Formulae

- $S_{XX} = \sum (x - \bar{x})^2$
- $S_{XY} = \sum (x - \bar{x})(y - \bar{y})$
- $S_{YY} = \sum (y - \bar{y})^2$
- $r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$
- $y = \frac{S_{XY}}{S_{XX}}x + \left(\bar{Y} - \frac{S_{XY}}{S_{XX}}\bar{X}\right)$

Quizzes

6. For the standard normal variable $Z \in N(0, 1)$, find

 (a) the area to the left of $z = 2.73$,
 (b) the area to the right of $z = 1.28$,
 (c) the area between $z = .91$ and $z = 2.52$, and
 (d) the value of z such that the area to the left of z is .9419.

 Answer:

 (a) .9968
 (b) .1003
 (c) .1755
 (d) $z = 1.57$

7. The grades for a certain exam are distributed normally with mean $\mu = 78$ and standard deviation $\sigma = 5$.

 (a) Sketch the normal curve for this variable and label the mean.
 (b) Find the area to the left of 89. Shade this area on your sketch.
 (c) Find the 60^{th} percentile P_{60}.
 (d) What percentage of students has a grade above 90?

 Answer:

 (a)
 (b) .9861
 (c) $P_{60} = 79.25$
 (d) .0082
8. The population is a set of pencils. Let X be the length in centimeters (cm) and let Y be the mass in grams (g). We have the following data

<table>
<thead>
<tr>
<th>X</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>21</td>
<td>25</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

(a) Draw a scatter diagram.
(b) Find r.
(c) Find the equation for the regression line.
(d) What the the weight expected for a 13-centimeter long pencil.

Answer: We compute $S_{XX} = 46$, $S_{XY} = 40$ and $S_{YY} = 42$. Then we have the following.

(a)
(b) $r = .91$
(c) $y = .87x + 12.83$
(d) 24.14 g.