Quiz 1

1. (Exercise 24, §13.5) Find an equation for the plane Π through the point $P=$ $(4,0,-3)$ with normal vector $\mathbf{n}=\mathbf{j}+2 \mathbf{k}$.
Answer: Let $\mathbf{r}_{0}=\langle 4,0,-3\rangle$ and let (x, y, z) be in Π. (x, y, z) corresponds with the vector $\mathbf{r}=\langle x, y, z\rangle$ and we would therefore have that $\mathbf{r}-\mathbf{r}_{0}$ is "contained" in Π. Then $\mathbf{r}-\mathbf{r}_{0}$ would be orthogonal to \mathbf{n} so that

$$
\begin{aligned}
0 & =\left(\mathbf{r}-\mathbf{r}_{0}\right) \cdot \mathbf{n} \\
& =(\langle x, y, z\rangle-\langle 4,0,-3\rangle) \cdot\langle 0,1,2\rangle \\
& =\langle x-4, y, z+3\rangle \cdot\langle 0,1,2\rangle \\
& =y+2 z+6 .
\end{aligned}
$$

2. (Exercise 15, §13.5) Find symmetric equations for the line ℓ that passes through the point $(0,2,-1)$ and is parallel to the line given by

$$
\left\{\begin{array}{l}
x=1+2 t \tag{1}\\
y=3 t \\
z=5-7 t
\end{array}\right.
$$

Find the points in which ℓ interects the $x y$-, $x z-$, and $y z$-planes.
Answer: The line given in (1) has vector equation

$$
\mathbf{r}_{0}+t \mathbf{v}
$$

where $\mathbf{r}_{0}=\langle 1,0,5\rangle$ and $\mathbf{v}=\langle 2,3,-7\rangle$. (Verify this!) Now since ℓ is parallel to this line, ℓ must have the same direction part \mathbf{v}. We can then take ℓ to be given by the vector equations

$$
\mathbf{r}_{1}+t \mathbf{v}
$$

where $\mathbf{r}_{1}=\langle 0,2,-1\rangle$. In coordinates, ℓ is given by

$$
\langle 2 t, 2+3 t,-1-7 t\rangle \quad \text { or } \quad\left\{\begin{array}{l}
x=2 t \tag{2}\\
y=2+3 t \\
z=-1-7 t
\end{array}\right.
$$

so that the symmetric equations for ℓ are

$$
\frac{x}{2}=\frac{y-2}{3}=\frac{z+1}{-7}
$$

ℓ intersects the $x y$-plane at the point where $z=0$. Solving the third equation in (2) for t, we have

$$
0=z=-1-7 t \quad \Longrightarrow \quad t=\frac{-1}{7}
$$

Substituting the value $t=\frac{-1}{7}$ into the other equations in (2), we have $x=\frac{-2}{7}$ and $y=\frac{11}{7}$. This means that ℓ intersects the $x y$-plane at the point $\left(\frac{-2}{7}, \frac{11}{7}, 0\right)$. Similarly, ℓ intersects the $y z$-plane at $\left(\frac{-4}{3}, 0, \frac{11}{3}\right)$ and intersects the $y z$-plane at $(0,2,-1)$.

