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The paper discusses the statements and the background of several problems in the
topology of plane singular algebraic curves.

1. Introduction

The purpose of this note is to discuss what it seems to me presently are
the main issues which have to be resolved in the topology of plane singular
curves. This area was quite active during the last 25 years after 40 years of
hibernation which followed its birth in the works of Zariski and Enriques in
20’s and 30’s. The state of affairs in the end of 70’s is beautifully presented
by M.Artin and B.Mazur in introduction to Zariski’s Collected papers (cf.
48 section 7. The Fundamental Group p.6-1) and also by D.Mumford in
the appendix to 47. Artin and Masur’s survey contains numerous problems.
The central issue, as stated by the authors then, still remains the same now:
“What can be said about the Poincare group G, that is, the fundamental
group of the complement of C' (i.e. an algebraic curve) in P?” However
the status of many concrete problems completely changed and others can
be stated in a much more specific way. For example the problem of “irre-
ducibility of the family of plane curves with nodes and commutativity of
Poincare group” was solved by J.Harris (cf. 2°) which followed the proofs
of commutativity by Fulton '® and Deligne '°. Subsequent works by Z.Ran
(cf. 41) and M.Nori (cf 3°) provided alternative views on these issues. Also
the problems described in the section on “Cyclic multiple planes and knot
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theory” in *® completely addressed by the theory of Alexander invariants
with its topological (2*) and algebro-geometric aspects (24, 31,34).

My list of problems is very much incomplete and has many important
omissions but I hope that it addresses at least one of the goals which I
had in mind in selecting particular problems which was to show the rela-
tions between the topology of plane singular curves and other areas such
as topology of arrangements, symplectic geometry etc. Before stating each
problem I often presented background and in principle much of this can be
read without extensive preparation. Some additional details of the back-
ground are presented in my lectures in Lumini (cf. 3°). In fact these notes
can be viewed as a supplement to the latter. The book ! also contains
much of the needed background. It is important to note that a large part
of the issues raised in Zariski’s work in the 30s and discussed by Artin and
Masur were generalized to higher dimensions with the fundamental group
being replaced by the higher homotopy groups (an aspect totally absent in
the late 70s). I refer to 3° for discussion of these developments and related
questions.

Many of the problems from our list were discussed during the workshop
in Trieste and I want to thank its participants for lively discussions. I
also am grateful to referee for careful reading of the manuscript and the
comments. Finally, I want to thank M.Oka for his encouragement to write
a contribution to these proceedings. Without him, these notes would not
have been written.

2. Alexander Invariants

We shall start by describing problems related to Alexander invariants of
plane algebraic curves. While a characterization of the fundamental groups
is very difficult, if not impossible, (cf. section 3), the Alexander polynomial
of the fundamental group is much better understood ®. Recall a definition of
this invariant. Let C' C C? be an algebraic curve. The fundamental group
71 (C? — C) has a canonical surjection onto Z sending a loop into its linking
number with C. Let C/z_\—/C — C2 — C be the corresponding cover and
let K = Ker(m (C? — C) — Z). The group Z acts on the abelianization
of K/K' of K which makes K/K' ® Q into a Q[Z] = QIt,t '] module.
It has a cyclic decomposition K/K' ® Q = @®;Qlt,t1]/(X\;(t)) for some

2Though it does not give complete information on the type of equisingular deformation
of a curve cf. 45, 38
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Laurent polynomials \;(¢) defined up to a unit in Q[t,¢ !]. The Alexander
polynomial of C is defined as

Ac(t) =ILA(2)-

The polynomial Aq(t) is affected by the local type of the singularities of
C as follows. For each singular point P of the curve C let us consider the
Alexander polynomial Ap(t) of the link in a small 3-sphere in C? centered
at P. If the closure of C' in P2 is transversal to the line at infinity then one
has the following divisibility property:

Ac(t) | MpesingcAp(t). (1)

In particular if C is irreducible and all its singularities are either nodes
or cusps (i.e. locally given by z? + y? = and x> + y® = 0 resp.) then
Ac(t) = (t — t + 1)® for some non negative integer s. One can also define
the Alexander polynomial at infinity Ac o (t) as the Alexander polynomial
of the link C NS C S where S is a sphere of sufficiently large radius in
C?. The global Alexander polynomial Ac(t) divides A oo(t). If C is
transversal to the line at infinity and has degree d this is equivalent to

Ac(t) | (1 -1)"2 2)

2.1. Realization Problems

Problem 2.1. For which polynomials P(t) € Z[t,t='] does an algebraic curve
C exist such that P(t) = Ac(t).

