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The modern approach to representation theory involves group-rings over certain rings,
not necessarily fields. Let G be a finite group an R a commutative ring with 1.

Definition 1 An R-algebra A is a ring such that there is a homomorphism ψ : R→ Z(A)
with ψ(1) = 1.

Observe that if R = K is a field, that is K ⊂ Z(A) then A is a vector space over K and
is also a ring. That is, A is an R-module as

ra = ψ(r)a, r ∈ R, a ∈ A

as well as a ring.
For arbitrary rings, the structure of A can be quite complicated.

Example 1 The Group-ring RG is a free R-module with basis {g : g ∈ G} (of finite rank
since G is finite). That is,

RG =

{∑
x∈G

axx : ax ∈ R

}

with multiplication inherited from the group operation.

If R = K is a field, then KG is a group algebra.

Definition 2 An R-subalgebra of A is an R-submodule plus a subring containing 1. A
map ψ : A → B is an R-algebra homomorphism if it is a ring homomorphism and a
R-module homomorphism (ψ(ra) = rψ(a)).

Definition 3 A representation of A is a A-algebra homomorphism ρ : A → Mn(R),
(n × n matrices over R) Similarly, a group homomorphsim ρ : G → GL(n,R), (n × n
invertible matrices over R) is a representation of G over R.

If A = RG, a representation ρ of G gives rise to a representation of A and conversely.

Definition 4 Two representations ρ and ρ′ of A (or G) are equivalent if there exists
T ∈ GL(n,R) such that ρ(a) = Tρ′(a)T−1 for all a ∈ A, and similarly for G.

Example 2 Representations equivalent over Q but not over Z (check this) [CR, p.205]
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1. S3 = 〈a, b : a2 = b2 = 1, a−1ba = b−1〉 can be represented as

ρ1 : a 7→
(

0 1
1 0

)
b 7→

(
0 −1
0 −1

)

ρ2 : a 7→
(

0 1
1 0

)
b 7→

(
0 1
−1 −1

)
2. D8 = 〈a, b : a2 = b4 = (ab)2 = 1〉 can be represented as

ρ1 : a 7→
(

0 1
1 0

)
b 7→

(
0 1
−1 0

)

ρ2 : a 7→
(

1 0
0 −1

)
b 7→

(
0 1
−1 0

)
Definition 5 Given ρ : A → Mn(R), we get an A-module M which is a free R-module
of rank n as a ·m = ρ(a)m. We define dim ρ = rank M = n.

Conversely, given an A-module M (free over R, finite rank), if we pick an R-basis of M ,
we get a representation of ρ. Furthermore, ρ, ρ′ are equivalent iff M,M ′ are isomorphic.
(see DF, p. 812)

Definition 6 An A-module M is irreducible or simple if the only submodules of M are
M and {0}. M is indecomposable if we cannot write M as the direct sum of proper,
non-zero submodules, i.e., M = M1 ⊕M2

Now if R = K is a field, M is irreducible (ρ is irreducible) means that we cannot find T
with

Tρ(a)T−1 =

(
∗ ∗
0 ∗

)
for all a. Similarly, ρ is indecomposable means we can’t have

Tρ(a)T−1 =

(
∗ 0
0 ∗

)
.

Example 3 G = Z2 × Z2 = 〈a, b : a2 = b2 = 1, ab = ba〉. Consider representations over
a field K of characteristic 2

KG = K[x, y]/
〈
(x− 1)2, (y − 1)2

〉
and note that in this case (x− 1)2 = x2− 1 and (y− 1)2 = y2− 1. If J is a n× n matrix
in indecomposable rational canonical form

ρ : x→
(
I I
0 I

)

ρ : y →
(
I J
0 I

)
is a 2n-dimensional indecomposible representation. So there are an infinite number of
indecomposable representations over K. This is proved in Heller and Reiner, Illinois J.
Math 5 (1961); we will a special case later.
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Theorem 1 If p||G|, K a field of characteristic p, then G has a finite number of indecom-
posable representations over K (up to equivalence) iff G has a cyclic Sylow-p subgroup.
(D. G. Higman, Duke Math. J. 21 (1954))

Then, given the hopelessness of enumerating such representations current research looks
at KG =

⊕
iMi, Mi indecomposable.

August 27
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The R-algebra A is the basic object of study where R is commutative with 1, and
the basic example we should have in mind is the group-ring A = RG, G a finite group.
Normally, we want A to be free over R with finite rank. When we look at representations,
this is the same as looking at A-modules or G-modules M . We study representations
because matrices are more concrete than abstract groups; hence, we hope to obtain info
about groups via representations.

Example 4 G = 〈a : ap = 1〉. By Higman’s theorem, there is only a finite number of
representations. Take K to be of characteristic p. Since KG ∼= K[x]/(x − 1)p, the
indecomposable representations of KG are given by

ρ(a) =


1 1 · · · 0 0
0 1 1 0 0
...
0 0 1 1
0 0 1

 (r × r)

where 1 ≤ r ≤ p. We get precisely p indecomposable representations. A KG-module has
the form

M = M0 ⊃M1 ⊃ · · · ⊃Mr = {0}
where Mi are KG-submodules with dimMi/Mi+1 = 1 so that Mi/Mi+1 is a trivial KG-
module, i.e. gives the representation ρ(a) = 1. This follows from the Jordan form.

Definition 7 The trivial RG-module is R with gr = r for all r ∈ R, g ∈ G.

Proposition 1 Let |G| = pn and char(K) = p. Then the only irreducible KG-module is
the trivial one.

Proof. Let V be an irreducible KG-module. Let H ≤ G be the kernel of the represen-
tation, that is,

H = {x ∈ G : ρ(x) = I}
If H 6= 1, consider G/H. We have |G/H| < |G| and apply induction as follows. If W is
a G/H module, W can be regarded as a KG-module by g · x = (gH) · x. This is well
defined because the representation is trivial on H. W is irreducible as a G/H-module
implies W is irreducible as a G-module also, and the result follows by induction.

