of real critical
values of projection p. Recall that Dc is a disk in NC bounded by a loop based at
b and such that Dc ∩ Cr = CrR.

Theorem 4.1. (1) The group π1(p
−1(H+

⋃
Dc) \ C, b) has a presentation:

(17)

π1(p
−1(H+

⋃
Dc) \ C, b) = {x1, .., xd|βi(xj) = xj} j = 1, · · · d, i = 1, .., h+ l

(2) Inclusion p−1(H+
⋃
Dc) \ C → C2 \ C induces the surjection:

(18) π1(p
−1(H+

⋃
Dc \ C), b) → π1(C2 \ C, b) → 1

Proof. Recall that each loop in a good ordered system of generators bounds a disk
containing a single critical value of projection p. The complement C2 \ C can be
retracted onto the union of p-pre-images of disks bounded by the loops in a good
ordered system of generators (cf. [13]) and the fundamental group of the preimage
of a disk corresponding to critical value j has presentation {x1, · · ·xd|βj(xi) =
xi, i = 1 · · · d}. Part (1) follows from the van Kampen theorem about a union of
spaces (cf. [9]).

Part (2) is a corollary of part (1) since the set of relations of π1(C2\C, b) consists
of the same relations as the relations for π1(π

−1(H+
⋃

Dc \ C), b) and additional
relations (corresponding to the critical points of projection of C in the lower half
plane. □

Proposition 4.1. Let β1, ..., βr ∈ Bd be a finite set of braids and x1, · · · , xd be
a system of generators of a free group Fd. Let β = β1 · · ·βr be their product,
G(β1, · · ·βr) (resp. G(β)) be the quotients of the free group Fd by the normal sub-
group generated by elements βi(xj)x

−1
j , i = 1, · · · r, j = 1, · · · , d (resp. the relations

β(xj)x
−1
j , j = 1, · · · , d). Then one has surjection:

(19) G(β) → G(β1, · · · , βr) → 1
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Proof. We shall show this by induction over r. Assume that for all 1 ≤ j ≤ d
the element β1 · · ·βr−1(xj)x

−1
j ∈ Fd belongs to the normal subgroup Nr−1 of Fd

generated by βi(xj)x
−1
j , i = 1, . . . , r − 1. Let β′ = β1 · · ·βr−1. Then for any

xj , j = 1, . . . , d

(20) β(xj)x
−1
j = β′(βr(xj))x

−1
j = β′(βr(xj))βr(xj)

−1βr(xj)x
−1
j

Let βr(xj) = y1y2 · · · ys where yk, k = 1, . . . , s is one of generators x1, . . . , xd or their
inverses, with possibly several of yk corresponding to the same element among xj .

In particular, we have β′(yk)y
−1
k ∈ Nr−1 by the assumption of induction. Then the

right-hand side in (20) can be written as:

(21) β′(y1 · · · ys)y−1
s · · · y−1

1 βr(xj)x
−1
j = β′(y1) · · ·β′(ys)y

−1
s · · · y−1

1 βr(xj)x
−1
j

The surjection Fd → Fd/Nr−1 takes β′(ys)y
−1
s to 1 ∈ Fd/Nr−1 i.e. the last expres-

sion in (21) goes to the same element as does β′(y1) · · ·β′(ys−1)y
−1
s−1 · · · y

−1
1 βr(xj)x

−1
j

and the latter goes to the same element as β′(y1) · · ·β′(ys−2)y
−1
s−2 · · · y

−1
1 βr(xj)x

−1
j

since β′(ys−1)y
−1
s−1 goes to 1 ∈ Fd/Nr−1 and so on. In particular, the last expres-

sion in (21) is the normal subgroup Nr ⊂ Fd generated by Nr−1 and the element
βr(xj)x