In particular

(i) what is the maximum s(d) of integers s such that there exists a curve
C of degree d transversal to the line at infinity, having nodes and cusps as
the only singularities and such that Ac(t) = (t2 —t +1)%?

(i) Does there exist a bound on s(d) which is independent of d?

(#i) What are inequalities for the degrees of the Alexander polynomials
for other classes of curves with fized type of singularities (inculding more
general ones than the nodes and cusps)?

The largest value for s in (i) which I know is 3: it is achieved for the
sextic with 9 cusps (i.e. the dual curve to a non-singular cubic). For nodal
curves, since the fundamental group 71 (C? — C) is abelian, the answer to
(iii) is yes (A(C) = 1). In 38 it was shown that s(6) = 3 (cf. also ?, 36, 37)

There is a reformulation of the problem 2.1 which does not involve the
Alexander polynomial but is based on the relationship between the latter



July 31, 2006 21:21 Proceedings Trim Size: 9in x 6in triestews2

and the position of singularities. With each singular point P € C C P2
in 2* we associated the collection of rational numbers k; (called the local
constant of quasiadjunction) and the ideals J. p,c in the local ring Op p>
depending on the local type of the singularity of C' at P. In the case of a
node this collection is empty and in the case of a cusp it contains single
number %. The corresponding ideal J%, p,c is the maximal ideal of the local
ring at P € P2. These ideals define the ideal sheaf J. ¢ on P? with the
stalk at any P € SingC being the smallest ideal J,s pc with k' < x and
the stalk in any other point P ¢ SingC' coinciding with the whole local ring
Op,p>. Then the Alexander polynomial has the following expression (here
= is the set of all local constants of quasiadjunction of all singularities of

C):

Ac(t) = [[ 1t - exp(2nir))(t — exp(—2mix))|imtd (P2In(d-3-sd) (3)
KEE

If C has nodes and cusps as the only singularities then
dimH* (P2, J1(d—3—#)) = dimH*(P?, J1 (d—3— &) — x(J1 (d—3 - &)).
The first term in this difference is the dimension of the space of curves of
degree d — 3 — % passing through the cusps of C' while the second is the
“expected” dimension of this space. Such difference is called the super-
abundance s of the family of curves. Hence the problem 2.1 is equivalent
to the question on possible values of the superabundances of linear systems
of curves of degree d — 3 — % passing through the cusps of a curve of degree
d. A similar reformulation of the problem 2.1 can be made for curves with
arbitrary singularities using results of 24 which we leave to the reader.

An interesting version of the realization problem deals with twisted
Alexander polynomials. In # the authors extended the study of twisted
Alexander polynomials in knot theory and considered Alexander polyno-
mials associated with a plane curves and a linear representation of the
fundamental group.

Problem 2.2. (i) Find an expression for the twisted Alexander polynomial
generalizing (3).

(i) What is the class of polynomials which can appear as twisted Alexan-
der polynomials of plane curves.

3. Fundamental groups

One of the oldest problem in the study of the topology of complements is the
problem of characterization, in some sense, of the fundamental groups of the
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complements to plane curves. The lack of examples which was acutely felt in
the past (cf. 2°) has been addressed by now in many respects though there
is still a real possibility that we so far have only been probing very special
curves. The cyclotomic property of Alexander polynomials rules out many
groups as possible candidates for the fundamental groups of the comple-
ments (?7). Below is one very specific question (mentioned by D.Mumford
in the footnote to 47) on general properties of fundamental groups of the
complements.