Now suppose H = 1. Choose x ∈ Z(G) with x 6= 1 (recall that the center of a p-group
is always ≥ 1). Consider (x − 1)V . We show this is a submodule of V . If v ∈ V, g ∈ G,
g(x − 1)v = (x − 1)gv because x ∈ Z(G) so that g(x − 1)v ∈ (x − 1)V . Also, (x − 1)V
is not 0 since x 6= 1. Therefore, since V is irreducible, we have that V = (x− 1)V . But
similarly we have V = (x − 1)2V = (x − 1)3V = · · · = (xp

n − 1)V = 0, a contradiction.
Note that 0 is not irreducible by definition.
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Definition 8 Let A be any ring with 1 and let M be an A-module. Then a series of
submodules

M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0

is called a composition series if each Mi/Mi+1 is irreducible.

Not every module has a composition series. For example, Z does not; for example, the
series

Z ⊃ (p) ⊃ (p2) ⊃ · · · ⊃ (pn) ⊃ · · ·

does not terminate.

Proposition 2 (Butterfly Lemma) If M∗ ≤M , N∗ ≤ N are submodules of some module,
then M∗ + (M ∩N∗) ≤M∗ + (M ∩N), N∗ + (M∗ ∩N) ≤ N∗ + (M ∩N), and(

M∗ + (M ∩N)

)/(
M∗ + (M ∩N∗)

)
∼=
(

(M ∩N) +N∗
)/(

(M∗ ∩N) +N∗
)

M N

M∗ + (M ∩N)

UUUUUUUUUUUUUUUUU
(M ∩N) +N∗

iiiiiiiiiiiiiiiii

= M ∩N =

M∗ + (M ∩N∗)

UUUUUUUUUUUUUUUU

pppppppppppp
= (M∗ ∩N) +N∗

jjjjjjjjjjjjjjjj

NNNNNNNNNNNN

M∗

OOOOOOOOOOOOO (M∗ ∩N) + (M ∩N∗)

UUUUUUUUUUUUUUUUU

iiiiiiiiiiiiiiiii
N∗

pppppppppppp

M∗ ∩N M∩N∗

Proposition 3 (Schreider’s Theorem) If

M = M1 ≥M2 ≥ · · ·Mr = {0}

N = N1 ≥ N2 ≥ · · ·Ns = {0}

are two series for an A-module M , and if M has a composition series, we can refine the
two series to two composition series such that the factors in the first series are isomorphic
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in some order to the factors in the second series.

Mi Nj

Mi,j

KKKKKKKKKK
Nj,i

ssssssssss

= Mi ∩Nj =

Mi,j+1

vvvvvvvvv

KKKKKKKKKKKK
Nj,i+1

HH
HH

HH
HH

H

ssssssssssss

Mi+1 Nj+1

where Mi,j = Mi+1 + (Mi ∩Nj) and Nj,i = Nj + (Mi ∩Nj).

Corollary 1 (Jordan Hölder Theorem) Any two composition series of M have the same
composition factors up to isomorphism.

Proposition 4 M has a composition series iff M satisfies the Ascending Chain Condi-
tion and the Descending Chain Condition.

August 29
Proposition 5 (1) If A is any ring, M has a composition series iff (2) M has ACC
and DCC for submodules iff (3) every series of submodules of M can be refined to a
composition series. [DF, p. 438, 637-638, 717]

(1)⇐⇒ (3) follows from the Butterfly lemma.
For (1)⇐⇒ (2), see e.g.[CR2, §13].

Example 5 Z as a Z-module has ACC but not DCC and the Z-module

Zp∞ =
〈
a1, a2 . . . an . . . : a

p
1 = 1, ap2 = a1 . . . a

p
i+1 = ai . . .

〉
is an abelian p-group such that

〈a1〉 < 〈a2〉 < · · · < Zp∞.

This group has DCC but not ACC as a Z-module.

We see from this example that to get a finite series, we need to be able to go both up
and down from a submodule and end in a finite number of steps.

Now given an R-algebra A, our goal is to find and classify the irreducible A-modules.
However, this is obviously too ambitious!

Definition 9 A itself as a left A-module, sometimes written AA, gives rise to the regular
representation.
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In this situation, the submodules of AA are the left ideals.
Let M be a simple A-module (recall that this doesn’t include the zero module) and

let m ∈ M , m 6= 0. Then Am = {am : a ∈ A} is a non-zero submodule, so Am = M .
Also ϕ : A → M defined a 7→ am is a surjective A-module homomorphism, that is,
ϕ(am) = aϕ(m) for a ∈ A, m ∈ M . The kernel of ϕ is a maximal left ideal L (since
M is simple) such that A/L ∼= M . From this we explore the idea that simple modules
correspond to maximal left ideals. This will lead to the Jacobson radical.

Next, we will want to extend concepts from commutative rings to non-commutative
rings. Recall from [DF p.650] that if R is a commutative ring with 1, we have the nilradical

N =
⋂

P prime

P = {x ∈ R : xn = 0, some n ≥ 1}

and the radical
rad R =

⋂
L maximal

L.

Then N ⊂ rad R. Recall also that x ∈ rad R iff 1− rx is a unit for all r ∈ R.
Now let A be any ring with 1, possibly non-commutative.

Definition 10 Define the Jacobson radical J(A), sometimes written rad A,

J (A) =
⋂

L a maximal
left ideal

L

Definition 11 If M is an A-module, ann M = {a ∈ A : aM = 0}. If m ∈M , ann(m) =
{a ∈ A : am = 0}.

Note that ann M is a two-sided ideal and ann(m) is a left ideal.

Proposition 6 J(A) is the annihilator of all the simple A modules, i.e.,

J(A) =
⋂

M simple

ann M

Note that ifM is anA-module, we have a ring homomorphismA→ EndR(M) (= HomR(M,M))
whose kernel is two-sided ideal. (This expresses the fact that we have a representation.)
So the proposition shows that J(A) is a two-sided ideal and not simply a left ideal.

Proof. Suppose M is simple and as before, M = Am for some m 6= 0. We have
a homomorphism ϕ : A → Am defined a 7→ am. Then ϕ is a surjective A-module
homomorphism so that A/L ∼= M where L = ker ϕ is a maximal left ideal. That is

L = {a ∈ A : am = 0} = ann(m).

Then ⋂
M simple

ann M =
⋂

M simple

⋂
0 6=m∈M

ann(m) ⊃
⋂

L maximal

L = J(A).

Conversely, if aM = 0, then am = 0 so a ∈ ann(m) = L, where L is a maximal left ideal,
for all m ∈M . Also every maximal left ideal arises in this way. Then⋂

M simple

ann(M) ⊂
⋂

L a maximal
left ideal

L = J(A)

6



Example 6 Let G be a cyclic group of order p and let A = KG for K with char K = p.
M is simple implies that M is the trivial module. Then J(A) is the ideal of A spanned
by g − 1, g ∈ G. Then dim J(A) = p− 1 = dim A− 1.