−1
j i.e. the subgroup of Fd generated by the relations of G(β1, · · · , βr) which

shows the claim. □

Remark 4.2. It is well known that the fundamental group of the complement to a
singular curve is an invariant of equisingular isotopy of complex algebraic curves on
surfaces (cf. [14] for references therein). In the case of real curves a natural problem
is to understand the rigid equisingular isotopy classes or at least the classes of equi-
variant (with respect to complex conjugation) equisingular isotopy (cf. [19] Sect. 4
for non-singular case). The fundamental group π1(CP2 \ CC, b), b ∈ RP2 endowed
with the involution provides an invariant of classes of such restricted isotopy in
the sense that for any two real curves C1, C2 isotopic via equivariant equisingular
isotopy, there exist an isomorphism of the fundamental groups equivariant with
respect to involutions induced by conjugation. For example, if C is a pair of lines
in C2, then π1(C2 \ C, b,Z) = Z2, i = 1, 2, b ∈ R2, and the involution induced by

conjugation has the matrix

(
−1 0
0 −1

)
(resp.

(
0 −1
−1 0

)
) if both lines are defined

over R (resp. both lines are imaginary) i.e. the additional structure distinguishes
the classes of rigid isotopy.

For a curve over R, it follows from Prop. 3.5 that van Kampen presentation (16
for the braid monodromy in generators used in Proposition 3.5 the automorphism
of the free group given by (3) and (4) passes to an involution of the fundamental
group of the complement. Hence we obtained a calculation of this extra structure
on the fundamental group.

This involution can be encoded into an exact sequence:

(22) 0 → π1(C2 \ CC, b) → πR
1 (C2 \ CC, b) → Z2 → 0

in which the action of Z2 on π1(C2 \ CC, b) is given by conjugation. The group in
the middle is a topological analog of Grothendieck’s fundamental group of a variety
over R.
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5. Alexander Polynomials

Surjections of the previous section imply the divisibility relations between the
Alexander polynomials of the groups considered there.

Recall (cf. [14] and the references therein) that given a group G and a surjection
ϕ : G → Z one defines the Alexander polynomial as the order of the torsion part of
the module over the ring of Laurent polynomials Q[t, t−1] with underlying Q- vector
space being the quotient of Kerϕ by its commutator with constants extended to Q.
The module structure is defined by requiring that the action of t be given by the
automorphism induced on Kerϕ by the conjugation by a lift to G of the positive
generator of the target Z of ϕ (this action when considered on abelianization of
Kerϕ is independent of a lift).

In terms of cyclic decomposition

(23) Kerϕ/(Kerϕ)′ ⊗Q = ⊕Q[t, t−1]a ⊕ (⊕b
i=1Q[t, t−1]/(∆i(t)) ∆i|∆i+1,

this order is given by
∆(t) = ∆1(t) · · ·∆b(t)

if a = 0 and ∆(t) = 0 if a ≥ 1.
Recall also (cf. [1] Th. 2.2) that Artin showed that the fundamental group

of the complement to a link in S3 represented by a closed braid β has the same
presentation as the group G(β) from Proposition 4.1 4

Proposition 5.1. Let G(β) and G(β1, · · · , βr) be associated with braids β and
β1, · · ·βr groups with generators and relations described in Proposition 4.1. Let ∆β

and ∆β1,··· ,βr
be the Alexander polynomials of these groups relative to surjections ϕβ

and ϕβ1,··· ,βr
onto Z which send each of their generators x1, · · · , xd to the positive

generator of Z. Then ∆β1,··· ,βr
divides ∆β.

Proof. The surjection (19) and the commutative diagram

G(β) → G(β1, · · ·βr)
↘ ↙

Z

induce the surjections of Q[t, t−1]-modules:

(24) Kerϕβ/(Kerϕβ)
′ ⊗Q → Kerϕβ1,··· ,βr

/(Kerϕβ1,··· ,βr
)′ ⊗Q → 0

Since the left group in (19) is the fundamental group of the complement to a link in
3-sphere for which the Alexander module is a torsion module, it follows from (24)
that the right group in (19) has as its Alexander module a torsion module and the
claim follows. □

Theorem 5.1. The Alexander polynomial of π1(C2 \ C) divides the Alexander
polynomials of the closed braids in 3-sphere associated with each of the braids
BH+ ,BR,BH+ ·BR in the braid group Bd.