3.1. Residually finiteness.
Problem 3.1. Are the fundamental groups of plane curve residually finite?

In other words: does the intersection of subgroup of finite index consist of
the identity only. An equivalent formulation: is the map m (P? — C) —
7rfl9 (P? — C) of the topological fundamental group into the algebraic one
injective. It is known that non-residually finite fundamental groups can
appear as the fundamental groups of algebraic surfaces (46).

3.2. Finite groups.

Problem 3.2. Which finite groups can appear as the fundamental groups of
the complements? What are finite fundamental groups of the complements
to the curves with nodes and cusps only?

Some restrictions on the finite groups in the second class come from the
divisibility theorem for the Alexander polynomials over finite field i.e. the
relation (1) in which one uses the Alexander polynomial defend using the
the homology groups with the coefficients in a finite field. A quartic with 3
cusps in P2 has finite fundamental group of the complement (the 3 strings
braid group of sphere). Interesting examples of finite groups of the com-
plements are due to Oka (cf. 3%).

3.3. Braid monodromy

Braid monodromy is a more subtle invariant of singular curves than the
fundamental group of the complement. Recall its definition. Let us consider
the complement to C' in an affine (rather than projective) plane C2. In
the case when the line at infinity is generic, the fundamental group of
the complement to projective curve is a quotient of 7 (C? — C N C?) by
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a subgroup generated by a central element (cf. 27). Also, the classes of
equisingular isotopy of curves in P2 correspond to the classes of equisingular
isotopy of curves transversal to the line at infinity. Let I : C2 = C be a
generic linear projection and I : C — C be its restriction on C. One has
in the target C of [, a subset R consisting of points for which /o has fewer
than d (d = degC) preimages. Genericity of | also implies that for any
r € R, I"'(r) is not a flex and all but exactly one point in I;'(r) N C are
the transversal intersections at a non singular point of C.

Given a path v : [0,1] - C — R we shall restrict the map [ to
I7'(y) and pick a trivialisation of the locally trivial fibration of pairs
1: (17 (),l5' (7)) = v. If v is a loop, ie. 7(0) = (1) then we ob-
tain a diffeomorphism of C = I~*(y(0)) fixing the finite subset I5'(7(0)) =
[=1(y(0)) N C. We shall pick this diffeomorphism to be constant outside of
a disk of a large radius in [=1(y(0)). The group of isotopy classes of such
diffeomorphisms is isomorphic to the Artin’s braid group By on d strings
(cf. 30). This assignment of a braid to a loop in C — R is independent of
the choice of v up to homotopy. In fact we obtain the homomorphism:

BZ 7T1(C—R)—)Bd (4)

called the braid monodromy (its composition with the map of the braid
group onto the symmetric group gives the classical ¥; valued monodromy
of the multivalued function corresponding to C' with the domain being the
target of [).

Tt is useful to describe the homomorphism (4) by its values on special
generators of ;1 (C — R).

Definition 3.1. An ordered good system of generators of 71 (C — F') where
F is a finite subset of C is defined as follows. For i = 1,...,Card F, let §;
be the counterclockwise oriented boundary of a sufficiently small disk A;
about a point f; C F (small implies that A; N A; = 0,¢ # j). Let p; be a
collection of non-intersecting paths in C — UA; each having a base point b
as the initial point and a point on §; as the end point. Then the ordered
good system consists of loops pz._l 04; o p; ordered counterclockwise by their
intersections with a small disk about b.

It turns out that the product of braids 3(vy;) in the above ordering does
not depend on the choice of generators v; of 71 (C — R):

IL;A(v;) = A® (5)
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(A? is the standard generator of the center of Artin’s braid group). The
set of ordered good systems of generators of 71 (C — F,b) is acted upon by
the braid group Beardr via (0; € Beardr are the standard generators):

Oi (Vs eVis Vit s vy YOardF) = (Viy wvees Vi 1y ViVitd Vi s Vi> Vick2s - YCardF)
(6)

(Hurwitz action). The orbit of this action on a vector

(B(m), -, B(vcardr))

(where R, as above, is the ramification locus of l¢) is independent of the
choice of I, the ordered good system of generators of m (C — R), the base
point of the latter or a curve within its class of equisingular deformation.
So is the case for a simultaneous conjugation:

(B(1); - B(vcarar) = (0B(m)o ", ..., 08(Ycarar)o ') (0 € Bg)  (7)

The fundamental problem is the following:

Problem 3.3. Characterize factorizations (5) of A? obtained as in the above
construction for algebraic curves. Describe the orbits of Hurwitz action and
conjugation on the CardF'-fold product Bg x ... x By.