Exercise 1 Look at the example in DF on page 828 of G = S3 in which a simple module
of dimension 2 is constructed.

September 3
Note that we generally use the symbol R for a commutative ring with 1 and the

symbol A for any ring with 1.
Additional reference: [H] T. Hungerford, Algebra. Look at the section on Jacobson

radicals in chapter 9. Note also that when Jacobson introduced the radical, he was
considering any ring, not necessarily with 1.

Recall that
J(A) =

⋂
M a maximal

left ideal

M =
⋂

M simple

ann(M)

If we only want to consider simple modules, we may as well study A/J(A). Since these
descriptions involve maximal ideals, which we don’t want to compute, and simple modules,
which are what we want to determine in the first place, we develop an intrinsic description
of J(A). (CR, §5 or H, Ch. 9)

Theorem 2

J(A) = {x ∈ A : 1− axb is a unit for all a, b ∈ A}
= {x ∈ A : 1− ax has a left inverse for all a ∈ A} .

Proof. We prove first that J(A) = {x ∈ A : 1− ax has a left inverse for all a ∈ A}. Let
x 6∈ J . Then x 6∈ L, some maximal left ideal L. then 〈L, x〉 = A (the ideal generated by
L and x). Therefore, 1 = y + ax for some y ∈ L, a ∈ A. Therefore 1− ax = y ∈ L. Then
1− ax does not have a left inverse else y ∈ L has a left inverse and then 1 ∈ L.

Alternately, assume 1 − ax has a left inverse for all a ∈ A. If xW 6= 0 for some W
simple, then xw 6= 0 for some w ∈ W . Then W = Axw. Then w = axw for some a so
that (1 − ax)w = 0. Then, since 1 − ax has a left inverse,w = 0, a contradiction. So
xW = 0 for all simple W , and x ∈ J . For the converse, it suffices to show that 1−x has a
left inverse for x ∈ J , i.e. A(1−x) = A. If not, A(1−x) ⊂ L for some maximal left ideal
L. Then 1− x ∈ L, but since x ∈ L since x ∈ J , we have that 1 ∈ L, a contradiction.

Next, to prove the first equality, note that from the above proof, 1 − axb is a unit
implies x ∈ J . To show the converse, it suffices to show that if x ∈ J , then 1 − x is a
unit.

Again, by the first part, take some t with t(1 − x) = 1. Then t − tx = 1 so that
1 − t = −tx ∈ J . So 1 − (1 − t) = t has a left inverse u, that is ut = 1. Then
u = ut(1−x) = 1−x so that tu = 1. Thus, t(1−x) = 1, (1−x)t = 1, i.e. t is a two-sided
inverse of 1− x.

Remark 1 Write t = 1−y. Then (1−y)(1−x) = 1. Expanding, we have 1−y−x+xy = 1
so that xy−x−y = 0 and note that we’ve eliminated the reference to 1. Now for any ring,
not necessarily with 1, define x to be left-quasi-regular if there exists y with x+y+xy = 0.
Then J can be defined in this case using this concept, see e.g. (H, p.426).
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Recall now that if A has a 1, every proper left ideal is contained in a maximal left
ideal (DF, p.255, H, p. 128, CR2). Therefore we know that there exist maximal ideals in
our case and hence there exist simple A-modules. It is therefore non-vacuous to say that
J “kills” all simple modules. If however a 6∈ A and there are no simple A-modules, we
say that J(A) = A is a radical ring.

Now our goal is to study A/J(A). Recall the example where G is cyclic of order pn and
K is a field is a field of characteristic p. If A = KG, dimA = pn and dim J(A) = pn − 1.

Example 7 Let A = Mn(K) for K a field. Our aim is to write this as a direct sum of
simple modules, i.e. as a sum of minimal left ideals. Write

Ei,j =


0 · · · 0 · · · 0
...
0 1
...
0


where the 1 is in position i, j. Then Ei,jEk,l = δj,kEi,l and

AA =
n⊕
i=1

Li

where

Li =

{∑
j

ajEj,i : aj ∈ K

}
=


∗
∗

0 ∗ 0
∗
∗


Li is an irreducible module as follows. Let x ∈ Li with x 6= 0. Let x =

∑
j ajEj,i, and

suppose ak 6= 0. Then Ej,kx ∈ Li and has ak,i in the jth row and 0 in the other rows.
Thus we get all the Ej,i in Li, showing that any non-zero element in Li generates all of
Li. Thus Li is irreducible. (Remark: We used the fact that K is a field here.)

Li ∼= Lj for each i, j: This follows from the matrix representation given by Li as x → x
for x ∈ A. Also, note that J(A) = 0 since we have maximal left ideals L′j =

⊕n
i6=j Li,

whose intersection is 0.

September 5
Example 8 Let A = Mn(D) forD a division ring. The decomposition of A into the
direct sum of simple modules can be done in the same way as for Mn(K) with K a field,
as in the previous example. Again A = L1⊕L2⊕· · ·⊕Lr for Lj, the left ideals and simple
A-modules constructed before. Also as before, J(A) = 0 since x ∈ J implies xA = 0 since
it kills all the simple modules, but A has 1, so x = 0. Also note that if we set ei = Ei,i,
then e21 = e1 and Li = Aei. This says that each Li is generated by ei an idempotent.
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Digression. Let T : V → V be a linear transformation. T 2 = T means that T is a
projection. With a suitable basis, T has matrix

1
1

. . .

0
1


and in fact V = kerT ⊕ im T . Now if e ∈ A with e2 = e, then A = Ae⊕A(1− e) since if
x ∈ A, x = xe+ x(1− e) so that if x ∈ Ae, then xe = x and if x ∈ A(1− e), then xe = 0.

Definition 12 A is called (left) artinian if AA has the DCC on submodules.

Then A is artinian if and only if every non-empty set of left ideals has a minimal element.

