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ABSTRACT
We introduce a framework for proving lower bounds on com-
putational problems over distributions, based on a class of
algorithms called statistical algorithms. For such algorithms,
access to the input distribution is limited to obtaining an es-
timate of the expectation of any given function on a sample
drawn randomly from the input distribution, rather than
directly accessing samples. Most natural algorithms of in-
terest in theory and in practice, e.g., moments-based meth-
ods, local search, standard iterative methods for convex op-
timization, MCMC and simulated annealing, are statistical
algorithms or have statistical counterparts. Our framework
is inspired by and generalize the statistical query model in
learning theory [34].

Our main application is a nearly optimal lower bound
on the complexity of any statistical algorithm for detect-
ing planted bipartite clique distributions (or planted dense
subgraph distributions) when the planted clique has size

O(n1/2−δ) for any constant δ > 0. Variants of these prob-
lems have been assumed to be hard to prove hardness for
other problems and for cryptographic applications. Our
lower bounds provide concrete evidence of hardness, thus
supporting these assumptions.
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1. INTRODUCTION
We study the complexity of problems where the input

consists of independent samples from an unknown distri-
bution. Such problems are at the heart of machine learning
and statistics (and their numerous applications) and also oc-
cur in many other contexts such as compressed sensing and
cryptography. Many methods exist to estimate the sample
complexity of such problems (e.g. VC dimension [47]). Prov-
ing lower bounds on the computational complexity of these
problems has been much more challenging. The traditional
approach to this is via reductions and finding distributions
that can generate instances of some problem conjectured to
be intractable (e.g., assuming NP 6= RP).

Here we present a different approach, namely showing that
a broad class of algorithms, which we refer to as statistical al-
gorithms, have high complexity, unconditionally. Our defini-
tion encompasses most algorithmic approaches used in prac-
tice and in theory on a wide variety of problems, including
Expectation Maximization (EM) [16], local search, MCMC
optimization [45, 25], simulated annealing [36, 48], first and
second order methods for linear/convex optimization, [17,
6], k-means, Principal Component Analysis (PCA), Inde-
pendent Component Analysis (ICA), Näıve Bayes, Neural
Networks and many others (see [13] and [9] for proofs and
many other examples). In fact, we are aware of only one al-
gorithm that does not have a statistical counterpart: Gaus-
sian elimination for solving linear equations over a field (e.g.,
mod 2).

Informally, statistical algorithms can access the input dis-
tribution only by asking for the value of any bounded real-
valued function on a random sample from the distribution,
or the average value of the function over a specified number



of independent random samples. As an example, suppose
we are trying to solve minu∈U Ex∼D[f(x, u)] by gradient de-
scent. Then the gradient of the objective function is (by
interchanging the derivative with the integral)

∇uE
x

[f(x, u)] = E
x

[∇u(f(x, u))]

and can be estimated from samples; thus the algorithm can
proceed without ever examining samples directly. A more
involved example is Linear Programming. One version is the
feasibility problem: find a nonzero w s.t. a · w ≥ 0 for all a
in some set A. We can formulate this as

max
w

E
a

[sign(a · w)]

and the distribution over a could be uniform over the set A
if it is finite. This can be solved by a statistical algorithm
[10, 17]. This is also the case for semidefinite programs and
for conic optimization [6]. The key motivation for our def-
inition of statistical algorithms is the empirical observation
that almost all algorithms that work on explicit instances
are already statistical in our sense or have natural statisti-
cal counterparts. Thus, proving lower bounds for statistical
algorithms strongly indicates the need for new approaches
even for explicit instances. We present the formal oracle-
based definitions of statistical algorithms in Section 2.

The inspiration for our model is the statistical query (SQ)
model in learning theory [34] defined as a restriction of
Valiant’s PAC learning model [46]. The primary goal of
the restriction was to simplify the design of noise-tolerant
learning algorithms. As was shown by Kearns and others
in subsequent works, almost all classes of functions that can
be learned efficiently can also be efficiently learned in the
restricted SQ model. A notable and so far the only excep-
tion is the algorithm for learning parities, based on Gaussian
elimination. As was already shown by Kearns [34], parities
require exponential time to learn in the SQ model. Further,
Blum et al. [11] proved that the number of SQs required
for weak learning (that is, for obtaining a non-negligible ad-
vantage over the random guessing) of a class of functions C
over a fixed distribution D is characterized by a combina-
torial parameter of C and D, referred to as SQ-DIM(C,D),
the statistical query dimension.

Our notion of statistical algorithms generalizes SQ learn-
ing algorithms to any computational problem over distribu-
tions. For any problem over distributions we define a pa-
rameter of the problem that lower bounds the complexity of
solving the problem by any statistical algorithm in the same
way as SQ-DIM lower bounds the complexity of learning in
the SQ model. Our techniques for proving lower bounds on
statistical algorithms are also based on methods developed
for lower-bounding the complexity of SQ algorithms. How-
ever, as we will describe later, they depart from the known
techniques in a number of significant ways that are necessary
for our more general definition and our applications.

We apply our techniques to the problem of detecting planted
bipartite cliques/dense subgraphs.

Detecting Planted Cliques. In the planted clique prob-
lem, we are given a graph G whose edges are generated by
starting with a random graph Gn,1/2, then “planting,” i.e.,
adding edges to form a clique on k randomly chosen vertices.
Jerrum [30] and Kučera [37] introduced the planted clique
problem as a potentially easier variant of the classical prob-

lem of finding the largest clique in a random graph [33]. A
random graph Gn,1/2 contains a clique of size 2 logn with
high probability, and a simple greedy algorithm can find one
of size logn. Finding cliques of size (2 − ε) logn is a hard
problem for any ε > 0. Planting a larger clique should make
it easier to find one. The problem of finding the smallest k
for which the planted clique can be detected in polynomial
time has attracted significant attention. For k ≥ c

√
n logn,

simply picking vertices of large degrees suffices [37]. Cliques
of size k = Ω(

√
n) can be found using spectral methods

[2, 38, 14], via SDPs [19], nuclear norm minimization [3] or
combinatorial methods [21, 15].