Some restrictions were proposed in 32. Let, as above, 0;,i = 1,...,d — 1
be the standard generators of B4. For the curves with cusps and nodes as
the only singularities each 8(v;) is conjugate to o1 (respectively o? or o3)
provided that &; is aloop about the point r € R such that CNig" (r) contains
the tangency point (respectively the node or the cusp). Some restrictions
on the number of factors 3(y;) of each type come from the restrictions on
the number of nodes and cusps a given curve can have (cf. 33) and also
from Pliicker formulas.

Closely related to the problems 3.3 is the problem of constructing in-
variants of the braid monodromy which are invariants of Hurwitz action
and conjugation and hence yield invariants of the curve. One method was
proposed in 26 (cf. 2 for other invariants of braid monodromy). Let

be a linear representation of the Artin’s braid group over a commutative
ring A. The free module A* can be considered as a 7; (C — R) module using
the action of the latter given by composition of braid monodromy and p.
Then, the A-module Hy(71(C — R), p(8)) is invariant under Hurwitz moves
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and hence is an invariant of the curve. The canonical presentation of this
A-module is given by:

ar LR p(B(7:))-1d
@Cardrpk LEODTI Ak L Ho(my (C = R),p(8)) = 0 (8)

Using this presentation one can calculate such invariant of braid mon-
odromy as the A-torsion of Hy(m(C — R),p(8)). In the case, when p is
the reduced Burau representation of the braid group (over Q), i.e. A is
the ring of Laurent polynomials Q[t,t~!], the order of the Q[t,t!]-torsion
of Hy(m1(C — R), p(B)) (which is a Laurent polynomial) is related to the
Alexander polynomial of the curve as follows (cf. 25):

Ordqpes-1 Ho(m (C = R), p(B) = (1 +t + ... + t%6C 1 Ao(t)  (9)

Problem 3.4. Calculate the module Ho(mw (C—R), p(8)) for non Burau rep-
resentations of the braid group e.g for Lawrence representations (*2) and
find their geometric interpretation (a counterpart to the above relation with
superabundances of linear systems).

3.4. w1 of the complements to generic projections.

An important class of plane curves with cusps and nodes consists of the
branching curves of generic projections. They come up as follows. Let
S C PN be an algebraic surface and g be the restriction of a projection
on P2 from a generic subspace PY~3 ¢ P¥. The branching curve Brg of 75
consists of points having fewer than d = degS preimages. The equisingular
isotopy type of the curve Brg depends on (the deformation type of) S
only. If the embedding of S C P is canonically associated with S (i.e.
corresponds to the embedding with a fixed multiple of the canonical class)
then 7 (P2 — Cj) is an invariant of the deformation type of S.

In the case when the surface is a non-singular degree n hypersurface
V, C P2 the fundamental group 71 (P?—Bry,, ) is isomorphic to the quotient
of the Artin’s braid group by its center (cf. 32). However for surfaces having
higher codimension the corresponding groups can be much simpler. We
shall state several results due to A.Robb and M.Teicher on the structure
of the group 71 (C? — Brg N C?) where C? is the complement to a generic
line in P2. One has a surjection og : m (C? — Brg N C?) = Tgegs onto the
symmetric group Ygegs and also the surjection abs onto its abelianization
Z. Let IIs = Keros NKerabgs be the intersection of the kernels of these two

surjections. In the case when S is the image of P2 in P embedded
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using Op2(n) (n > 3) (Veronese surface) the group Ilg is solvable (cf. %%).
So is IIg if S is a non-singular complete intersection in P™ which is not a
hypersurface (cf. 42). In fact in the latter case IIs has Z, as its center and
I1/Z, is free abelian). These and other calculations lead to the following:

Problem 3.5. (M.Teicher, cf. **) For which simply connected surfaces of
S C PN is the fundamental group of the complement to the branching curve
of generic projection is almost solvable i.e. contains a solvable subgroup of
finite indez.