Proposition 7 Assume A is artinian. Then every nilpotent left ideal is contained in J
and J itself is nilpotent. (CR1)

Proof. We have a chain
J ⊃ J2 ⊃ · · · ⊃ J i ⊃ · · ·

which terminates as
Jm = Jm+1 = · · · = J2m = · · ·

If Jm 6= 0, then J2m = JmJm 6= 0. Choose a minimal left ideal I such that JmI 6= 0.
Then for some a ∈ I, we have Jma 6= 0 and Jma ⊂ I, but Jm(Jma) = Jma 6= 0 so that
Jma = I since I is the minimal ideal for which JmI 6= 0. Now since a ∈ I we can write
a = xa for some x ∈ Jm. Then (1− x)a = 0 implies a = 0 since 1− x has a left inverse.
But this is a contradiction, so Jm = 0, that is J is nilpotent.

Now let N be a nil left ideal, that is, every element is nilpotent. Then x ∈ N implies
xk = 0 for some k ≥ 1 so that 1− x is invertible. This means that x ∈ J so that N ⊂ J .

Example 9 If A = KG, then J(A) is nilpotent. If G is some p-group, then J is the span
of {x− 1 : x ∈ G} and (x− 1)p

n
= 0

Proposition 8 Assume A is artinian. If I is a non-nilpotent left ideal, then I contains
an idempotent (CR2, 24.2)

In particular if J = 0, then A would be non-nilpotent and we would be able to do the
decomposition as in Example 8.
Proof. Let I1 be a minimal left ideal among the non-nilpotent left ideals contained in
I. Then I2

1 = I1 by minimality. Let L1 be minimal in {L ⊂ I1 : I1L 6= 0}. Then since
I1x 6= 0 for some x ∈ L1 and I1x ⊂ L1, we have by minimality that I1x = L1. Then
x = ax for some a ∈ I1. But then x = ax = a2x = · · · so that (a2 − a)x = 0. Let
N = {u ∈ I1 : ux = 0} ⊂ I1 and N 6= I1 for if N = I1 then

0 = Nx = I1x = L1 6= 0,

a contradiction. Then a2 − a ∈ N and N is nilpotent since N ( I1 and I1 was chosen
to minimal among non-nilpotent ideals. Let n1 = a2 − a. If n1 = 0, we’re done as a
would be an idempotent. If not, let a1 = a+n1− 2an1 ∈ I1 and repeat the above process
producing n2 = a2

1−a1. We will get a sequence which will eventually give an idempotent.
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Sketch of proof of the previous proposition (for details see the last lecture):

We have found I1 ≤ I, non nilpotent, and N ⊂ I1 with N nilpotent. We have an a-
sequence in I and an n-sequence in N . As before, take n1 = a2 − a. If this is zero, we’re
done. If not, recursively define ai = ai−1 + ni (1− 2ai−1) and ni+1 = a2

i − ai. In fact
n2 = 4n3

1− 3n2
1 so n2

1|n2 in A. Inductively, ni+1 has n2i

1 as a factor. N is nilpotent implies
that n2k

1 = 0 for some k. Hence nk+1 = 0 and a2
k = ak, that is, ak is an idempotent.

The definition of ai may have been motivated by calculus as follows (folklore). We’re
trying to solve f(x) = x2 − x. Thus

a1 = a+ n1(1− 2a)

= a− (a2 − a)(2a− 1)

= a− f(a)f ′(a)

Recall that Mn(D) =
⊕n

j=1 Lj is the direct sum of simple left ideals Lj with Li ∼= Lj.
Also, note that simple left ideals are the same as irreducible left ideals and the same as
minimal left ideals.

Definition 13 Let A be any ring with 1. We say that A is left-semi-simple or completely
reducible if AA is the direct sum of simple left ideals. Similarly, an A-module M is left-
semi-simple or completely reducible if M is the direct sum of simple submodules.

Proposition 9 (H, Ch. 9, Th 3.6 or CR2, §15.3) The following are equivalent:

1. M =
⊕

i∈IMi with Mi simple

2. M =
∑

j∈JMj with Mj simple

3. For any M ′ a submodule of M , we have M = M ′ ⊕M ′′ for some submodule M ′′ of
M .

Observe that if N ≤ M and L ≤ M with L simple, then N ∩ L is either L or 0. Hence
N + L is either N or N ⊕ L.
Proof. The proof uses Zorn’s Lemma over and over. (1)⇒ (2) is obvious. For (2)⇒ (1),
among all partial sums

∑
i∈IMi, I ⊂ J , which are direct, choose a maximal L and then

show that L = M by observing that if some j 6∈ I, then L⊕Mj is direct by the observation
above, a contradiction.

For (2) ⇒ (3), given M ′, choose a maximal M ′′ =
∑

i∈IMi with M ′′ ∩M ′ = 0 by
Zorn’s lemma. Then show that M = M ′ ⊕M ′′. If not, pick m ∈M with m 6∈M ′ ⊕M ′′.
Then m is in a sum of a finite number of simple submodules, and at least one of them,
say Mk, is not contained in M ′ ⊕M ′′. This would contradict maximality of M ′′.

For (3)⇒ (2), first show that if N ≤M with N 6= 0, then N has a simple submodule.
Pick some 0 6= n ∈ N and choose some N0 maximal such that n 6∈ N0. By the assumption,
we have N = N0⊕N1 for some N1. Then N1 is simple, for if not, N1 = N2⊕N3, but then
n 6∈ N0 + N2 or n 6∈ N0 + N3 which contradicts maximality. In particular, M contains
simple modules. Among all

∑
i∈T Mi with Mi simple, find a maximal L. If L 6= M , then

M = L⊕ L′ and L′ contains a simple submodule, which contradicts the maximality of L

Finally, we have the main theorem on Artinian rings.
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Theorem 3 If A is an Artinian ring with 1, then J(A) = 0 if and only iff AA is semi-
simple.

Proof. If J = 0, let L1 be a minimal left ideal. Then L1 is not nilpotent, so L1 = Ae
for some e with e2 = e so that A = Ae ⊕ A(1 − e) = L1 ⊕ L′1. If L′1 is non minimal, let
L2 ≤ L′1 be minimal and A = L1 ⊕ L2 ⊕ L′2, etc. Then L′1 ⊃ L′2 ⊃ · · · terminates so that
A = ⊕nj=0Lj.

Conversely, let AA be semi-simple and write A = J ⊕ J ′ by criterion (3). We then
have that 1 = x + x′ with x ∈ J and x′ ∈ J ′. Then x = x2 + xx′ which means that
x2 − x ∈ J ∩ J ′ = 0. But x− x2 = x(1− x) = 0 means that x = 0 since 1− x is a unit.
This means that x′ = 1 so that J ′ = A and J = 0.

