6 Dec 2001

1. $v(t)=\langle 6 \sin t, 6 \cos t, 8\rangle, a(t)=\langle 6 \cos t,-6 \sin t, 0\rangle$, and $\kappa(t)=\frac{3}{50}$.
2. $\mathbb{D}_{\langle 3,4\rangle} f=\frac{4}{5}$ and f increases fasted in the direction $\langle 1,0\rangle$.
3. Max at $\left(2, \frac{3}{2},-2\right)$ and min at $\left(-2,-\frac{3}{2}, 2\right)$.
4. $\int_{2}^{4} \int_{-2}^{0} \frac{u v}{2} d u d v=-6$.
5. (a) This follows from (b), but nonetheless, you should argue that

$$
\frac{\partial P}{\partial y}=2 e^{2 x}=\frac{\partial Q}{\partial x}
$$

and that \mathbb{R}^{2} is open and simply-connected.
(b) $f(x, y)=x+y e^{2 x}+y^{2}$.
(c) $e+e^{2}-1$.
6. 18π.
7. 4π.
8. Answers will vary wildly. I got $-x-9 y+5 z=-16$.
9. $\int_{0}^{4} \int_{\frac{y}{2}}^{\sqrt{x}} f(x, y) d x d y$.