While there is no known polynomial-time algorithm that
can detect cliques of size below the threshold of Ω(

√
n), there

is a quasipolynomial algorithm for any k ≥ 2 logn: enumer-
ate subsets of size 2 logn; for each subset that forms a clique,
take all common neighbors of the subset; one of these will be
the planted clique. This is also the fastest known algorithm
for any k = O(n1/2−δ), where δ > 0.

Some evidence of the hardness of the problem was shown
by Jerrum [30] who proved that a specific approach using
a Markov chain cannot be efficient for k = o(

√
n). More

evidence of hardness is given in [20], where it is shown that
Lovász-Schrijver SDP relaxations, which include the SDP
used in [19], cannot be used to efficiently find cliques of
size k = o(

√
n). The problem has been used to generate

cryptographic primitives [31], and as a hardness assumption
[1, 28, 40].

We focus on the bipartite planted clique problem, where a
bipartite k×k clique is planted in a random bipartite graph.
A densest-subgraph version of the bipartite planted clique
problem has been used as a hard problem for cryptographic
applications [4]. All known bounds and algorithms for the
k-clique problem can be easily adapted to the bipartite case.
Therefore it is natural to suspect that new upper bounds on
the planted k-clique problem would also yield new upper
bounds for the bipartite case.

The starting point of our investigation for this problem
is the property of the bipartite planted k-clique problem
is that it has an equivalent formulation as a problem over
distributions defined as follows.

Problem 1. Fix an integer k, 1 ≤ k ≤ n, and a subset
of k indices S ⊆ {1, 2, . . . , n}. The input distribution DS
on vectors x ∈ {0, 1}n is defined as follows: with probability
1 − (k/n), x is uniform over {0, 1}n; and with probability
k/n the k coordinates of x in S are set to 1, and the rest
are uniform over their support. For an integer t, the dis-
tributional planted k-biclique problem with t samples is
the problem of finding the unknown subset S using t samples
drawn randomly from DS.

One can view samples x1, . . . , xt as adjacency vectors of a
bipartite graph as follows: the bipartite graph has n vertices
on the right (with k marked as members of the clique) and t
vertices on the left. Each of the t samples gives the adjacency
vector of the corresponding vertex on the left. It is not
hard to see that for t = n, conditioned on the event of
getting exactly k samples with planted indices, we will get a
random bipartite graph with a planted k-biclique (we prove
the equivalence formally in the full version of this paper
[23]).

Another interesting approach for planted clique was pro-
posed by Frieze and Kannan [24]. They gave a reduction



from finding a planted clique in a random graph to finding a
direction that maximizes a tensor norm; this was extended
to general r in [12]. Specifically, they show that maximiz-
ing the r’th moment (or the 2-norm of an r’th order tensor)

allows one to recover planted cliques of size Ω̃(n1/r). A re-
lated approach is to maximize the 3rd or higher moment of
the distribution given by the distributional planted clique
problem. For this approach it is natural to consider the
following type of optimization algorithm: start with some
unit vector u, then estimate the gradient at u (via samples),
move along that direction and return to the sphere; repeat
to reach an approximate local maximum. Unfortunately,
over the unit sphere, the expected r’th moment function can
have (exponentially) many local maxima even for simple dis-
tributions. A more sophisticated approach [32] is through
Markov chains or simulated annealing; it attempts to sam-
ple unit vectors from a distribution on the sphere which is
heavier on vectors that induce a higher moment, e.g., u is
sampled with density proportional to ef(u) where f(u) is the
expected r’th moment along u. This could be implemented
by a Markov chain with a Metropolis filter [39, 27] ensuring a
proportional steady state distribution. If the Markov chain
were to mix rapidly, that would give an efficient approxima-
tion algorithm because sampling from the steady state likely
gives a vector of high moment. At each step, all one needs is
to be able to estimate f(u), which can be done by sampling
from the input distribution.

As we will see presently, these statistical approaches will
have provably high complexity. For the bipartite planted
clique problem, statistical algorithms that can query ex-
pectations of arbitrary functions to within a small toler-
ance need nΩ(logn) queries to detect planted cliques of size

k < n
1
2
−δ for any δ > 0. Even stronger exponential bounds

apply for the more general problem of detecting planted
dense subgraphs of the same size. These bounds match the
current upper bounds.

Problem 2. Fix 0 < q ≤ p ≤ 1. For 1 ≤ k ≤ n, let
S ⊆ {1, 2, . . . , n} be a set of k vertex indices and DS be a
distribution over {0, 1}n such that when x ∼ DS, with prob-
ability 1 − (k/n) the entries of x are independently chosen
according to a q biased Bernoulli variable, and with prob-
ability k/n the k coordinates in S are independently cho-
sen according to a p biased Bernoulli variable, and the rest
are independently chosen according to a q biased Bernoulli
variable. The generalized planted bipartite densest k-
subgraph problem is to find the unknown subset S given
access to samples from DS.

To describe these results precisely and discuss exactly what
they mean for the complexity of these problems, we will need
to define the notion of statistical algorithms, the complex-
ity measures we use, and our main tool for proving lower
bounds, a notion of statistical dimension of a set of distri-
butions. We do this in the next section. In Section 3 we
prove our general lower bound theorems, and in Section 5
we estimate the statistical dimension of detecting planted
cliques and dense subgraphs.

2. DEFINITIONS AND OVERVIEW
Here we formally define statistical algorithms and the key

notion of statistical dimension, and then describe the result-
ing lower bounds in detail.

2.1 Problems over Distributions
We begin by formally defining the class of problems ad-

dressed by our framework.

Definition 1 (Search problems over distributions).
For a domain X, let D be a set of distributions over X, let
F be a set of solutions and Z : D → 2F be a map from a
distribution D ∈ D to a subset of solutions Z(D) ⊆ F that
are defined to be valid solutions for D. For t > 0 the distri-
butional search problem Z over D and F using t samples is
to find a valid solution f ∈ Z(D) given access to t random
samples from an unknown D ∈ D.

We note that this definition captures decision problems
by having F = {0, 1}. With slight abuse of notation, for a
solution f ∈ F , we denote by Z−1(f) the set of distributions
in D for which f is a valid solution.

