
CMPSCI611: Approximating MAX-CUT Lecture 20

For the next two lectures we’ll be seeing examples of
approximation algorithms for interesting NP-hard prob-
lems. Today we consider MAX-CUT, which we proved
to be NP-hard in Lecture 18. Our goal is to divide the
vertices of an undirected graph G into two sets A and
B, so as to maximize the number of edges that have one
edge in A and the other in B.

Here is a somewhat greedy algorithm that does reason-
ably well at approximating the maximum cut. Given any
two sets A and B, look at an arbitrary vertex v. Suppose
for the moment that v is in A. Of the edges incident to v,
some go to other vertices in A and the others go to B. If
more vertices go to A then B, consider what happens if
we move v into B. Our score goes up one for each edge
to an element of A, and goes down one for each edge to
B, so all in all it goes up.

Thus our algorithm – starting with A = V and B = ;,
keep switching any vertex v from A to B or vice versa
as long as it will increase the number of edges from A to
B. If we reach a position where there is no such v, return
that cut as the output.

1



Note that there is no reason a single v might not go back
and forth from A to B several times. But the algorithm
must terminate, because the count of edges across the
cut starts at 0, increases by at least 1 with each switch,
and ends at some value that is at most e. This analysis
also gives us a bound on the running time – we have at
most e rounds during which we might have to check all
n vertices and examine all e edges, so the total time is
O(e(e + n)).

How closely does this algorithm approximate the maxi-
mum? Consider anyA andB such that each vertex has at
least as many edges to the other set as it does to its own
set. That is, the fraction of cross edges at each vertex is at
least 1/2. The fraction for the whole graph is a weighted
average of the fractions for each edge (where the weight
of each vertex is its degree), and so it must be at least
1/2. Thus we have a 2-approximation to the maximum,
because the fraction of edges across the maximum cut
can’t be any greater than 1.

2



Can we do better? In 1995, using a different method
(“semidefinite programming”), Goemans andWilliamson
found a poly-time way to approximateMAX-CUTwithin
1.1383. Can we get a poly-time approximation scheme?
There is a lovely archive of known results (as of about
2000) on approximation algorithms for NP-hard prob-
lems, located at:

www.nada.kth.se/˜viggo/wwwcompendium

There (at node85.html) we find that MAX-CUT is
NP-hard to approximate within 1.0684. Like VERTEX-
COVER, it is approximable to within one constant in
polynomial time but not to within another constant, un-
less P = NP.

3


