1. Evaluate, by changing the order of integration, the following integral.

$$\int_0^1 \int_{u^2}^1 \sin\left(x^{\frac{3}{2}}\right) dx dy$$

Answer:

$$\int_{0}^{1} \int_{y^{2}}^{1} \sin\left(x^{\frac{3}{2}}\right) dx dy = \int_{0}^{1} \int_{0}^{\sqrt{x}} \sin\left(x^{\frac{3}{2}}\right) dy dx$$
$$= \int_{0}^{1} \sin\left(x^{\frac{3}{2}}\right) \sqrt{x} dx = -\frac{2}{3} \cos\left(x^{\frac{3}{2}}\right) \Big|_{0}^{1} = -\frac{2}{3} (\cos(1) - 1)$$

2. Find the center of gravity of the semi-circular lamina $D = \{(x, y) : x^2 + y^2 \le 1, y \ge 0\}$ with density $\rho(x, y) = 1$. You may assume that the area of a disk of radius r is πr^2 .

Answer: We compute the mass m of the lamina to be

$$m = \int_{D} \rho(x, y) \ dA = \int_{D} 1 \ dA = \operatorname{Area}(D) = \frac{\pi}{2}$$

and the moments

$$M_{x} = \int_{D} x \rho(x, y) dA = \int_{0}^{\pi} \int_{0}^{1} r \cos(\theta) r dr d\theta = \int_{0}^{\pi} \frac{1}{3} r^{3} \cos(\theta) \Big|_{0}^{1} d\theta$$
$$= \int_{0}^{\pi} \frac{1}{3} \cos(\theta) d\theta = \frac{1}{3} \sin(\theta) \Big|_{0}^{\pi} = 0$$

and

$$M_{y} = \int_{D} y \rho(x, y) dA = \int_{0}^{\pi} \int_{0}^{1} r \sin(\theta) r dr d\theta = \int_{0}^{\pi} \frac{1}{3} r^{3} \sin(\theta) \Big|_{0}^{1} d\theta$$
$$= \int_{0}^{\pi} \frac{1}{3} \sin(\theta) d\theta = -\frac{1}{3} \cos(\theta) \Big|_{0}^{\pi} = \frac{2}{3}$$

so that the center of mass is

$$(\overline{x}, \overline{y}) = \left(\frac{M_x}{m}, \frac{M_y}{m}\right) = \left(0, \frac{4}{3\pi}\right).$$

3. Find the volume of the solid bounded from above by the cone $z = \sqrt{x^2 + y^2}$ and below by the paraboloid $z = x^2 + y^2$.

Answer: The surfaces intersect in the circle $x^2 + y^2 = 1$. Let $D = \{x^2 + y^2 \le 1\}$. Then

Volume =
$$\int_{D} \left(\sqrt{x^2 - y^2} - x^2 - y^2 \right) dA = \int_{0}^{2\pi} \int_{0}^{1} \left(r - r^2 \right) r dr \ d\theta = \frac{\pi}{6}$$

4. Using Lagrange Multipliers, find the maximum and minimum values of f(x,y) = x^2y subject to the constraint $x^2 + 2y^2 = 6$.

Answer: We must solve the following system

$$2xy = 2x\lambda \tag{1}$$

$$x^2 = 4y\lambda \tag{2}$$

$$x^{2} = 4y\lambda \tag{2}$$
$$x^{2} + 2y^{2} = 6 \tag{3}$$

If $\lambda = 0$, we have from (2) that x = 0 so that by (3) we have $y = \pm \sqrt{3}$. Assume now that $\lambda \neq 0$. Then by (2), if x = 0, we have y = 0, which contradicts (3) so that $x \neq 0$. Then from (1), we have $y = \lambda$ and then from (2), we have $x = \pm 2\lambda$. This means that $\lambda = \pm 1$ by (3). Therefore, our candidates for extreme points are

$$(0,\sqrt{3})$$
 $(0,-\sqrt{3})$ $(2,1)$ $(-2,1)$ $(2,-1)$ and $(-2,-1)$.

Evaluating f at these points, we have

$$f(0, \sqrt{3}) = 0$$

$$f(0, -\sqrt{3}) = 0$$

$$f(2, 1) = 4$$

$$f(-2, 1) = 4$$

$$f(2, -1) = -4$$

$$f(-2, -1) = -4$$

so that (2,1) and (-2,1) are maxima and (2,-1) and (-2,-1) are minima.

5. Find and classify the critical points of the function $x^2y + 6x - 9y$. A contour plot of this function is given below.

Answer: We compute

$$f_x(x,y) = 2xy + 6 \tag{4}$$

$$f_y(x,y) = x^2 - 9 (5)$$

$$f_{xx}\left(x,y\right) = 2y$$

$$f_{yy}\left(x,y\right) = 0$$

$$f_{xy}(x,y) = f_{yx}(x,y) = 2x$$

$$D(x,y) = -4x^{2}$$
(6)

From (4) and (5) we see that the only critical points are (3, -1) and (-3, 1). From (6), we have D(3, -1) = D(-3, 1) = -36 < 0 so that both points are saddles.

6. Find the maximum rate of change of $F(x, y, z) = x^2z + xyz$ at the point (1, 1, 1) and the direction in which it occurs.

Answer: We compute

$$\nabla f(x, y, z) = \langle 2xz + yz, xz, x^2 + xy \rangle$$
$$\nabla f(1, 1, 1) = \langle 3, 1, 2 \rangle$$

so that $\langle 3, 1, 2 \rangle$ is the direction in which f is increasing fastest. Then the derivative in this direction is $|\langle 3, 1, 2 \rangle| = \sqrt{14}$.