It is expected that this is the case for all simply connected surfaces with
exception of small number of classes (e.g. hypersurfaces in P?).

Another interesting problem concerning the branching curves of generic
projections was proposed recently in the work of Auroux, Donaldson,
Katzarkov and Yotov. In ® the authors study the fundamental groups
m1(C? — Brg, N C?) where Sy, is the surface S embedded via the complete
linear system H°(S, Og(k)). The stabilized group St(m; (C?— Brg, NC?)) is
defined as the quotient of w1 (C? — Brg, NC?) by the normal subgroup gen-
erated by the commutators (71,72) where v, and 2 are good generators (cf.
section 3.3) of the fundamental group having disjoint transpositions as their
images 0(71),0(7y2) in the symmetric group Xgegs, - If 71,72 are the loops
about two branches of Brg intersecting at a node then the corresponding
1, y2 commute. Therefore, one can view adding such commutation relation
to the fundamental group as an algebraic analog of “adding nodes”. In gen-
eral, a degeneration of a curve adding a node can change the fundamental
group (see examples of curves with the same number of cusps but different
number of nodes in ?). Nevertheless ® suggested the following:

Problem 3.6. For k sufficiently large one has the isomorphism: St(m(C?—
Brg, N C2)) =m (C2 — Brg, N C2)

In fact in 5 the authors propose a conjectural structure theorem of the
“stabilized” fundamental group St(r1(C? — Brg, N C?)).

Problem 3.7. Let Ay, be the image of the map: Ho(S,Z) — Z? corresponding
to the class (c1(0s(k)),Ks + 2¢1(0s(k))) € H*(S,Z) ® H?(S,Z) via the
identification of the latter with Hom(H>(S,Z),Z?). Let St(m (C?— Brg, N
C?2))0 be the intersection of the kernel of the homomorphisms of St(m;(C?—
Brg, N C?)) onto Lqegs, and the kernel of the abelianization St(m (C? —
Brs, N C?%)) — Z (“the reduced stabilized fundamental group”). Then the
commutator of St(w1(C? — Brs, N C?))? is a quotient of Zo ® Za and the
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quotient of St(m1(C? — Brg, N C?))° by its commutator is isomorphic to
Z2 Ak ® Z[Sgegs,)-

The analogs of the groups m; (C2 — Brg, N C?) and St(m;(C? — Brg, N
C?)) can be defined for symplectic 4-manifolds and they play an important
role in classification. In fact, problems 3.6 and 3.7 were formulated in ® in
the symplectic setting.

3.5. Question of Nori.

This problem does not deal with the fundamental groups of plane curve
directly but rather comes up naturally in Nori’s theory which gives a clear
picture of the reasons for the commutativity of the fundamental groups
of plane curves with “mild” singularities. In 3 it is shown that if C is
a non-singular model of an irreducible nodal curve C' with r(C') nodes on
a non-singular projective surface X and if C? > 2r(C) then the index
of the subgroup of 7 (X) which is the image of m (C) in m(X) is finite
(in fact does not exceed C?/C? — 2r(C)). One should compare this with
Lefschetz theorem where one makes a weaker assumption that C? > 0 but
the conclusion is that 71 (C) — 71 (X) is surjective. Note that the group
71(C) is an amalgamated product of 7 (C) and a free group and hence is

much bigger than 7 (C). This prompted the following;:

Problem 3.8. (cf. 3%) Let D be an effective divisor on a complete surface
X with D? > 0. Is it true that the normal subgroup of 71 (X) generated by
the images of the fundamental groups of normalizations of the components
of D has a finite index in w1 (X)?

3.6. Question of Artin and Mazur.

In 48 the authors raised a question (cf. p. 8) which bears on the relation
between the strata of topological equisingularity of the space of plane curves
of fixed degree and the topology of the complement. Geometry and topology
of these strata is very interesting and little is understood (cf. discussion in
section 5.2).