It is important to note that the number of available sam-
ples t can have a major influence on the complexity of the
problem. First, for most problems there is a minimum t
for which the problem is information-theoretically solvable.
This value is often referred to as the sample complexity of
the problem. But even for t which is larger than the sam-
ple complexity of the problem, having more samples can
make the problem easier computationally. For example, in
the context of attribute-efficient learning, there is a problem
that is intractable with few samples (under cryptographic
assumptions) but is easy to solve with a larger (but still poly-
nomial) number of samples [43]. Our distributional planted
biclique problem exhibits the same phenomenon.

2.2 Statistical Algorithms
The statistical query learning model of Kearns [34] is a re-

striction of the PAC model [46]. It captures algorithms that
rely on empirical estimates of statistical properties of ran-
dom examples of an unknown function instead of individual
random examples (as in the PAC model of learning).

For general search, decision and optimization problems
over a distribution, we define statistical algorithms as algo-
rithms that do not see samples from the distribution but
instead have access to estimates of the expectation of any
bounded function of a sample from the distribution.

Definition 2 (STAT oracle). Let D be the input dis-
tribution over the domain X. For a tolerance parameter
τ > 0, STAT(τ) oracle is the oracle that for any query func-
tion h : X → [−1, 1], returns a value

v ∈ [Ex∼D[h(x)]− τ, Ex∼D[h(x)] + τ ] .

The general algorithmic techniques mentioned earlier can
all be expressed as algorithms using STAT oracle instead of
samples themselves, in most cases in a straightforward way.
We would also like to note that in the PAC learning model
some of the algorithms, such as the Perceptron algorithm,
did not initially appear to fall into the SQ framework but SQ
analogues were later found for all known learning techniques
except Gaussian elimination (for specific examples, see [34]
and [10]). We expect the situation to be similar even in the
broader context of search problems over distributions.

The most natural realization of STAT(τ) oracle is one
that computes h on O(1/τ2) random samples from D and
returns their average. Chernoff’s bound would then imply
that the estimate is within the desired tolerance (with con-
stant probability). However, if h(x) is very biased (e.g. equal



to 0 with high probability), it can be estimated with fewer
samples. Our primary application requires a tight bound on
the number of samples necessary to solve a problem over dis-
tributions. Therefore we define a stronger version of STAT
oracle in which the tolerance is adjusted for the variance of
the query function, that is the oracle returns the expectation
to within the same tolerance (up to constant factors) as one
expects to get from t samples. More formally, for a Boolean
query h, VSTAT(t) can return any value v for which the dis-
tribution B(t, v) (sum of t independent Bernoulli variables
with bias v) is statistically close to B(t, E[h]) (see Sec. 3.2
for more details on this correspondence).

Definition 3 (VSTAT oracle). Let D be the input
distribution over the domain X. For a sample size parameter
t > 0, VSTAT(t) oracle is the oracle that for any query
function h : X → {0, 1}, returns a value v ∈ [p− τ, p+ τ ] ,

where p = Ex∼D[h(x)] and τ = max

{
1
t
,
√

p(1−p)
t

}
.

Note that VSTAT(t) always returns the value of the expec-
tation within 1/

√
t. Therefore it is stronger than STAT(1/

√
t)

but weaker than STAT(1/t). (STAT, unlike VSTAT, allows
non-boolean functions but this is not a significant difference
as any [−1, 1]-valued query can be converted to a logarithmic
number of {0, 1}-valued queries).

The STAT and VSTAT oracles we defined can return any
value within the given tolerance and therefore can make ad-
versarial choices. We also aim to prove lower bounds against
algorithms that use a potentially more benign, “unbiased”
statistical oracle. The unbiased statistical oracle gives the
algorithm the true value of a boolean query function on a
randomly chosen sample. This model is based on the Honest
SQ model in learning by Yang [49] (which itself is based on
an earlier model of Jackson [29]).

Definition 4 (1-STAT oracle). Let D be the input
distribution over the domain X. The 1-STAT oracle is the
oracle that given any function h : X → {0, 1}, takes an
independent random sample x from D and returns h(x).

Note that the 1-STAT oracle draws a fresh sample upon
each time it is called. Without re-sampling each time, the
answers of the 1-STAT oracle could be easily used to recover
any sample bit-by-bit, making it equivalent to having access
to random samples. The query complexity of an algo-
rithm using 1-STAT is defined to be the number of calls it
makes to the 1-STAT oracle. Note that the 1-STAT oracle
can be used to simulate VSTAT (with high probability) by
taking the average of O(t) replies of 1-STAT for the same
function h. While it might seem that access to 1-STAT gives
an algorithm more power than access to VSTAT we will show
that t samples from 1-STAT can be simulated using access
to VSTAT(O(t)). This will allow us to translate our lower
bounds on algorithms with access to VSTAT to query com-
plexity lower bounds for unbiased statistical algorithms.

In the following discussion, we refer to algorithms using
STAT or VSTAT oracles (instead of samples) as statisti-
cal algorithms. Algorithms using the 1-STAT oracle are
henceforth called unbiased statistical algorithms.

2.3 Statistical Dimension
The main tool in our analysis is an information-theoretic

bound on the complexity of statistical algorithms. Our def-
initions originate from the statistical query (SQ) dimension

in learning theory [11] used to characterize SQ learning al-
gorithms. Roughly speaking, the SQ dimension corresponds
to the number of nearly uncorrelated labeling functions in
a class (see the full version for the details of the definition
and the relationship to our bounds [23]).

We introduce a natural generalization and strengthening
of this approach to search problems over arbitrary sets of
distributions and prove lower bounds on the complexity of
statistical algorithms based on the generalized notion. Our
definition departs from SQ dimension in three aspects. (1)
Our notion applies to any set of distributions whereas in the
learning setting all known dimensions require fixing the dis-
tribution over the domain and only allow varying the label-
ing function. (2) Instead of relying on a bound on pairwise
correlations, our dimension relies on a bound on average
correlations in a large set of distributions. This weaker con-
dition allows us to derive the tight bounds on the complexity
of statistical algorithms for the planted k-biclique problem.
(3) We show that our dimension also gives lower bounds for
the stronger VSTAT oracle (without incurring a quadratic
loss in the sample size parameter).