A counterexample for this in non-artinian rings is J(Z) = 0 since the maximal ideals
are {(p) : p prime}, but Z is not semi-simple (in our sense). For a structure theorem on
arbitrary rings A with J(A) = 0 see H, Chapter 9, 3.2.

September 10
We proved last time that if A is artinian, then J (A) = 0 if and only if AA is

semi-simple. From this, it follows that if J (A) 6= 0, then A/J (A) is semi-simple since
J (A/J (A)) = 0.

Proposition 10 Let A be any ring with 1. Then submodules and quotient modules of
completely reducible modules are completely reducible.

Proof. (Schur’s Lemma) First note that if L andM are simple A-modules and ϕ : L→M
is a A-module homomorphism, then ϕ(L) is either 0 or M and kerϕ is either 0 or L, so
ϕ is ether 0 or an isomorphism. In particular, EndA(M) is a division ring.

If M is completely reducible and N ≤ M , then M =
∑

i∈IMi for Mi simple so that
M/N =

∑
i∈IMi/Ni. If ϕ : M → M/N is the canonical map, then ϕ(M) is the sum of

those Mi such that ϕ(Mi) 6= 0 and such that ϕ(Mi) is simple.
Now if M is completely reducible and N ≤M , then M = N ⊕N ′ for some N ′ and so

N ∼= M/N ′.

Proposition 11 Assume AA is semisimple. Then

1. AA is the direct sum of a finite number of left A-ideals.

2. Every finitely generated A-module is completely reducible.

3. Every A-module is completely reducible.

Proof. If AA is semisimple, then AA =
∑

i∈I Li with Li minimal left ideals. But since
the ring has 1, we have 1 ∈ Li1 + Li2 + · · · + Lin and similarly for a ∈ A so that
A = Li1 + Li2 + · · ·+ Lin .

Suppose M is finitely generated by {m1,m2, · · ·mr}. Then we have a surjective A-
module homomorphism

ϕ : A⊕ A⊕ · · · ⊕ A︸ ︷︷ ︸
r

→M given by ϕ (a1, a2, · · · ar) =
r∑
i=1

aimi.

Since A⊕ A⊕ · · · ⊕ A is semisimple, M is semisimple.
11



Finally, suppose M is an A-module. Then

M = AM =

(∑
i∈I

Li

)
M =

∑
i∈I

∑
m∈M

Lim.

But by the above proposition, each Lim is either 0 or simple, so M is completely reducible

The following theorem provides the main example of an artinian, semisimple ring.

Theorem 4 (Maschke’s Theorem) If G is a finite group and K is a field of characteristic
either 0 or p with p 6 | |G|, then KG is semisimple (DF, p. 815).

Note that KG is artinian as it is a finite dimensional algebra and a vector space over K
Remark: If M is an A-module and N ≤ M , then N is a direct summand of M if and
only if there exists a A-module homomorphism π : M → N with π|N = i, the identity
map. Confirm that if we have such a π, then M = N ⊕ kerπ.
Proof. Let M be a KG-submodule and N ≤ M . Since M,N are vector spaces over
K, find subspace W of M such that M = N ⊕W where ⊕ denotes direct sum as vector
spaces. Then we have a K-homomorphism π : M → N with π|N = i. Let π′ : M → M
be given by

π′(u) =
1

|G|
∑
g∈G

gπ
(
g−1u

)
.

Show that π′ is a KG-module homomorphism, π′|N = i, and Im (π′) = N . For example,
if u ∈ N ,

π′(u) =
1

|G|
∑
g∈G

g
(
g−1u

)
= u

as g−1u ∈ N , and if x ∈ G, u ∈M ,

π′(xu) =
1

|G|
∑
g∈G

gπ
(
g−1xu

)
=

1

|G|
∑
g∈G

x
(
x−1g

)
π
(
g−1xu

)
= xπ′(u)

so that π′ is a G-module homomorphism, hence a KG-module homomorphism.

Exercise 1 (DF p.828) Let G = S3 and let V = 〈e1, e2, e3〉 be the natural module defined
gei = eg(i). Let V1 = 〈e1 + e2 + e3〉 ≤ V . Then V = V1 ⊕ W as K-spaces where the
characteristic of K is 0 and W = 〈e2, e2〉. However, W is not a KG-module. Go through
Maschke’s Theorem to start from W to find a KG-module W1 with V = V1 ⊕W1

Preview: If A is an artinan ring and semisimple, we know that A =
∑
Li. What is the

structure of A as a ring?

September 12
We’ve shown that if A is artinian with 1 and semisimple, then AA is completely

reducible. Consider the ring A = Mn(D) where D is a division ring. We know that
A =

⊕n
j=1 Lj where Lj = AEj,j and Li ∼= Lj for all i, j. Now we’re interested in

recovering D knowing the above decomposition.
Recall that HomA (M,N) is an abelian group when A is a ring, but if A is an R-algebra

where R is a commutative ring, then HomA (M,N) becomes an R-module.
12



Consider
HomA (Li, Lj) = HomA (AEi,i, AEj,j) .

By Schur’s lemma, every element of this vector space overD is either 0 or an isomorphism.

Lemma 1 If A is any ring, M is an A-module, and e ∈ A with e2 = e, then HomA (Ae,M) ∼=
eM .

Proof. Let ϕ : eM → HomA (Ae,M) be given by em 7→ α : e 7→ em for m ∈ M .
Now let ψ : HomA (Ae,M) → eM be given by α 7→ α (e). Note that if α (e) = m, then
α (e · e) = em so m = em ∈ eM . Then, ϕ and ψ are inverses.

Corollary 2 EndA (Ae)op ∼= eAe where for rings B, Bop is the abelian group B with
multiplication reversed.

Proof. Check that the isomorphism given in the theorem reverses the multiplication in
the two rings.

Then HomA (AEi,i, AEj,j) ∼= Ei,iAEj,j. So if x ∈ A, x =
∑

k,l ak,lEk,l so that Ei,ixEj,j =
ai,jEi,j (check this). Hence HomA (AEi,i, AEj,j) ∼= D. In particular, End (AEi,i) ∼= Dop.
Then we have that if A = Mn (D) and L is a minimal left ideal, then EndA (L) ∼= Dop.