Let U be the connected component of the equisingular stratum of the
space of plane curves of degree n(n — 1) containg the branching curves of
generic projections of a non singular surface of degree n in P3. Consider
an open subset Up of U consisting of curves not passing through a point
P € P2. Then the fundamental group 71 (Up) acts on the group m; (P? —
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Co, P) = B,,/(A?) via the monodromy (Co € Up, B, is the Artin’s braid
group and A? is the generator of the center cf. 32 and section 3.3).

Problem 3.9. Determine the homomorphism
71 (Up) = Aut(B,/A?).

The automorphism group of B, is calculated in 5.

4. Multivariable Alexander invariants

In the case of reducible plane curves the Alexander invariant discussed in
section 2 has a multivariable refinement. From now on let C' be a curve in
C? having r irreducible components all transversal to the line at infinity.
The abelianization of the commutator A(C) = 71 (C?—C)'/m (C?—C)"®C
can be viewed as a module over the group ring C[H;(C? — C,Z)] of the
homology group. Since H1(C? — C,Z) = Z" (cf. 3°) this group ring is iso-
morphic to the ring of Laurent polynomials A, = C[t1,t]",....t,,t;']. A
construction of commutative algebra (cf. 1¢) associates with a A,-module
M its support which is a subscheme of SpecClt1,t; !, ..., ., t, 1] = C*" con-
sisting of the prime ideals p € SpecC[t;,t; ', ..., t,, ;'] whose localization
M, at p is a non-zero module. This leads to the following

Definition 4.1. The i-th characteristic variety of a curve C is a subvariety

of C*" which is the reduced subscheme of the support of i-th exterior power
of A(C):

Vi(C) = SuppA‘(m1 (C? - €)' /m (C* - C)" ® C).

In the irreducible case (r = 1) the characteristic variety V3 (C) is the
subset of C* which is the collection of roots of the Alexander polynomial
Ac(t) (cf. section 2). If in definition 4.1 one replaces 7 (C? — C) by the
fundamental group of a link L in a 3-sphere S® then the corresponding char-
acteristic variety is the zero set of the multivariable Alexander polynomial
of 71 (S® — L). However for a fundamental group of a curve the character-
istic variety V1 (C) typically has codimension greater than 1 in (C*)" and
hence cannot be the zero set of a multivariable polynomial.

The realization problems mentioned in section 2 have the following mul-
tivariable counterparts.

Problem 4.1. Find a bound on the number of irreducible components of
Vi(C). Are the irreducible components of V1(C) containing the identity of
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C*" combinatorially defined i.e. depend only on the isomorphism class of
the data consisting of the set of components and local type of singular points
each component contains?

Let us make some comments on the second part of this problem by pro-
viding first some more details on the structure of V1 (C). The irreducible
components of V;(C) have a remarkably simple geometric structure: each
is a coset of a subgroup of C*" = H!(C? — C,C*) having a finite order
in the quotient by this subgroup (cf. 28, !; this is in sharp contrast with
the fundamental group of links in S$®). Moreover for each irreducible com-
ponent of V;(C) there exists a holomorphic map f : C2—~C — C — D
where CardD > 2 such that this component coincides with the coset
pf*(H'(C — D,C*)) Cc H'(C? — C,C*) where p is a point of finite or-
der in C*". In particular in the case when V;(C) has components having a
positive dimension, V; (C) also has the subgroups of H'(C2? — C, C*) of the
same dimension.

In the case when all irreducible components of C C C? are lines. i.e.
C is an arrangement of lines, the components of V4 (C) can be described as
follows. Let H*(C? — C, C) be the cohomology algebra of the complement.
It has a combinatorial description known as the Orlik-Solomon algebra of
the arrangement (in a more general case of hyperplanes in C") (cf. 49).
Each w € H!(C? — C, C) defines the complex

K :H°(C?>-(C,C) = HY(C?-(C,C) =% H*(C?> —C,C)  (10)

in which differential is given by the cup product with w. Let us consider
the following set

{we HY(C? - C,C)|dimH(K*) > 1}. (11)

This set is combinatorially defined and in fact is a union of linear sub-
spaces in H'(C?2 — C,C) (cf. 28, 29). Moreover the exponential map
exp : H(C? - C,C) - H*(C? — C,C*) (induced by the map C — C*
having as the source the tangent space to C*) provides the one to one cor-
respondence between the components of V;(C) containing the identity of
H'(C? - (C,C*) (i.e. the subgroups) and the irreducible components of the
set (11). In particular the set (11) is combinatorially defined i.e. one has a
positive answer to the second part of problem 4.1 in the case when C is an
arrangement of lines. A generalization of this to arrangements of rational
curves in discussed in 7.

