Quiz 1

1. (Exercise 24, §13.5) Find an equation for the plane Π through the point \(P = (4, 0, -3) \) with normal vector \(\mathbf{n} = j + 2k \).

 Answer: Let \(\mathbf{r}_0 = \langle 4, 0, -3 \rangle \) and let \((x, y, z) \) be in \(\Pi \). \((x, y, z) \) corresponds with the vector \(\mathbf{r} = \langle x, y, z \rangle \) and we would therefore have that \(\mathbf{r} - \mathbf{r}_0 \) is “contained” in \(\Pi \). Then \(\mathbf{r} - \mathbf{r}_0 \) would be orthogonal to \(\mathbf{n} \) so that

 \[
 0 = (\mathbf{r} - \mathbf{r}_0) \cdot \mathbf{n} = (\langle x, y, z \rangle - \langle 4, 0, -3 \rangle) \cdot (0, 1, 2) = \langle x - 4, y, z + 3 \rangle \cdot (0, 1, 2) = y + 2z + 6.
 \]

2. (Exercise 15, §13.5) Find symmetric equations for the line \(\ell \) that passes through the point \((0, 2, -1)\) and is parallel to the line given by

 \[
 \begin{aligned}
 x &= 1 + 2t \\
 y &= 3t \\
 z &= 5 - 7t
 \end{aligned}
 \]

 Answer: The line given in (1) has vector equation

 \[
 \mathbf{r}_0 + t\mathbf{v}
 \]

 where \(\mathbf{r}_0 = \langle 1, 0, 5 \rangle \) and \(\mathbf{v} = \langle 2, 3, -7 \rangle \). (Verify this!) Now since \(\ell \) is parallel to this line, \(\ell \) must have the same direction part \(\mathbf{v} \). We can then take \(\ell \) to be given by the vector equations

 \[
 \mathbf{r}_1 + t\mathbf{v}
 \]

 where \(\mathbf{r}_1 = \langle 0, 2, -1 \rangle \). In coordinates, \(\ell \) is given by

 \[
 \begin{aligned}
 \langle 2t, 2 + 3t, -1 - 7t \rangle
 \end{aligned}
 \]

 or

 \[
 \begin{aligned}
 x &= 2t \\
 y &= 2 + 3t \\
 z &= -1 - 7t
 \end{aligned}
 \]

 so that the symmetric equations for \(\ell \) are

 \[
 \frac{x}{2} = \frac{y - 2}{3} = \frac{z + 1}{-7}.
 \]

 \(\ell \) intersects the \(xy \)-plane at the point where \(z = 0 \). Solving the third equation in (2) for \(t \), we have

 \[
 0 = z = -1 - 7t \quad \implies \quad t = \frac{-1}{7}.
 \]

 Substituting the value \(t = \frac{-1}{7} \) into the other equations in (2), we have \(x = \frac{-2}{7} \) and \(y = \frac{11}{7} \). This means that \(\ell \) intersects the \(xy \)-plane at the point \(\left(\frac{-2}{7}, \frac{11}{7}, 0 \right) \). Similarly, \(\ell \) intersects the \(yz \)-plane at \(\left(\frac{-4}{3}, 0, \frac{11}{3} \right) \) and intersects the \(yz \)-plane at \((0, 2, -1) \).