We now define our dimension formally. For two functions
f, g : X → R and a distribution D with probability density
function D(x), the inner product of f and g over D is de-
fined as 〈f, g〉D

.
= Ex∼D[f(x)g(x)]. The norm of f over D is

‖f‖D =
√
〈f, f〉D. We remark that, by convention, the inte-

gral from the inner product is taken only over the support of
D, i.e. for x ∈ X such that D(x) 6= 0. Given a distribution
D over X let D(x) denote the probability density function of
D relative to some fixed underlying measure over X (for ex-
ample uniform distribution for discrete X or Lebesgue mea-
sure overRn). Our bound is based on the inner products be-
tween functions of the following form: (D′(x)−D(x))/D(x)
where D′ and D are distributions over X. For this to be
well-defined, we will only consider cases where D(x) = 0
implies D′(x) = 0, in which case D′(x)/D(x) is treated as
1. To see why such functions are relevant to our discussion,
note that for every real-valued function f over X,

E
x∼D′

[f(x)]− E
x∼D

[f(x)] = E
x∼D

[D′(x)f(x)/D(x)]− E
x∼D

[f(x)]

=

〈
D′ −D
D

, f

〉
D

.

This means that the inner product of any function f with
(D′ − D)/D is equal to the difference of expectations of f
under the two distributions. We also remark that the quan-

tity 〈D
′

D
− 1, D

′

D
− 1〉D is known as the χ2(D′, D) distance

and is widely used for hypothesis testing in statistics [41]. A
key notion for our statistical dimension is the average cor-
relation of a set of distributions D′ relative to a distribution
D. We denote it by ρ(D′, D) and define as follows:

ρ(D′, D)
.
=

1

m2

∑
D1,D2∈D′

∣∣∣∣〈D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣ .
Known lower bounds for SQ learning are based on bound-

ing the pairwise correlations between functions. Bounds
on pairwise correlations when strong enough easily imply
bounds on the average correlation. Bounding average cor-
relation is more involved technically but it appears to be
necessary for the tight lower bounds that we give. In Sec-
tion 3.3 we describe a pairwise-correlation version of our
bounds. It is sufficient for some applications and generalizes



the statistical query dimension from learning theory (see full
version for the details).

We now define the concept of statistical dimension.

Definition 5. For γ̄ > 0, domain X and a search prob-
lem Z over a set of solutions F and a class of distributions
D over X, let d be the largest integer such that there exists a
reference distribution D over X and a finite set of distribu-
tions DD ⊆ D with the following property: for any solution
f ∈ F the set Df = DD \ Z−1(f) is non-empty and for any
subset D′ ⊆ Df , where |D′| ≥ |Df |/d, ρ(D′, D) < γ̄. We
define the statistical dimension with average correlation
γ̄ of Z to be d and denote it by SDA(Z, γ̄).

The statistical dimension with average correlation γ̄ of a
search problem over distributions gives a lower bound on
the complexity of any (deterministic) statistical algorithm
for the problem that uses queries to VSTAT(1/(3γ̄)).

Theorem 1. Let X be a domain and Z be a search prob-
lem over a set of solutions F and a class of distributions
D over X. For γ̄ > 0 let d = SDA(Z, γ̄). Any statistical
algorithm requires at least d calls to VSTAT(1/(3γ̄)) oracle
to solve Z.

At a high level our proof works as follows. It is not hard
to see that for any D, an algorithm that solves Z needs to
“distinguish” all distributions in Df from D for some solu-
tion f . Here by “distinguishing” we mean that the algorithm
needs to ask a query g such that ED[g] cannot be used as a
response of VSTAT(1/(3γ̄)) for D′ ∈ Df . In the key com-
ponent of the proof we show that if a query function g to
VSTAT(1/(3γ̄)) distinguishes between a distribution D and
any distribution D′ ∈ D′, then D′ must have average corre-
lation of at least γ̄ relative to D. The condition that for any
|D′| ≥ |Df |/d, ρ(D′, D) < γ̄ then immediately implies that
at least d queries are required to distinguish any distribution
in Df from D.

In Section 3.1 we give a refinement of SDA which addi-
tionally requires that the set Df is not too small (and not
just non-empty). This refined notion allows us to extend the
lower bound to randomized statistical algorithms and then
to unbiased statistical algorithms.

2.4 Lower Bounds
We will prove lower bounds for the bipartite planted clique

under both statistical oracles (VSTAT and 1-STAT) .

Theorem 2. For any constant δ > 0, any k ≤ n1/2−δ

and r > 0, at least nΩ(log r) queries to VSTAT(n2/(rk2)) are
required to solve the distributional planted bipartite k-clique.
No polynomial-time statistical algorithm can solve the prob-
lem using queries to VSTAT(o(n2/k2)) and any statistical

algorithm will require nΩ(logn) queries to VSTAT(n2−δ/k2).

This bound also applies to any randomized algorithm with
probability of success being at least a (positive) constant.
Note that this bound is essentially tight. For every ver-
tex in the clique, the probability that the corresponding
bit of a randomly chosen point is set to 1 is 1/2 + k/(2n)
whereas for every vertex not in the clique, this probability
is 1/2. Therefore using n queries to VSTAT(16n2/k2) (i.e.,
of tolerance k/4n) it is easy to detect the planted bipartite
clique. Indeed, this can be done by using the query functions
h : {0, 1, }n → {0, 1}, h(x) = xi, for each i ∈ [n]. So, the

answers of the VSTAT oracle represent the expected value
of the ith bit over the sample.

There is also a statistical algorithm that uses nO(logn)

queries to VSTAT(25n/k) (significantly higher tolerance) to
find the planted set for any k ≥ logn. In fact, the same
algorithm can be used for the standard planted clique prob-
lem that achieves complexity nO(logn). We enumerate over
subsets T ⊆ [n] of log n indices and query VSTAT(25n/k)
with the function gT : {0, 1}n → {0, 1} defined as 1 if and
only if the point has ones in all coordinates in T . Therefore,
if the set T is included in the true clique then

E
D

[gT ] =
k

n
· 1 +

(
1− k

n

)
2− logn ∈

[
k

n
,
k + 1

n

]
.