Suppose now that V1, V2,W1,W2 are A-modules for A any ring. Consider

HomA (V1 ⊕ V2,W2 ⊕W2) ∼= HomA (V1,W1)⊕ HomA (V1,W2)⊕

HomA (V2,W1)⊕ HomA (V2,W2)

θ →
(
θ1,1 θ2,1

θ1,2 θ2,2

)
(1)

where θi,j = PjθLi, the Li being injections of Vi into V1⊕V2 and the Pj being projections
of W1 ⊕W2 on Wj.

Formally, if θ ∈ HomA (V1 ⊕ V2,W1 ⊕W2), then θ corresponds to the matrix as in (1)

θ :

(
v1

v2

)
→
(
θ1,1 θ2,1

θ1,2 θ2,2

)(
v1

v2

)
for v1 ∈ V1 and v2 ∈ V2. This gives an additive group isomorphism EndA (V1 ⊕ V2) ∼=Group
of matrices as in (1). Finally, if V1 = V2 = V , then

EndA (V ⊕ V ) ∼= M2 (EndA (V ))

Check that if θ → (θj,i) and Φ→ (ϕj,i), then θΦ→ (θj,i) (ϕj,i).

The same proof shows that EndA (nV ) ∼= Mn (EndA (V )).

If V is simple, then EndA (V ) = D a division ring and then EndA (nV ) ∼= Mn (D).

Lemma 2 EndA (AA) ∼= Aop

13



Proof. Let ϕ ∈ EndA (AA). Then ϕ : A → A and if 1 → x, so that a → ax, ϕ
is just right multiplication by x. Conversely, if x ∈ A, ϕ : a → ax is an A-module
homomorphism AA →A A. Now if ϕ ←→ x, i.e., ϕ(1) = x, and ψ ←→ y, i.e., ψ(1) = y,
then (ϕψ) (1) = ϕ (y) = yx

Finally, let A be artinian and semisimple. Then AA ∼=
⊕r

j=1 njSj for Sj simple A-modules
with Si not isomorphic to Sj if i 6= j. Then

EndA (AA) ∼=
r⊕
j=1

EndA (njSj)

∼=
r⊕
j=1

Mnj

(
D′
j

)
Note that (Mn (D))op ∼= Mn (Dop) (take transposes of matrices).

Finally, A ∼=
⊕r

j=1Mn (Dj) and this is the Wedderburn decomposition with Dj
∼=

EndA (Sj)
op.

September 15
Last time we proved the Wedderburn Theory, that is, if A is artinian with 1 and

semi-simple, then A ∼=
⊕r

j=1Mnj
(Dj). Here, if AA ∼=

⊕
njSj for Sj simple, then Dj

∼=
EndA (Sj)

op

Corollary 3 If A is commutative, then A is the direct sum of fields.

This follows since if Mnj
(Dj) is a field, then nj will have to be 1 and Dj has to be

commutative.
Remark: If A is a finite dimensional D-algebra with D a division ring and

A = L0 ) L1 ) · · · ) · · ·

is a chain of left ideals, the chain has to terminate as dimD Li > dimD Li+1. Compare
this with Z ⊃ (p) ⊃ (p2) · · · where the rank does not decrease.

Definition 14 A ring A is simple if it has no two-sided ideals except {0} and A.

We know that Mn (D) is simple so that the Wedderburn theory says that if A is a semi-
simple artinian ring with 1, then A is a direct sum of simple rings.

Proposition 12 (CR1 §3.24) A simple artinian ring is semi-simple.

Proof. Let L be a minimal left ideal of A. Take B =
∑

a∈A La. Then B is a two-sided
ideal since if x ∈ A, then (La)x is either 0 or of the same form. Then B = A so that A
is semi-simple.

Now we want to study the internal structure of a semi-simple artinian ring A. Write
A = A1 ⊕ A2 ⊕ · · · ⊕ Ar for Aj subrings of A with Aj ∼= Mnj

(Dj). In fact, Aj is the
sum of all the minimal left ideals which are isomorphic to Sj. First, observe that Aj is a
two-sided ideal of A as follows.

14



If x, y ∈ A, then
x = x1 + x2 + · · ·+ xr (2)

and
y = y1 + y2 + · · ·+ yr (3)

for xj, yj ∈ Aj. Then xy = x1y1+· · ·xryr so xyj = xjyj ∈ Aj as Aj is a subring. Similarly,
yjx = yjxj ∈ Aj.

Now let
1 = e1 + e2 + · · · er (4)

for ej ∈ Aj. From (2) and (4), we have

x = x1 =
∑

xjej =
∑

xj

so that xjej = xj. Similarly, ejxj = xj which says that ej is the identity element for Aj.
Also, e2j = ej and ej ∈ Z (A) as ejx = xej for all x ∈ A. Note also that eiei = ei and
eiej = 0 for i 6= j as eiej ∈ Ai ∩Aj. Thus we say the ei are orthogonal idempotents. They
are also central, that is, contained in the center of A. Furthermore, Aj = Aej.

Theorem 5 Let A be a semi-simple, artinian ring. Then A is the direct sum A =
⊕

Aj
of two-sided ideals which are simple rings. Each Aj itself is the direct sum of minimal
left ideals, all isomorphic to a simple A-module Sj. Furthermore, every simple A-module
is isomorphic to some Sj.

Example 10 Let n = 3 and G = 〈a : a3 = 1〉. Take A = QG. Then dimQA = 3.
We can take e1 = 1

3
(1 + a+ a2). Then e1 is a central idempotent (as similarly defined

elements are for all group-rings) Then Ae1 ∼= M1 (Q). Next, we need to fill in the blank
in A ∼= M1 (Q)⊕ with some algebra of dimension 2.

September 17
In the last decomposition, 1 = e1 + e2 + · · · er for ej ∈ Aj. The ej are central

idempotents, i.e., xej = ejx for all x ∈ A and xj is the identity element of Aj = Aej.

Definition 15 Idempotents e and f are orthogonal if ef = fe = 0. An idempotent e is
primitive if e can’t be written as the sum e1 + e2 of orthogonal idempotents.

Then the ej above are primitive central and orthogonal idempotents (i.e. can’t be written
as a sum of orthogonal central idempotents), for otherwise if ej = e′j + e′′j , then Aej =
Ae′j ⊕ Ae′′j contradicts the simplicity of Aj = Aej.