Proof. The theorem 4.1 identifies the group π1(p
−1(H+

⋃
Dc)\C, b) with the group

G(β1, · · ·βh+l) and Proposition 5.1 shows that the Alexander polynomial of this
group divides the Alexander polynomial of the closed braid BH+BR. The surjection

4in fact, [1] shows the presentation of the fundamental group of link in S3 is the group G(β) i.e.

G(β) = {x1, · · · , xd|β(xi)x
−1
i , i = 1, · · · d} with one relation deleted, but there it is also pointed

out that this relation is the combination of the remaining d− 1 relations.
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in Theorem 4.1 implies that the Alexander polynomial of π1(C2 \ C) divides the
Alexander polynomials of π1(p

−1(H+
⋃

Dc) \ C, b) as in the proof of Proposition
5.1 which completes the proof. □

6. Examples.

In this section we discuss the braids BH+ ,BR for the curves satisfying assump-
tions on the real part of the critical set and use them to get refined divisibility
conditions for the Alexander polynomials in corresponding classes of plane singular
curves over R.

The considered extreme cases are the case of the arrangements of real lines
and real arrangements of lines with zero-dimensional real locus, the curves of even
degree with empty real locus, and related curves of odd degrees. To obtain a non-
trivial divisibility relation one makes a different selection of the braid BH+ or BR
or their product. In the case of arrangements of real lines, the braid BH+ is trivial,
the Alexander polynomial of the closed braid in S1 ×C is zero, and the divisibility
relation is empty. On the other hand, BR = ∆2, and one obtain a known divisibility
relation mentioned in Section 1. Note that the Alexander module of a link in S3

(a closed braid) is torsion of the linking number of any two components is non zero
(cf. [4]).

On the other hand, for the real curves with no real points, we show that BH+ = ∆
which leads to refined divisibility constraints (cf. Prop 6.6).

Example 6.1. We consider maximally componentwise unreal arrangements which
are the arrangements over R with the minimal number of real points. Note the
following:

Proposition 6.2. Let A be an arrangement over R. Then the set of its real points
is not empty.

Proof. This is immediate since the intersection point of a pair of conjugate lines is
real. □

Let Ak be an arrangement over R with k < ∞ real multiple points. Such an
arrangement has the form
(25)
r1∏
j=1

(((x+ay)−n1)
2+m1

jy
2) · · ·

ri∏
j=1

(((x+ay)−ni)
2+mi

jy
2) · · ·

rk∏
j=1

(((x+ay−nk)
2+mrk

j y2)

where

0 ̸= a ∈ R, ni ∈ R, n1 > n2 · · · > nk, mj
i ∈ R+,±mj′

i′ ̸= ±mj
i ∀(i, j) ̸= (i′, j′)

Ak contains d = 2
∑k

1 ri lines with k real multiple points (ni, 0), i = 1, .., k hav-
ing respective multiplicities 2ri, i = 1, · · · , k. The singular points, which are the
intersection points of lines with different ni’s for a ̸= 0, have x-coordinates with
non-zero imaginary parts and come in conjugate pairs i.e. CrAk = {x ∈ C|x = ni}.
The only real points of Ak are the points (ni, 0), i = 1, · · · , k.

Let us describe the braid BR in this case and more specifically the braids cor-
responding to (the classes of the) loops γr

i ∈ π1(Cx \ Cr, b) (cf. Definition 3.7)
i.e. corresponding to paths running from b along real axis to one of the points
(ni, 0) while circumventing points in Cr following a small semi-circle in the upper
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half plane, then upon reaching the vicinity of (ni, 0) following the full circle around
(ni, 0) and finally returning to b along the same path.

