Let

\[f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} \]

This function is plotted below.

1. Do the partial derivatives \(f_x \) and \(f_y \) exist and are they continuous at all points \((x, y) \neq (0, 0)\)?

2. Is \(f \) differentiable at all points \((x, y) \neq (0, 0)\)?

3. Is \(f \) continuous at \((0, 0)\)?

4. Do the partial derivatives \(f_x \) and \(f_y \) exist and are they continuous at \((0, 0)\)?

5. Is \(f \) differentiable at \((0, 0)\)?

Answer:

1. We have by the quotient rule that

\[
f_x(x, y) = \frac{[y(x^2 - y^2) - xy(-2x)] (x^2 + y^2) - xy(x^2 + y^2) (2x)}{(x^2 + y^2)^2}
\]

which exists and is continuous for all \((x, y) \neq (0, 0)\). See the answers to the Mock Quiz for an explanation of why this is sufficient. We compute \(f_y \) similarly.

2. Yes, because by part (1) we have that \(f_x \) and \(f_y \) exist and are continuous.

3. Let \(\epsilon > 0 \) and define \(\delta = \sqrt{\epsilon} \). Suppose \(\sqrt{x^2 + y^2} < \delta \). Then

\[
|f(x, y) - f(0)| = \frac{|xy(x^2 - y^2)|}{x^2 + y^2} = \frac{|x||y||x^2 - y^2|}{x^2 + y^2} = \frac{|x||y|(x^2 - y^2)}{x^2 + y^2} = |x||y| < \delta^2 = \epsilon.
\]

This shows that \(\lim_{(x,y) \to (0,0)} f(x,y) = 0 \) so that \(f \) is continuous at 0.
4. Yes because

\[
\lim_{h \to 0} \frac{f(0+h,0) - f(0,0)}{h} \lim_{h \to 0} \frac{h \cdot 0 (h^2 - y^2)}{h^2 + 0^2} = 0
\]

and similarly for \(f_y \).