Remark: The Aj and the ej are unique with respect to a decomposition of A into the
direct sum of simple rings. This is because the Aj are defined as the sum of all the minimal
left ideals isomorphic to one fixed simple module Sj. Note that a simple artinian ring has
only one simple module up to isomorphism (this follows from the proof given earlier that
a simple artinian ring is semisimple). However, AA =

⊕
Lj is not unique. For example,

in Mn (D) there are many ways of writing 1 as a sum of orthogonal idempotents.

Example:Returning to G = S3 = 〈(12), (23)〉 V the standard module 〈v1, v2, v3〉, and
A = KG for K a field, we have two cases to consider.

15



Case 1. char K 6= 3. Then V = V1 ⊕ V2 where V1 = 〈v1 + v2 + v3〉 and V2 =
〈v1 − v2, v2 − v3〉 as before.
Case 2. char K = 3. If

(123) 7→

 0 0 1
1 0 0
0 1 0

 ∼
 1 1 0

0 1 1
0 0 1

 ,

then the eigenvalues are all 1. We need to find a basis for V to exhibit a composition
series. We begin with v1 + v2 + v3 as the first basis element and extend to a full basis
of V . Consider the basis {v1 + v2 + v3, v1 − v2, v1} and check that with respect to this
basis,

(12) 7→

 1 0 0
0 −1 1
0 0 1


(23) 7→

 1 −1 0
0 −1 0
0 0 1


(123) 7→

 1 −1 0
0 1 1
0 0 1


Then

V1 = 〈v1 + v2 + v3〉 ⊂ V2 = 〈v1 + v2 + v3, v1 − v2〉 ⊂ V

This chain is called a flag and is fixed by G. Also, it is a composition series with simple
factors giving the trivial and the sign representations as follows. On V1, G has the trivial
representation. This corresponds to the 1,1 entry of the matrices. On V2/V1, G has the
sign representation, i.e., g 7→ sgn g, This corresponds to the 2,2 entry of the matrices.
On V/V2, G again has the trivial representation. In the previous example, we initially
took a representation of G in char 0, and then regarded the matricies ρ(g) as matricies
over K with char K = 3. This method is known as the method of going mod p.

From now on, A will be a group ring. We will consider K a field of charactersitic 0
containing a suitable ring R which has a prime ideal p, such that R/p = k is a field of
charactersitc p. Now if we have a representaion ρ of G over K, we write the matrices ρ(g)
over R and then reduce the entries mod p to get a modular representation ρ of G over k
of charactersitc p. For example, going mod 3 on the two dimensional representation of S3

gave rise to two one-dimensional representations over F3. In that case, K = Q, R = Z,
and k = F3.

The course bifurcates from this point into two branches, one branch involving further
development in characterstic 0, and the other further exploring going mod p. The latter
path leads to current research in representation theory.

September 19
We continue with group algebras of characteristic 0. Let G be a finite group and A=CG.

Remark 2 If K is an algebraically closed field and D ⊃ K is a division algebra with
[D : K] <∞, then D = K

16



Proof. Let a ∈ D. Then a is algebraic over K, so let f(x) be the minimal polynomial of
A over K. If f(x) = h(x)k(x) with deg h, deg k < deg f . Then

0 = f(a) = h(a)k(a)

so that one of h(a) or k(a) is 0 since D is a division algebra. This contradicts minimality
of f . Hence, f(x) is irreducible. This together with the fact that K is algebraically closed
imply that deg f = 1 so that f(x) = x− a. Thus, a ∈ K.

We therefore have
CG ∼=

⊕
j

Mnj
(C) .

Note that each factor of this sum corresponds to one simple algebra Aj in the decom-
position A =

⊕
Aj. We know that Mnj

is the sum of nj irreducible left ideals, each
of which has dimension nj. (Recall that these irreducible left ideals are columns of the
matrix algebras and hence have dimension nj.) Therefore, each Aj corresponds to one
irreducible A- module of dimension nj repeated nj times (in the sense that it occurs nj
times in a decomposition of A as left A-module) . So we get

∑
j n

2
j = |G| where the nj

are the dimensions of the irreducible representations of G. For example, with G = S3, we
have 6 = 1 + 1 + 22.

Next, we want to describe r in terms of the group. We have

A = CG = A1 ⊕ A2 ⊕ · · · ⊕ Ar.

Consider the center Z of A. We then have

Z = Z1 ⊕ Z2 ⊕ · · · ⊕ Zr

with Zj ∼= Z (Aj). However, since each Aj is a matrix algebra over C, we have r = dimC Z.
We construct a basis of Z over C. If C1, C2 · · · Cs are the conjugacy classes of G, we claim
that the set kj =

∑
g∈C|

g : j = 1, 2, . . . , s


forms a basis of Z. The kj are clearly independent. To see that they generate Z, let x ∈∑

g agg ∈ Z and let h ∈ G. Then hxh−1 =
∑

g ag (hxh−1) =
∑

g agg =
∑
ahgh−1hgh−1 so

that ag = ahgh−1 for all g, h ∈ G. That is, if x ∈ Z, then conjugates must have the same
coefficients (see DF, p.827). This says that x is a linear combination of the kj.

Therefore r = s and the number of irreducible representations of G is equal to the
number of conjugacy classes of G. Note also that this holds only when the field is C.
This was not the case in the homework problem about Zn over Q, for example.

We now develop the theory of characters. Let ρ : G → GL (n,C) be a group homomor-
phism and ρ : A = CG → Mn (C) be an algebra homomorphism. Define the function
χ : G→ C by χ(g) = Tr (g) for g ∈ G, and similarly χ(x) = Tr (x) for x ∈ A. Now since
Tr (X) = Tr (PXP−1) for matrices X and P , we have that equivalent representations
have the same character. Also χ (hgh−1) = χ (g) for g, h ∈ G so that χ is constant on
conjugacy classes. We call such functions class functions.

Recall that Tr (x+ y) = Tr x+ Tr y and Tr (xy) = Tr (yx).

17



Remark 3 What if the field has characteristic p? For example, S3 has a representation
of dimension 2 given by V2 = 〈v1 − v2, v2 − v3〉. Consider V2 as a module over a field K
of characteristic 2, then we get

1 7→
(

1 0
0 1

)
.