Proposition 6.3. There is a collection of non-intersecting segments δ1, · · · δi · · · δk
in LC,b each containing a set Ai or 2ri points belonging to the i-th group of lines
(25) in Ak such that braid BR is a product of the conjugates of the full twists ∆2

Ak

about δi. In particular ∆2
i commute.

Proof. Explicit form of the lines (25) shows that y coordinates of the intersections
of lines in this arrangement with the fibers LC,t of projection used to calculate the
braid monodromy have the form

(26) Re(y) = λi
jIm(y), i = 1, · · · , k, j = 1, · · · , ri, λi

j ̸= λi′

j′ , (i, j) ̸= (i′, j′)

and the braids corresponding to γr
i can de described in terms of the motion of d

points Ak∩LC,b along these lines
5. Hence these d points are split into k groups each

containing 2ri, i = 1, ..., k points. Each group moves toward the origin along the
respective group of lines in C and arrives at 0 ∈ C at k different moments. A group
of 2ri points while moving along their respective lines undergoing slight deviations
at the moments when other groups reach their critical points (corresponding to
γr
i deviations from the real axis in x-plane), Just before the time when i-th group

should arrive at the origin the points in this group undergo full twist (the braid
corresponding to the singularity of 2ri pairwise transversal lines) and returning to
the original position of the group along the same path.

With each of k critical points is associated “vanishing segment” containing 2ri
points merging into (ni, 0) which is located at LC,b′ where b

′ is point in the real part
of x axis and where γr

i starts the circle around x = ni. Transporting this segment
along the path of γr

i back from b′ to b produces the vanishing segment of this group
in LC,b. While t moves from b′ toward ni and then completes the move along semi-
circle, the set of 2ri points merging in (ni, 0) move from half-plane Re < 0 to half-
plane Re > 0. If t continues to move in a negative direction instead of completing
the full circle around (ni, 0), this segment will remain in the right half plane when
t moves to the next critical value. Hence vanishing segments corresponding to the
critical values ni can be selected inductively so that the segment corresponding to
ni does not intersect the segments corresponding to nj , j < i. As result, we obtain
that the braids corresponding to the loops γr

i are full twists along the collection of
non-intersecting conjugation invariant segments in LC,b:

(27) ∆2
A1

,∆2
A2

· · ·∆2
Ak

where ∆Ai is a rotation by 180 degrees of the group of points Ai. In particular,
these braids commute. The braid BR is the product of those twists. □

Next, consider other classes of algebraic curves.

Proposition 6.4. Let C be a real curve admitting projection πC : CC → C having
no critical values on the real axis. Then the braid BH+ is a conjugate of the Garside
element ∆ of the braid group (and BR = 1).

5Explicitly the intersection points of LC,t and the lines corresponding to the i-th factor in (25)

are y =
(ni−t)(a±mj

√
−1)

a2+m2
j

and λi
j = ± a

mi
j
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Proof. First, notice that π−1(b) where b ∈ R ⊂ C consists of at most one point
with real coordinates. Indeed, it follows from the absence of real critical values
that the real locus is a set of circles clearly having at most one element. Assuming
that projection is from a point inside the disk bounded by this circle one obtains
the claim. From decomposition (12) one has (BH+)2 = ∆2. The claim follows from
the uniqueness shown in Proposition 2.1. □

Recall that an acnode of multiplicity k (cf. [21]) is a germ of a curve defined
over R which set of real points consists of a single point and which set of complex
points consists of k transversal smooth branches.

Proposition 6.5. Let C be a curve defined over R for which the set of real points
consists of a single acnode of multiplicity k. Then BR = ∆2

k and BH+ = ∆d∆
−1
k

where ∆k is a 180 degrees rotation of a conjugate invariant subset of d points.

Proof. From the definition of acnode, it is clear that BR = ∆2
k with k − 1 letters

being conjugation i.e. invariant with respect to involution R. In this case braid
decomposition ∆2

d = BH+∆2
kR(inv(BH+)) (cf. Prop. 3.8) is satisfied by ∆d∆

−1
k

since R(inv(∆−1
k )) = ∆−1

k and

R(inv(∆d∆
−1
k )) = R(inv(∆−1

k ))R(inv(∆d)) = ∆−1
k ∆d

The claim follows. □

Now we turn to the Alexander polynomials and explicit divisibility relations.

