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We show that a polynomial learning algorithm, as defined by Valiant (1984), is obtained whenever there exists a
polynomial-time method of producing, for any sequence of observations, a nearly minimum hypothesis that is consistent with

these observations.
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1. Introduction

Although William of Occam first wielded his
famous razor against the superfluous elaborations
of his Scholastic predecessors, his principle of
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“Entities should not be multiplied unnecessarily
William of Occam, c. 1320

parsimony has since been incorporated into the
methodology of experimental science in the fol-
lowing form: given two explanations of the data,
all other things being equal, the simpler explana-
tion is preferable. This principle is very much alive
today in the emerging science of machine learning,
whose expressed goal is often to discover the
simplest hypothesis that is consistent with the
sample data [1]. As laudable as this goal may
seem, whether in the area of machine learning or
in science as a whole, one can still ask why the
simplest hypothesis for a given sequence of ob-
servations should perform well on further observa-
tions taken from the same source. After all, the
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real value of a scientific explanation lies not in its
ability to explain events past, but in predicting
events that have yet to occur. We show that, under
very general assumptions, Occam’s Razor pro-
duces hypotheses that with high probability will
be predictive of future observations. As a conse-
quence, when hypotheses of minimum or near
minimum complexity can be produced efficiently
(ie., in polynomial time) from sample data, this
process leads to a polynomial learning algorithm,
as defined by Valiant [5]. Our numerical results
improve on related (but more general) results given
in [3] and are derived using a simpler argument.

2. The Razor applied

Following [5], we consider the problem . of
learning a class H of functions that map from a
fixed domain X into a fixed finite range. H will be
called the hypothesis class. As an example, X may
be the set of all finite strings of 0’s and 1’s and H
the class of Boolean functions! or the class of
{0, 1}-valued functions representing regular lan-
guages over X (see, e.g., [1]). Given a function f in
H, an observation of f is a point x € X, along with
the value f(x). A sequence of m observations con-
stitutes a sample (of f) of size m. The problem of
learning is the problem of recovering f, or at least
a function that approximates f, from a sample of
f. We define a learning algorithm for H as an
algorithm that takes as input a sample of an
unknown function f € H and produces as output a
hypothesis consistent with this sample that is itself
a function in H. 2

We assume that observations of f are made
independently according to some fixed probability
distribution P on X. Thus, a sample of size m is
chosen according to the product probability distri-

! Here we may assume that a Boolean function of v variables
has some standard value representing ‘undefined’ on any
input string which does not consist of exactly v bits.

2 In this paper we ignore the issue of errors in the sample, and
the possible computational advantages of allowing the al-
gorithm to produce hypotheses that are either not in H or are
only consistent with some observations in the sample.
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bution P™ on X™. The error of a hypothesis
produced from such a sample is the probability
that it disagrees with f on a single observation
(chosen according to the distribution P). A suc-
cessful learning algorithm is one that with high
probability (with respect to P™) finds a hypothesis
whose error is small. For an arbitrary learning
algorithm and for a finite H, the following lemma
relates the number of hypotheses and the sample
size to the error.

2.1. Lemma. Given any function f in a hypothesis
class of t hypotheses, the probability that any hy-
pothesis with error larger than ¢ is consistent with a
sample of f of size m is less than (1 — ¢)™r.

Proof. Let E; be the event that hypothesis h;
agrees with an observation of f, and E™ be the
event that h; agrees with all m observations of f.
The probability we are trying to bound is

p"(UER),

where the union is over all i such that h; has error
larger than . For such an i, by independence and
by the definition of error,

P™(EM)<(1—-¢)".

The subadditivity of probability measures now
gives the desired results. O

The lemma can be restated: the probability that
all consistent hypotheses have error at most ¢ is
larger than 1 — (1= ¢)™r. Furthermore, the bounds
on the m are independent of the function f to be
learned and independent of the probability distri-
bution that governs the samples. As an immediate
consequence of the above, we get an upper bound
on the sample size m needed to assure that the
hypothesis produced by any learning algorithm
has error at most ¢ with probability larger than
1 — 8. It suffices to have m such that

(1-¢)"r<3,
which implies that

m> ﬁ—s) (ln(r) + ln(
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and this certainly holds if

m > %(ln(r) + ln(%))

For a countably infinite hypothesis class H, we
follow [3] and let the complexity of a hypothesis
h € H be defined as the number of bits needed to
represent h in some fixed encoding of the hy-
pothesis in H. The complexity of a hypothesis will
be denoted with the parameter n. In this setting,
assuming that the domain X is countable as well,
Valiant’s notion of (polynomial) learnability [5]
can be stated as follows.