In the case of arrangements one has a more precise conjecture than what
is suggested by 4.1 and will be discussed in section 5.



July 31, 2006 21:21 Proceedings Trim Size: 9in x 6in triestews2

13

Essential components of characteristic varieties having a positive dimen-
sion and non coordinate torsion points can be calculated in terms of position
of singularities by a formula generalizing the expression (3) (cf. 28). We
refer to 30 for discussion of related interesting invariants (polytopes of quasi-
adjunction) and corresponding problems and to 2 for a study of translated
components.

5. Complements to Arrangements

Study of the complements to arrangements is a vast subject. Here we shall
focus only on few problems, which it seems represent a gateway to more
general case of arbitrary reducible curves.

5.1. Dimensions of components of characteristic varieties

Let us consider the problem of an estimate on the dimension of the char-
acteristic variety. In order to isolate the central issue we shall review a
definition of an essential component of Vi(C) (cf. 28, 3). Let C be an
arrangement of lines in C? and let C' U L be obtained by adding a line
L to the arrangement C. The space SpecC[H;(C? — C,Z)] containing
the characteristic varieties can be identified with the space of characters
of the fundamental group: Hom(w(C — C,Z),C*) = H'(C? — C,C*)
and similar identification can be made for C U L. The (injective) map
HY(C?-C,C*) » H(C—-CUL,C*) induced by inclusion takes a compo-
nent of V1 (C) into a component of V1 (C' U L). The corresponding inclusion
of components may or may not be strict (cf ®). We call a component
Heour € Vi(C U L) non essential in the latter case, i.e. if it coincides with
the image of a component in V3 (C) and essential is it is not a non essential
one. Clearly the key issue is to decide what the dimensions of the essential
components are and how big these dimensions can be relative to the num-
ber of lines in the arrangement (or the degree of the curve in case of an
arbitrary reducible curve).

For the arrangement of d lines passing through a point in C2 the variety
V) is given by the equation t;...t5 = 1 (cf. 28) i.e. we have a d — 1-
dimensional component of V;(C) which is large relative to the degree of C.
It is surprisingly hard to find other arrangements with large dimension of
essential components.

Problem 5.1. Find a bound ¢(N) on the dimension of an essential compo-
nent of the characteristic variety for an arrangement of N lines. Can the
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dimension of an essential component of a characteristic variety be greater
than 4 for an arrangement different from a pencil of lines?

There are quite a few arrangements with dimension of essential com-
ponents equal to 2 but even in these cases the arrangements are related
to beautiful and subtle non-linear geometry. The arrangement of 12 lines
formed by all the lines in P? which contain 3 of the 9 inflection points of
a non-singular cubic yields an arrangement with the essential component
having dimension 3. A class of arrangements for which one has ¢(N) < 4 is
given in 2° and represents the main evidence for the existence of an inter-
esting answer to the problem 5.1. See !7 and ¢ for recent results regarding
this problem.

5.2. Arrangement Strata

It was mentioned already in section 4 that the existence of a component of
characteristic variety having dimension k is equivalent to the existence of
a holomorphic map of C2 — C onto complement in C to k distinct points.
In other words, for an arrangement C of lines in P2 the existence of a
component of V1 (C) having a positive dimension k yields a pencil of curves
in P2 of fixed degree d with k+ 1 members being the (possibly non reduced)
curves having only the lines as their irreducible components. Such a pencil
corresponds to a line in the space of plane curves of degree d i.e. the
projectivization P(H°(P?,0(d))) of the space of sections of Opz(d). This
projectivization contains subvarieties A;, . ;, corresponding to partitions
ofd=1; +...4+1s; I; > 1 and consisting of curves of degree d given by the
equations Lll1 «...- Lls = 0 where L; are linear forms. If I; = 1,i = 1,....d

then the stratum A;, _;, represents the d-fold symmetric product of P2

. (d+3) _ . -
embedded in P“Z. Subvarieties corresponding to other partitions of d

are the strata of canonical stratification of the symmetric product and all
Ay, .1, are the strata of equisingular stratification of the space of plane
curves (cf. 3%). A k-secant of A, .4, is a line in P(H°(P?,0(d + 1)))
intersecting Ay, ..., at k points. A reformulation of the problem 5.1 is the
problem of determining for which k the “arrangement stratum” A;, ;.
admits a k-secant.

