MCS 548 – Mathematical Theory of Artificial Intelligence
Fall 2016
Problem Set 3

Lev Reyzin

Due: 11/23/16 at the beginning of class

Instructions: Atop your problem set, please write your name and list your collaborators.

Problems

1. We proved a margin bound (Theorem 7.8 of Mohri et al.) on the number of mistakes for the Perceptron algorithm for the update rule \(w_{t+1} \leftarrow w_t + y_t x_t \). Consider the general update rule \(w_{t+1} \leftarrow w_t + \eta y_t x_t \), where \(\eta > 0 \). Prove a bound on the maximum number of mistakes for this rule. How does \(\eta \) affect the bound?

2. Imagine that a bandit or an online learning algorithm \(A \) that runs in \(T \) rounds and has an expected regret bound of \(\epsilon + T/\epsilon \), where \(\epsilon \) is set by the algorithm. Clearly the optimal setting is \(\epsilon = \sqrt{T} \). The problem is that sometimes \(T \) is not known in advance. How do we fix this issue? We can have an algorithm \(A' \) that does the following: \(A' \) starts with a parameter \(\epsilon_1 \) and runs \(A \) for \(T_1 \) rounds, then adjusts the parameter to \(\epsilon_2 \) and runs \(A \) for \(T_2 \) rounds, and so on. Construct a schedule of \((\epsilon_i, T_i)\) that asymptotically achieves the \(\sqrt{T} \) expected regret bound without knowing \(T \) in advance.

3. Suppose you have two coins, one perfectly fair, and one with bias toward H of \(1/2 + \epsilon \) for some \(\epsilon > 0 \). It is known that to tell which coin is biased (with probability \(> 3/4 \)) one needs to perform at least \(c/\epsilon^2 \) coin flips (\(c > 0 \) is some constant). Show that this implies that EXP3’s asymptotic regret dependence of \(T^{1/2} \) cannot be improved to \(T^{1/2-\delta} \) for any constant \(\delta > 0 \).

4. In unregularized least squares regression, we solve \(W = (XX^T)^{-1}XY \), where \(x_i \in \mathcal{R}^N \) (for \(1 \leq i \leq m \)) and

\[
X = \begin{bmatrix} x_1 & \cdots & x_m \end{bmatrix}, \quad W = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}, \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix},
\]

when \(XX^T \) is invertible. What conditions are required on \(x_1, \ldots, x_m \) (and thereby \(X \)) for \(XX^T \) to be invertible?