Approved Reference Sheet

1. The length of the arc of $\mathbf{r}(t)$ between $\mathbf{r}(a)$ and $\mathbf{r}(b)$ is given by

$$
\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

2. The curvature of the curve $\mathbf{r}(t)$ is given by

$$
\kappa(t)=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|}=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

3. If z is a function of x and y, which in turn are functions of u and v, then

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial u} \quad \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}
$$

4. The directional derivative of $f(x, y, z)$ in the direction of the unit vector \mathbf{u} is given by

$$
\mathbb{D}_{\mathbf{u}} f(x, y, z)=\nabla f(x, y, z) \cdot \mathbf{u}
$$

5. The area of the part of the surface $z=f(x, y)$ which is the image under f of the region $D \subset \mathbb{R}^{2}$ is given by

$$
\iint_{D} \sqrt{\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}+1} d A
$$

6. The change of coordinates from spherical to rectangular is given by

$$
\begin{aligned}
& x=\rho \sin \varphi \cos \theta \\
& y=\rho \sin \varphi \sin \theta \\
& z=\rho \cos \varphi .
\end{aligned}
$$

7. Let E be the spherical wedge $\{(\rho, \theta, \varphi): a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \varphi \leq d\}$. Then

$$
\iiint_{E} f(x, y, z) d V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \varphi \cos \theta, \rho \sin \varphi \sin \theta, \rho \cos \varphi) \rho^{2} \sin \varphi d \rho d \theta d \varphi
$$

8. The Jacobian of the transformation $T(u, v)=\langle x(u, v), y(u, v)\rangle$ is defined

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

9.

$$
\iint_{T(S)} f(x, y) d A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A .
$$

10. Let $\mathbf{F}(x, y)=\langle P(x, y), Q(x, y)\rangle$ be a vector field and let the curve C be the image of $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{2}$. Then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C} P d x+Q d y=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t
$$

11. Let C be a positively oriented, piecewise-smooth, simple, closed curve in the plane and let D be the region bounded by C. Then

$$
\int_{C} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