With this expectation, VSTAT(25n/k) has tolerance at most√
k(k + 1)/25n2 ≤ (k+1)/5n and will return at least k/n−

(k + 1)/(5n) > 3k/(4n). If, on the other hand, at least one
element of T is not from the planted clique, then ED[gT ] ≤
k/(2n) + 1/n and VSTAT(25n/k) will return at most (k +
2)/(2n) + (k + 2)/(5n) < 3k/(4n). Thus, we will know all
logn-sized subsets of the planted clique and hence the entire
clique.

Our bounds have direct implications for the average-case
planted bipartite k-clique problem. An instance of this prob-
lem is a random n×n bipartite graph with a k×k bipartite
clique planted randomly. In the full version of this paper,
we show that the average-case planted k-biclique is equiva-
lent to our distributional planted k-biclique with n samples.
For a statistical algorithm, n samples directly correspond to
having access to VSTAT(O(n)). Our bounds show that this
problem can be solved in polynomial time when k = Ω(

√
n).

At the same time, for k ≤ n1/2−δ, any statistical algorithm
will require nΩ(logn) queries to VSTAT(n1+δ).

We also give a bound for unbiased statistical algorithms.

Theorem 3. For any constant δ > 0 and any k ≤ n1/2−δ,
any unbiased statistical that succeeds with probability at least
2/3 requires Ω̃(n2/k2) queries to solve the distributional planted
bipartite k-clique problem.

Each query of an unbiased statistical algorithm requires a
new sample from D. Therefore this bound implies that any
algorithm that does not reuse samples will require Ω̃(n2/k2)
samples. To place this bound in context, we note that it is
easy to detect whether a clique of size k has been planted us-
ing Õ(n2/k2) samples (as before, to detect if a coordinate i is

in the clique we can compute the average of xi on Õ(n2/k2)
samples). Of course, finding all vertices in the clique would
require reusing samples (which statistical algorithms cannot
do). Note that n2/k2 ≤ n if and only if k ≥

√
n.

These bounds match the state of the art for the average-
case planted bipartite k-clique and planted k-clique prob-
lems. One reason why we consider this natural is that some
of the algorithms that solve the problem for k = Ω(

√
n) are

obviously statistical. For example, the key procedure of the
algorithm of Feige and Ron [21] removes a vertex that has
the lowest degree (in the current graph) and repeats until
the remaining graph is a clique. The degree is the number of
ones in a column (or row) of the adjacency matrix and can be
viewed of as an estimate of the expectation of 1 appearing in
the corresponding coordinate of a random sample. Even the
more involved algorithms for the problem, like finding the
eigenvector with the largest eigenvalue or solving an SDP,
have statistical analogues.



A closely related problem is the planted densest subgraph
problem, where edges in the planted subset appear with
higher probability than in the remaining graph. This is a
variant of the densest k-subgraph problem, which itself is
a natural generalization of k-clique that asks to recover the
densest k-vertex subgraph of a given n-vertex graph [18, 35,
7, 8]. The conjectured hardness of its average case vari-
ant, the planted densest subgraph problem, has been used
in public key encryption schemes [4] and in analyzing pa-
rameters specific to financial markets [5]. Our lower bounds
extend in a straightforward manner to this problem.

Theorem 4. For any constant δ > 0, any k ≤ n1/2−δ,
` ≤ k and density parameter p = 1/2 + α, at least nΩ(`)

queries to VSTAT(n2/(`α2k2)) are required to solve the dis-
tributional planted bipartite densest k-subgraph with density
p. For constants c, δ > 0, density 1/2 < p ≤ 1/2 + 1/nc,

and k ≤ n1/2−δ, any unbiased statistical algorithm requires
Ω̃((n2+2c)/k2) queries to find a planted densest subgraph of
size k.

For example, taking k = n1/3, l = k and α = 1/nc yields a

lower bound of nΩ(n1/3) for the VSTAT(n1+2c) oracle.

3. LOWER BOUNDS FROM STATISTICAL
DIMENSION

We refer the reader to the full version for the technical
details [23] omitted here.

3.1 Lower Bounds for Statistical Algorithms
We now prove Theorem 1 which is the basis of all our

lower bounds. We will prove a stronger version of this the-
orem which also applies to randomized algorithms. For this
version we need an additional parameter in the definition of
SDA.

Definition 6. For γ̄ > 0, η > 0, domain X and a search
problem Z over a set of solutions F and a class of distribu-
tions D over X, let d be the largest integer such that there
exists a reference distribution D over X and a finite set
of distributions DD ⊆ D with the following property: for
any solution f ∈ F the set Df = DD \ Z−1(f) has size
at least (1 − η) · |DD| and for any subset D′ ⊆ Df , where
|D′| ≥ |Df |/d, ρ(D′, D) < γ̄. We define the statistical di-
mension with average correlation γ̄ and solution set bound
η of Z to be d and denote it by SDA(Z, γ̄, η).

Note that for any η < 1, SDA(Z, γ̄) ≥ SDA(Z, γ̄, η) and
for 1 > η ≥ 1 − 1/|DD|, we get SDA(Z, γ̄) = SDA(Z, γ̄, η),
where |DD| is the set of distributions that maximizes SDA(Z, γ̄).

Theorem 5. Let X be a domain and Z be a search prob-
lem over a set of solutions F and a class of distributions D
over X. For γ̄ > 0 and η ∈ (0, 1) let d = SDA(Z, γ̄, η). Any
randomized statistical algorithm that solves Z with probabil-
ity δ > η requires at least δ−η

1−ηd calls to VSTAT(1/(3γ̄)).

Theorem 1 is obtained from Theorem 5 by setting δ = 1
and using any 1 − 1/|DD| ≤ η < 1. Further, for any η < 1,
SDA(Z, γ̄) ≥ SDA(Z, γ̄, η) and therefore for any η < 1, a
bound on SDA(Z, γ̄, η) can be used in Theorem 1 in place
of bound on SDA(Z, γ̄).