One way to get a bound on possible degrees of multisecants is to use

the degrees of defining equations:

d

Lemma 5.1. o) If Ay, ..., is a set theoretical intersection of hypersurfaces
of degrees not exceeding k — 1 then any k-secant of Ay, ;, must belong

s
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to Ay,,...1,- In particular the dimension of the characteristic variety of an
arrangement composed of curves of degree d satisfies

k < maxg M(ly, ..., 1)

where the mazimum is taken over all systems of equations K for A, i,
and M(ly,.1s) is the mazimum of degrees of equations in K.

b)Lines in the space P(H°(P2,0(d)) of plane curves of degree d which
belong to A1,...1 are represented by pencils members of which are unions of
fixed components and a pencil all members of which are lines containing a
fized point (i.e. the pencils have the form AF-L;-...-Ly+puF-Li -...- L}, where
F is a product of linear forms and L;, L} are linear forms all vanishing at
the same point).

The first part follows from Bezout theorem. To see the second, let us
consider the movable part of the pencil i.e. the pencil formed by the com-
ponents of all curves which do not belong to all elements of the pencil. Let
P2 be the blow up of P2 at the base points of the movable part. The map
P2 - P! given by the movable part of the pencil yields the composition
P2 25 Y P! where ¢ has irreducible fibers and 4 is finite (Stein factor-
ization). ¥ must be rational since otherwise the pullback of a holomorphic
1-form from ¥ will yields a holmorphic 1-form on P2 and P? does not have
non-zero holomorphic 1-forms. Hence ¢ is a pencil of lines and therefore it
consists of lines passing through a point.

This leads to the following

Problem 5.2. Find the degrees of defining equations of the arrangement
strata Ay,

"

H.Brill showed that if [; = 1 then A is the zero set of a system of
equations of degree d + 1 (cf. 1%). In the case d = 3 this can be seen as
follows. A cubic curve C' is a union of lines if and only if any point is an
inflection point. Therefore the Hessian is vanishing on C' and if F is the
equation of C then there is a constant 7 such that Hess(F) =« - F. This
is equivalent to saying that the rank of the 2 x 10 matrix formed by coeffi-
cients of Hess(F') and F being equal to 1. Since the degree of Hess(F') in
coefficients of F' is 3 we obtain (120) = 45 equations for the stratum A; ;1
all having degree 4. In fact, the 12 lines containing 9 inflection points of a
cubic form a pencil of cubic curves yielding a 4-secant of the arrangement
stratum of Ay 1,1 (and hence the arrangement with 3-dimensional charac-
teristic variety).
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Example 5.1. (Next two examples were pointed out by I.Dolgachev) Plane
section of the pencil of desmic surfaces (Kummer surfaces corresponding to
squares of elliptic curves). Such pencil contains 4 tetrahedra yielding in a
plane section a pencil of quartics which is tri-secant of the top stratum of
Al,l,l,l (Cf 21).

Example 5.2. d) Modular configurations (cf. '*) define arrangements of
hyperplanes for which plane sections yield the tri-secants of A;, ;1. The
hyperplanes can be constructed either using Schrodinger representation of
G = (Z/NZ)? or embedding of modular surfaces parametrising elliptic
curves with level IV structure. We refer to I.Dolgachev’s paper for detailed
discussion of this configuration. For NV = 3 one obtains the Hesse arrange-
ment.

Problem 5.3. Find new examples of arrangements with characteristic vari-
eties having essential components of positive dimension and classify secants
of the arrangement stratum in the space of plane curves having fized (at least
small) degree.
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