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1) Compute the following limits.
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2) Compute the following derivatives.
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3) Using the Intermediate Value Theorem, prove the following.
f(x) = 22% — 2% + 22 — 1 has a root in the interval (0, 1).

Note that f(x) is a polynomial, so it is continuous on the whole real line. Now note that f(0) = —1
and f(1) = 2 and —1 < 0 < 2. So, by the intermediate value theorem there exists ¢ in the interval
(0,1) so that f(c) = 0. By definition, ¢ is a root (or zero) of f(x).



4) Sketch a function f(x) which has the following properties.

— f(z)>0forz <0
lim, .9+ f(x) =0
lim, - f(z) =4
limg o f(z) = —2
— lim; o f(z) =0



5) Find lim,_, = - sin(%). Name any theorems used.

T
Since —|z| < x < |2| and —1 <sin(1) < 1 we have that
.1
o] < z-sin(2) < Jo
x

Since lim,_,o —|z| = 0 = lim,_,( |2| we may conclude by the squeeze theorem that
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6) A ball is thrown into that air and falls to he ground. The height (in meters) is a function of t (in
seconds) given as

h(t) = —4.9t* + 98t + 1.4
a) What was the initial velocity of the ball?

To find the velocity, we take the derivative of the position function h(t). We can see by the power rule
that h/(t) = —9.8t + 98, so h/(0) = 98 m/sec

b) What was the height the ball was released from?
h(0) = 1.4 meters

¢) What is the acceleration of the ball?
We take the second derivative and find that h”(t) = —9.8 m/sec? (Plus Ultral!!)

d) When is the ball at it’s highest point?

The ball is at it’s highest point when the velocity changes from positive to negative. That is when
v(t) = 0. So we set v(t) = —9.8t 4+ 98 = 0 and solve for ¢. We find that ¢ = 10 seconds.