Proposition 6.6. Let C be a real curve of even degree d admitting a projection
with no real critical values. Then

(28) ∆C(t)|(td − 1)
d
2−1(t

d
2 + 1)(t− 1)

Proof. We need to find the Alexander polynomial of the link which is represented by
the closed braid on d strings given by ∆ i.e. the rotation by 180 degrees. Such a link
also can be described as the link of plane curve singularity given by local equation∏ d

2
j=1(j

2x − y2), (when preimage of x = 1 are integers ±j, j ≤ d
2 ) or equivalently

x
d
2 − yd = 0. The Alexander polynomial of such a link is the characteristic polyno-

mial of its monodromy. This is a weighted homogeneous singularity with weights
of x and y being d

2 and d. Now the claim follows from Brieskorn-Pham-Milnor
classical calculations (cf. [16] Sec. 9). □

For the curves with a single acnode we obtain as an immediate consequence of
Proposition 6.5 since BR = ∆2

k:

Corollary 6.7. The Alexander polynomial of a curve over R with a single real
point which is an acnode divides the Alexander polynomial of the link which is the
closure of the braid ∆d∆k.

Example 6.8. The above Proposition gives a sharp “estimate of the degree of
Alexander polynomials” of real curves of degree 6 without real points.

Recall that the Alexander polynomial of a plane curve of degree 6 with k > 6
cusps and at most nodes as other singularities is given by (t2 − t + 1)k−6. More
specifically, for a curve of degree d with cusps and nodes as the only singularities,
denoting the zero-dimensional subset of P2 formed by cusps as Ξ, the Alexander
polynomial is equal to 1 if d is not divisible by 6 and otherwise is equal to (t2−t+1)s
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where s = dimH1(P2, IΞ(d− 3− d
6 )) with IΞ denoting the ideal sheaf of functions

vanishing at points of Ξ. For d = 6 the latter is equal to H0(P2, Icusps(2)) −
χ(P2, Icusps(2)) = k − 6 since dimH0(P2, IΞ(2)) = 0 if the number of cusps is
greater than 6 (if the cardinality of Ξ is 6 this dimension can be either 1 or 0
depending on 6 cusps being positioned on a conic or not).

The divisibility theorem of [12] for a complex curve of degree d transversal to
the line at infinity tells that the Alexander polynomial of the curve divides (1 −
t)(1− td)d−2. Indeed, the latter is the Alexander polynomial of the link at infinity
which is the link of the closure of the braid ∆2 (the Hopf link). This bounds
the exponent of the Alexander polynomial of sextic by 4. On the other hand
by 6.6 the Alexander polynomial of a sextic with no real points should divide
(t3 − 1)(t + 1)2(t2 − t + 1)2(t − 1). There is no sextic with 9 cusps with no real
points since the number of cusps that are not real is even. On the other hand,
there exist a real sextic with 8 cusps and no real points (cf. [6], [10]) for which the
multiplicity of the factor (t2 − t+ 1) is 2.

Remark 6.9. It is not hard to calculate the Alexander polynomial of the link which
is the closed braid corresponding to a curve of an odd degree having no real critical
values. In this case the projection without critical points yields again rotation of a
set with an odd number of points and the corresponding braid is again ∆. Such link

appears as the link of singularity yx
d−1
2 −yd+1 and calculation of the characteristic

polynomial of this weighted homogeneous singularity (with non-integer weights, in
which case one can use [17]) one obtains

(29) (td − 1)
d−1
2 (t− 1)

This may lead for example to a restriction on the degrees of the Alexander polyno-
mials with only ordinary triple points (in which case d must be divisible by 3). It
is unlikely however that this can give a sharp bound on the degree.
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