We will need the following simple lemma that bounds the
distance between any p ∈ [0, 1] and p′ which is returned by
VSTAT(t) on a query with expectation p in terms of p′.

Lemma 1. For an integer t and any p ∈ [0, 1], let p′ ∈

[0, 1] be such that |p′ − p| ≥ τ = max

{
1
t
,
√

p(1−p)
t

}
. Then

|p′ − p| ≥
√

min{p′,1−p′}
3t

.

We are now ready to prove Theorem 5.

Proof of Theorem 5. We prove our lower bound by
exhibiting a distribution over inputs (which are distributions
over X) for which every deterministic statistical algorithm
that solves Z with probability δ (over the choice of input)
requires at least (δ − η) · d/(1− η) calls to VSTAT(1/(3γ̄)).
The claim of the theorem will then follow by Yao’s minimax
principle [51].

Let D be the reference distribution and DD be a set of
distributions for which the value d is achieved. Let A be
a deterministic statistical algorithm that uses q queries to
VSTAT(1/(3γ̄)) to solve Z with probability δ over a random
choice of a distribution from DD. Following an approach
from [22], we simulate A by answering any query h : X →
{0, 1} of A with value ED[h(x)]. Let h1, h2, . . . , hq be the
queries asked by A in this simulation and let f be the output
of A.

By the definition of SDA, for Df = DD \ Z−1(f) it holds
that |Df | ≥ (1 − η)|DD| and for every D′ ⊆ Df , either
ρ(D′, D) < γ̄ or |D′| ≤ |Df |/d. Let the set D+ ⊆ DD be the
set of distributions on which A is successful. Let D+

f = Df ∩
D+ and we denote these distributions by {D1, D2, . . . , Dm}.
We note that D+

f = D+ \ (DD \ Df ) and therefore

m = |D+
f | ≥ |D

+| − |DD \ Df | ≥ δ|DD| − |DD \ Df |

=
δ|DD| − |DD \ Df |
|DD| − |DD \ Df |

|Df | ≥
δ − η
1− η |Df |. (1)

To lower bound q, we use a generalization of an elegant
argument of Szörényi [44]. For every k ≤ q, let Ak be the
set of all distributions Di such that∣∣∣∣E
D

[hk(x)]− E
Di

[hk(x)]

∣∣∣∣ > τi,k
.
= max

{
1

t
,

√
pi,k(1− pi,k)

t

}
,

where we use t to denote 1/(3γ̄) and pi,k to denote EDi
[hk(x)].

To prove the desired bound we first prove the following two
claims:

1.
∑
k≤q |Ak| ≥ m;

2. for every k, |Ak| ≤ |Df |/d.

Combining these two implies that q ≥ d · m/|Df |. By in-
equality (1), q ≥ δ−η

1−η · d giving the desired lower bound. In
the rest of the proof for conciseness we drop the subscript
D for inner products and norms.

To prove the first claim we assume, for the sake of con-
tradiction, that there exists Di 6∈ ∪k≤qAk. Then for every
k ≤ q, |ED[hk(x)] − EDi

[hk(x)]| ≤ τi,k. This implies that
the replies of our simulation ED[hk(x)] are within τi,k of

EDi
[hk(x)]. By the definition of A and VSTAT(t), this im-

plies that f is a valid solution for Z on Di, contradicting
the condition that Di ∈ D+

f ⊆ DD \ Z
−1(f).

To prove the second claim, suppose that for some k ∈ [d],
|Ak| > |Df |/d. We will denote pk = ED[hk(x)]. We assume
that pk ≤ 1/2 (when pk > 1/2, we simply replace hk by



1− hk). We note first that:

E
Di

[hk(x)]−E
D

[hk(x)] = E
D

[
Di(x)

D(x)
hk(x)

]
−E
D

[hk(x)]

=

〈
hk,

Di
D
− 1

〉
= pi,k − pk.

Let D̂i(x) = Di(x)
D(x)

−1, (where the convention is that D̂i(x) =

0 if D(x) = 0). We will next show upper and lower bounds
on the following quantity

Φ =

〈
hk,

∑
Di∈Ak

D̂i · sign〈hk, D̂i〉

〉
.

By Cauchy-Schwartz we have that

Φ2 =

〈
hk,

∑
Di∈Ak

D̂i · sign〈hk, D̂i〉

〉2

≤ ‖hk‖2 ·

∥∥∥∥∥∥
∑

Di∈Ak

D̂i · sign〈hk, D̂i〉

∥∥∥∥∥∥
2

≤ ‖hk‖2 ·

 ∑
Di,Dj∈Ak

∣∣∣〈D̂i, D̂j〉∣∣∣


≤ ‖hk‖2 · ρ(Ak, D) · |Ak|2. (2)

As before, we also have that

Φ2 =

〈
hk,

∑
Di∈Ak

D̂i · sign〈hk, D̂i〉

〉2

=

 ∑
Di∈Ak

〈hk, D̂i〉 · sign〈hk, D̂i〉

2

≥

 ∑
Di∈Ak

|pi,k − pk|

2

. (3)

To evaluate the last term of this inequality we use the fact
that |pi,k − pk| ≥ τi,k = max{1/t,

√
pi,k(1− pi,k)/t} and

Lemma 1 to obtain that for every Di ∈ Ak,

|pk − pi,k| ≥
√

min{pk, 1− pk}
3t

=

√
pk
3t
. (4)

By substituting equation (4) into (3) we get that Φ2 ≥ pk
3t
·

|Ak|2.
We note that, hk is a {0, 1}-valued function and therefore
‖hk‖2 = pk. Substituting this into equation (2) we get that
Φ2 ≤ pk ·ρ(Ak, D)·|Ak|2. By combining these two bounds on
Φ2 we obtain that ρ(Ak, D) ≥ 1/(3t) = γ̄ which contradicts
the definition of SDA.

3.2 Lower Bounds for Unbiased Statistical Al-
gorithms

Next we address lower bounds on algorithms that use the
1-STAT oracle. We recall that the 1-STAT oracle returns
the value of a function on a single randomly chosen point.
To estimate the expectation of a function, an algorithm can
simply query this oracle multiple times with the same func-
tion and average the results. A lower bound for this oracle

directly translates to a lower bound on the number of sam-
ples that any statistical algorithm must use.

