Quiz 1

1. (Exercise 24, §13.5) Find an equation for the plane Π through the point P = (4, 0, -3) with normal vector $\mathbf{n} = \mathbf{j} + 2\mathbf{k}$.

Answer: Let $\mathbf{r}_0 = \langle 4, 0, -3 \rangle$ and let (x, y, z) be in Π . (x, y, z) corresponds with the vector $\mathbf{r} = \langle x, y, z \rangle$ and we would therefore have that $\mathbf{r} - \mathbf{r}_0$ is "contained" in Π . Then $\mathbf{r} - \mathbf{r}_0$ would be orthogonal to \mathbf{n} so that

$$0 = (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n}$$

= $(\langle x, y, z \rangle - \langle 4, 0, -3 \rangle) \cdot \langle 0, 1, 2 \rangle$
= $\langle x - 4, y, z + 3 \rangle \cdot \langle 0, 1, 2 \rangle$
= $y + 2z + 6.$

2. (Exercise 15, §13.5) Find symmetric equations for the line ℓ that passes through the point (0, 2, -1) and is parallel to the line given by

$$\begin{cases} x = 1 + 2t \\ y = 3t \\ z = 5 - 7t \end{cases}$$
(1)

Find the points in which ℓ interects the *xy*-, *xz*-, and *yz*-planes.

Answer: The line given in (1) has vector equation

$$\mathbf{r}_0 + t\mathbf{v}$$

where $\mathbf{r}_0 = \langle 1, 0, 5 \rangle$ and $\mathbf{v} = \langle 2, 3, -7 \rangle$. (Verify this!) Now since ℓ is parallel to this line, ℓ must have the same direction part \mathbf{v} . We can then take ℓ to be given by the vector equations

$$\mathbf{r}_1 + t\mathbf{v}$$

where $\mathbf{r}_1 = \langle 0, 2, -1 \rangle$. In coordinates, ℓ is given by

$$\langle 2t, 2+3t, -1-7t \rangle$$
 or $\begin{cases} x = 2t \\ y = 2+3t \\ z = -1-7t \end{cases}$ (2)

so that the symmetric equations for ℓ are

$$\frac{x}{2} = \frac{y-2}{3} = \frac{z+1}{-7}.$$

 ℓ intersects the *xy*-plane at the point where z = 0. Solving the third equation in (2) for t, we have

$$0 = z = -1 - 7t \qquad \Longrightarrow \qquad t = \frac{-1}{7}.$$

Substituting the value $t = \frac{-1}{7}$ into the other equations in (2), we have $x = \frac{-2}{7}$ and $y = \frac{11}{7}$. This means that ℓ intersects the *xy*-plane at the point $\left(\frac{-2}{7}, \frac{11}{7}, 0\right)$. Similarly, ℓ intersects the *yz*-plane at $\left(\frac{-4}{3}, 0, \frac{11}{3}\right)$ and intersects the *yz*-plane at (0, 2, -1).