H is polynomially learnable (with respect to a
fixed encoding) if there exists a learning algorithm
for H and a minimal sample size m(e, 3, n), poly-
nomial in 1/¢, 1/8, and n, such that:

(a) for all f€ H of complexity at most n and
all distributions P on X, given m(e, 8, n) indepen-
dent observations of f, the algorithm produces a
hypothesis with error at most ¢ with probability at
least 1 — 8, and

(b) the algorithm produces its hypothesis in
time polynomial in the length of the given
sample. 3

A polynomial learning algorithm for an infinite
hypothesis class cannot in general afford to choose
a hypothesis arbitrarily. Occam’s Razor would
suggest that a learning algorithm should choose its
hypothesis among those that are consistent with
the sample and have minimum complexity. How-
ever, this is not always practical. For example,
finding a minimum length DNF expression con-
sistent with a sample of a Boolean function and
finding a minimum size deterministic finite au-
tomaton consistent with positive and. negative ex-
amples of a regular language are both NP-hard
problems under standard encodings ([2, problems
LO9 and ALS]; see also [4]). To obtain polynomial
algorithms, we will weaken this criterion of
minimality as follows.

3 We must assume some standard encoding of the observations
as well. In practice it should be required that both hypothesis
and observation encodings have the property that a hypothe-
sis can be checked for consistency against any observation in
polynomial time.
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2.2. Definition. An Occam-algorithm for H with
constant parameters c > 1 and 0 < a < 1 is a learn-
ing algorithm that:

(i) produces a hypothesis of complexity at most
n°m" when given a sample of size m of any
function in H of complexity at most n, and

(ii) runs in time polynomial in the length of the
sample.

We now show that the existence of an Occam-
algorithm for H implies polynomial learnability.

2.3. Theorem. Given independent observations of
any function in H of complexity at most n, an
Occam-algorithm with parameters c>1 and 0 <«
<1 produces a hypothesis of error at most & with

* probability at least 1— 8 using sample size poly-

nomial in n, 1/¢, and 1/3, independent of the
function and of the probability distribution. The
sample size required is

O(ln(l/S)/s + (nc/s)l/(l_a)).

Proof. We will show that the sample size

m> maX{ 311;1((11 CBE)) ’ ( _2 11:;(1111(—22) )W_a)}

is sufficient. The result then follows from the
definition of Occam-algorithm. The second lower
bound on m implies that

—a. 20°In(2) .
m' > —In(1-¢)’

or
n°‘m® In(2) < —im In(1 —¢).

Hence, since the hypotheses under consideration
are given by binary strings of length at most n°m®,
the number of hypotheses, r, is at most

27 < (1—¢) ™2

By Lemma 2.1 and the first lower bound on m, the

probability of producing a hypothesis with error
larger than e is less than

(1-¢)"r<(1-¢)"?<8. O
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An important special case of this theorem oc-
curs when a =0, i.e., the Occam-algorithm gives
consistent hypotheses of complexity at most n°,
independent of the sample size (where n is the
complexity of the function to be learned). In this
case, the sample size needed is

O(%(n°+ ln(1/8))).

The n° term represents the maximum number of
bits required to specify a hypothesis in the range
of the learning algorithm when its domain is re-
stricted to functions represented with at most n
bits.

Finally, we note that results similar to those
presented here can also be derived from the results
given by Pearl [3], but the sample size required is
significantly larger: at the very least, the &’s in the
above theorem must be replaced by their squares.

3. Open problems

While it is known that finding a minimum
hypothesis consistent with a sample is NP-hard
for many common classes of functions, it appears
that little is known about the existence of Occam-
algorithms for these classes of functions. Can it be
shown that if P # NP, then there are no Occam-al-
gorithms for Boolean functions under standard
encodings, nor are there any for deterministic
finite automata? Results of this type would be
consistent with the hypothesis that these classes
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are not polynomially learnable under standard
encodings. Stronger evidence for this hypothesis
would be obtained if it can also be shown that the
converse of the above learnability result holds, i.e.,
if polynomial learnability can actually be reduced
to the problem of finding Occam-algorithms. In
this case, these classes would not be polynomially
learnable under standard encodings unless P = NP.

Acknowledgment

We would like to thank Les Valiant for stimu-
lating discussions of these ideas that led to the
definition of Occam-algorithms we have given here.
We would also like to thank Jan Mycielski, Bill
Reinhart and Nick Littlestone for their critiques
on an earlier draft of this paper.

References

[1] D. Angluin and C.H. Smith, Inductive inference: Theory
and methods, Comput. Surv. 15 (3) (1983) 327-369.

[2] M.R. Garey and D.S. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness (Freeman,
San Francisco, CA, 1979).

[3] J. Pearl, On the connection between the complexity and
credibility of inferred models, Internat. J. General Systems
4 (1978) 255-264.

[4] L. Pitt and L.G. Valiant, Computational Limits on Learn-
ing from Examples, Tech. Rept., Dept. of Computer Sci-
ence, Harvard Univ., to appear.

[5] L.G. Valiant, A theory of the learnable, Comm. ACM 27
(11) (1984) 1134-1142.

€ - e

BRI