We note that responses of 1-STAT do not have the room
for the possibly adversarial deviation afforded by the toler-
ance of the STAT and VSTAT oracles. The ability to use
these slight deviations in a coordinated way is used crucially
in our lower bounds against VSTAT and in known lower
bounds for SQ learning algorithms. This makes proving
lower bounds against unbiased statistical algorithms harder
and indeed lower bounds for Honest SQ learning (which is
a special case of unbiased statistical algorithms) required a
substantially more involved argument than lower bounds for
the regular SQ model [50].

Our lower bounds for unbiased statistical algorithms use a
different approach. We show a direct simulation of 1-STAT
oracle using VSTAT oracle.

Theorem 6. Let Z be a search problem and let A be
a (possibly randomized) unbiased statistical algorithm that
solves Z with probability at least δ using m samples from
1-STAT. For any δ′ ∈ (0, 1/2], there exists a statistical al-
gorithm A′ that uses at most m queries to VSTAT(m/δ′2)
and solves Z with probability at least δ − δ′.

Our proof relies on a simple simulation. which implies that
success probability of the simulated algorithm is not much
worse than that of the unbiased statistical algorithm.

Theorem 7. Let X be a domain and Z be a search prob-
lem over a set of solutions F and a class of distributions
D over X. For γ̄ > 0 and η ∈ (0, 1), let d = SDA(Z, γ̄, η).
Any (possibly randomized) unbiased statistical algorithm that
solves Z with probability δ requires at least m calls to 1-STAT
for

m = min

{
d(δ − η)

2(1− η)
,

(δ − η)2

12γ̄

}
.

In particular, if η ≤ 1/6 then any algorithm with success
probability of at least 2/3 requires at least min{d/4, 1/48γ̄}
samples from 1-STAT.

To conclude we note that the reduction in the other di-
rection is trivial, namely that VSTAT(t) oracle can be sim-
ulated using 1-STAT oracle. We provide details in the full
version of this paper.

3.3 Statistical Dimension from Pairwise Cor-
relations

In addition to SDA which is based on average, correlation,
we introduce a simpler notion based on pairwise correlatons.

Definition 7. For γ, β > 0, domain X and a search
problem Z over a set of solutions F and a class of distri-
butions D over X, let m be the maximum integer such that
there exists a reference distribution D over X and a finite set
of distributions DD ⊆ D such that for any solution f ∈ F ,
there exists a set of m distributions Df = {D1, . . . , Dm} ⊆
DD \ Z−1(f) with the following property:∣∣∣∣〈DiD − 1,

Dj
D
− 1

〉
D

∣∣∣∣ ≤
{

β for i = j ∈ [m]

γ for i 6= j ∈ [m].

We define the statistical dimension with pairwise correla-
tions (γ, β) of Z to be m and denote it by SD(Z, γ, β).



Using this notion, we can prove the following lower bound
(which is a corollary of Theorem 1):

Theorem 8. Let X be a domain and Z be a search prob-
lem over a set of solutions F and a class of distributions D
over X. For γ, β > 0, let m = SD(Z, γ, β). For any τ > 0,
any statistical algorithm requires at least m(τ2 − γ)/(β − γ)
calls to the STAT(τ) oracle to solve Z. In particular, if for

m > 0, SD(Z, γ = m−2/3

2
, β = 1) ≥ m then at least m1/3/2

calls of tolerance m−1/3 to the STAT oracle are required to
solve Z.

4. WARM-UP: MAX-XOR-SAT
In this section, we demonstrate our techniques on a warm-

up problem, MAX-XOR-SAT. For this problem, it is suffi-
cient to use pairwise correlations, rather than average cor-
relations.

The MAX-XOR-SAT problem over a distribution is de-
fined as follows.

Problem 3. For ε ≥ 0, the ε-approximate MAX-XOR-
SAT problem is defined as follows. Given samples from
some unknown distribution D over XOR clauses on n vari-
ables, find an assignment x that maximizes up to additive ε
the probability a random clause drawn from D is satisfied.

In the worst case, it is known that MAX-XOR-SAT is NP-
hard to approximate to within 1/2−δ for any constant δ [26].
In practice, local search algorithms such as WalkSat [42] are
commonly applied as heuristics for maximum satisfiability
problems. We give strong evidence that the distributional
version of MAX-XOR-SAT is hard for algorithms that lo-
cally seek to improve an assignment by flipping variables as
to satisfy more clauses, giving some theoretical justification
for the observations of [42]. Moreover, our proof even applies
to the case when there exists an assignment that satisfies all
the clauses generated by the target distribution.

The bound we obtain can be viewed as a restatement of
the known lower bound for learning parities using statistical
query algorithms (indeed, the problem of learning parities is
a special case of our distributional MAX-XOR-SAT).

Theorem 9. For any δ > 0, any statistical algorithm
requires at least τ2(2n − 1) queries to STAT(τ) to solve(

1
2
− δ
)
-approximate MAX-XOR-SAT. In particular, at least

2n/3 queries of tolerance 2−n/3 are required.

For a vector c ∈ {0, 1}n we define the parity function
χc(x) as usual χc(x)

.
= −(−1)c·x. Further, let Dc to be the

uniform distribution over the set Sc = {x | χc(x) = 1}.

Lemma 2. For c ∈ {0, 1}n, c 6= 0̄ and the uniform distri-
bution U over {−1, 1}n, the following hold:

1. Ex∼Dc [χc′(x)] =

{
1 if c = c′

0 otherwise.

2. Ex∼U [χc(x)χc′(x)] =

{
1 if c = c′

0 otherwise.

These two facts will imply that when D = U (the uniform
distribution) and the Di’s consist of the Dc’s, we can set γ =
0 and β = 1 in our simpler variant of statistical dimension
from which Theorem 9 follows.

Theorem 10. For the MAX-XOR-SAT problem, let F =
{χx}x∈{0,1}n , let D be the set of all distributions over clauses
c ∈ {0, 1}n, and for any δ > 0, let Z be the ( 1

2
− δ)-

approximate MAX-XOR-SAT problem defined over F and
D. Then SD(Z, 0, 1) ≥ 2n − 1.

5. PLANTED CLIQUE
We now prove the lower bound claimed in Theorem 2

on the problem of detecting a planted k-clique in the given
distribution on vectors from {0, 1}n as defined above.

For a subset S ⊆ [n], let DS be the distribution over
{0, 1}n with a planted clique on the subset S. Let {S1, . . . , Sm}
be the set of all

(
n
k

)
subsets of [n] of size k. For i ∈ [m] we use

Di to denote DSi . The reference distribution in our lower
bounds will be the uniform distribution over {0, 1}n and let

D̂S denote DS/D − 1. In order to apply our lower bounds
based on statistical dimension with average correlation we
now prove that for the planted clique problem average cor-
relations of large sets must be small. We start with a lemma
that bounds the correlation of two planted clique distribu-
tions relative to the reference distribution D as a function
of the overlap between the cliques:

Lemma 3. For i, j ∈ [m],〈
D̂i, D̂j

〉
D
≤ 2λk2

n2
,

where λ = |Si ∩ Sj |.

Proof. For the distribution Di, we consider the proba-
bility Di(x) of generating the vector x. Then,

Di(x) =

{
(n−k
n

) 1
2n + ( k

n
) 1

2n−k if ∀s ∈ Si, xs = 1

(n−k
n

) 1
2n otherwise.

We can now compute D̂i and the inner product:〈
D̂i, D̂j

〉
D
≤ 2n−2k+λ

2n

(
k2k

n
− k

n

)2

+ 2

(
2n−k

2n

)(
k2k

n
− k

n

)(
− k
n

)
+

(
− k
n

)2

≤ 2λk2

n2

We now give a bound on the average correlation of any D̂S
with a large number of distinct clique distributions.

Lemma 4. For δ > 0 and k ≤ n1/2−δ, let {S1, . . . , Sm} be
the set of all

(
n
k

)
subsets of [n] of size k and {D1, . . . , Dm}

be the corresponding distributions on {0, 1}n. Then for any
integer ` ≤ k, set S of size k and subset A ⊆ {S1, . . . , Sm}
where |A| ≥ 4(m− 1)/n2`δ,

1

|A|
∑
Si∈A

〈D̂S , D̂i〉 < 2`+2 k
2

n2
.

Proof. In this proof we first show that if the total num-
ber of sets in A is large then most of sets in A have a small
overlap with S. We then use the bound on the overlap of
most sets to obtain a bound on the average correlation of
DS with distributions for sets in A.



Formally, we let α = k2

n2 and using Lemma 3 get the bound

〈D̂i, D̂j〉 ≤ 2|Si∩Sj |α. Summing over Si ∈ A,∑
Si∈A

〈D̂S , D̂i〉 ≤
∑
Si∈A

2|S∩Si|α.

For any set A ⊆ {S1, . . . , Sm} of size t this bound is max-
imized when the sets of A include S, then all sets that in-
tersect S in k − 1 indices, then all sets that intersect S in
k − 2 indices and so on until the size bound t is exhausted.
We can therefore assume without loss of generality that A
is defined in precisely this way.

Let Tλ = {Si | |S ∩ Si| = λ} denote the subset of all k-
subsets that intersect with S in exactly λ indices. Let λ0

be the smallest λ for which A ∩ Tλ is non-empty. We first
observe that for any 1 ≤ j ≤ k − 1,

|Tj |
|Tj+1|

=

(
k
j

)(
n−k
k−j

)(
k
j+1

)(
n−k
k−j−1

)
=

(j + 1)(n− 2k + j + 1)

(k − j − 1)(k − j)

≥ (j + 1)(n− 2k)

k(k + 1)

≥ (j + 1)n2δ

2
.

By applying this equation inductively we obtain,

|Tj | ≤
2j · |T0|
j! · n2δj

<
2j · (m− 1)

j! · n2δj

and ∑
k≥λ≥j

|Tλ| <
∑

k≥λ≥j

2λ · (m− 1)

λ! · n2δλ
≤ 4(m− 1)

nδj
.

By definition of λ0, |A| ≤
∑
j≥λ0

|Tj | < 4(m− 1)/n2δλ0 . In

particular, if |A| ≥ 4(m− 1)/n2`δ then n2`δ/4 < n2δλ0/4 or
λ0 < `. Now we can conclude that∑

Si∈A

〈D̂S , D̂i〉 ≤
k∑

j=λ0

2j |Tj ∩A|α

≤

2λ0 |Tλ0 ∩A|+
k∑

j=λ0+1

2j |Tj |

α

≤
(

2λ0 |Tλ0 ∩A|+ 2 · 2λ0+1|Tλ0+1|
)
α

≤ 2λ0+2|A|α < 2`+2|A|α.

To derive the last inequality we need to note that for every
j ≥ 0, 2j |Tj | > 2(2j+1|Tj+1|) we can therefore telescope the
sum.

Lemma 4 gives a simple way to bound the SDA.

Theorem 11. For δ > 0 and k ≤ n1/2−δ let Z the planted
bipartite k-clique problem. Then for any ` ≤ k,

SDA

(
Z, 2`+2k2/n2, 1/

(
n

k

))
≥ n2`δ/4.

Combining Theorems 5 and 11 gives Theorem 2 by taking
` = log(r). Theorems 7 and 11 imply the sample complex-
ity lower bound stated in Theorem 3 by taking ` ≥ 4/δ.

Analogously, for the generalized planted densest subgraph
case, we can give a bound on statistical dimension SDA:

Theorem 12. Fix 0 < q ≤ p ≤ 1. For δ > 0 and
k ≤ n1/2−δ let Z be the generalized planted bipartite densest
subgraph problem. Then for any ` ≤ k,

SDA

(
Z, 2k2

n2

((
1 +

(p− q)2

q(1− q)

)`+1

− 1

)
,

1(
n
k

)) ≥ n2`δ/4.

provided n2δ ≥ 1 + (p− q)2/q(1− q).
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