But then χ(1) = 0, but we would want χ(1) to be the dimension of the representation.
There is a way to get around this and define characters in characteristic p due to Brauer
which we will see later.

September 22
Hint for homework: Produce e1 and e2, the trivial and sign idempotents. Take e3 =
1− e1 − e2, write Ae3 = M2 (Q), and figure out explicitly what the isomorphism is.

Next we study characters. Let A = RG for R a commutative ring with 1. Let M
and N be A-modules which are finitely generated and free as R-modules. Construct the
following new A-modules from M and N .

1. M∗ = HomR (M,R), the dual of M , that is, R linear maps of M into R. If M has an
R- basis {v1, v2 · · · vn}, then M∗ has the dual basis {f1, f2 · · · fn} where fi (vj) = δi,j.
Then M∗ can be made into a left A-module by

(g · f) (m) = f
(
g−1m

)
.

Note also that we can make M∗ into a right A-module by

(f · g) (m) = f (gm) .

(The latter right module is more natural, but we convert it into a left module
by using the “antipode” g → g−1.) If χ is the character of the representation of
G on M and ψ is the character of the representation of G on M∗, we see that
χ (g) = ψ (g−1). Hence, if R = C, then ψ = χ since the eigenvalues of ρ (g) where ρ
is the representation are roots of unity and for roots of unity, inverses are complex
conjugates.

2. M ⊗R N is an A-module by

g (m⊗ n) = gm⊗ gn.

Note that M ⊗R N is naturally a (G×G)-module by

(g, g′) (m⊗ n) = gm⊗ g′n.

Then we have the diagonal embedding G→ G×G given by G 7→ (g, g). Also, there
is a nice isomorphism M∗ ⊗R N ∼= HomR (M,N) given by

f ⊗ n 7→
[
m 7→ f(m) · n ∈ R

]
.

Using this we make HomR (M,N) into an A-module by (g · f) (m) = g · f((g−1m)).

18



September 24
Continuing from last time, Hom, Dual, and the tensor product are three functors

deriving from an A-module. If A = RG and M is a finitely generated free R-module, we
make M∗ = HomR (M,R) and M ⊗R N into A-modules as in the last lecture. Note that

M∗ ⊗R N ∼= HomR (M,N) . (5)

HomR (M,N) is an A-module by

(gf) (m) = g · f
(
g−1m

)
and this definition is compatible with (5), that is, the map given to induce (5) is G-
equivariant i.e., ϕ : M∗ ⊗R N → HomR (M,N) is such that gϕ = ϕg for g ∈ G. Check
this. Also M ⊕N is an A-module by

g (m,n) = (gm, gn) .

Finally, recall that if A and B are R-algebras, then so is A⊗R B as in DF, p. 355. Then
if M is an RG-module and N is a RH module, then M ⊗RN is an RG⊗RH-module by

(g ⊗ h) (m⊗ n) = gm⊗ hn

In fact, this comes from the following. Let M , N , M ′ and N ′ be R-modules . If ϕ : M →
N and ϕ′ : M ′ → N ′ are R-module homomorphisms then we get an R- homomorphism
ϕ ⊗ ϕ′ : M ⊗R M ′ → N ⊗R N ′ by m ⊗ m′ 7→ ϕ (m) ⊗ ϕ (m′). Now if M and N are
RG-modules and M ′ and N ′ are RH-modules, ϕ : M → N is an RG-homomorphism,
and ϕ′ : M ′ → N ′ is an RH-homomorphism, then ϕ ⊗ ϕ′ : M ⊗M ′ → N ⊗ N ′ is an
RG⊗RH-homomorphism. We note that RG⊗RH ∼= R (G×H).
Now if we have ρ : RG→ EndR (M) and ρ′ : RG→ EndR (N), then we get ρ⊗ρ′ : RG→
EndR (M ⊗R N) using the diagonal embedding G→ G×G given by g → (g, g).

Digression: (CR2, p.69) Let S = (αi,j) for 1 ≤ i, j ≤ n and T = (βi,j) for 1 ≤ i, j ≤ m
be matrices of linear transformations ρ, ρ′ of a vector space V and a vector space W
respectively with respect to bases (vi : 1 ≤ i ≤ n} and {wj : 1 ≤ j ≤ m} of V and W .
Then {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for V ⊗W , and the matrix S ⊗ T for
ρ⊗ ρ′ with respect to a suitable ordering of the above basis looks like βj,kS


Then Tr (S ⊗ T ) = Tr S × Tr T .

Let M be an A-module, corresponding to a representation ρ of A = CG with character
χ. Then ρ : A → EndC (M) and χ (g) = Tr (ρ (g)) = Tr (g,M) = χM and similarly for
N . We then have the following correspondence:

Representation Character

M∗ χ i.e. χM∗(g) = χ(g) = χ (g−1)
M ⊗N χ · ψ i.e. χM⊗N (g) = χ (g)ψ (g)
M ⊕N χ+ ψ
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Now if ni = dimχi for 1 ≤ i ≤ r with χi the irreducible characters, then we know∑
i n

2
i = |G| and r is the number of conjugacy classes of G. Pick a representative gi ∈ Ci

where {Ci : 1 ≤ i ≤ r} are the conjugacy classes of G with C1 = 1
We record all the irreducible characters in a table, called the character table of G:

Character C1 C2 · · · Cj · · · Cr
χ1 1 1 1 1
...
χi χi (1) χi (g2) χi (gj) χi (gr)
...

For example, the character table for S3 is given by

1 (123) (12)
χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0

Now look at KS3 for K a field of characteristic 3. Only the columns for 1 and (12)
are relevant since the eigenvalues of (123) are all 1. We get two modular irreducible
characters, the trivial and the sign.

We have so far considered left A-modules, and right A-modules are similar.
For A and B algebras, we can also consider bimodules. Thus M is an (A,B)-bimodule

if A acts on the left, B on the right, and a (m · b) = (a ·m) b for a ∈ A,m ∈ M , and
b ∈ B. (DF p. 347). For example, if A = RG, then A is a bimodule whose submodules
are 2-sided ideals. Consider A = Mn (C). What is its structure as an A-bimodule, that
is, what is the representation of A⊗ Aop on A?

September 26
Exercise 2 Let A = Mn (K) for K a field. Consider the linear transformation

(x, y) 7→
[
ϕx,y : s 7→ xsy

]
for x, y ∈ A. Then this is a map A ⊗ A → EndK (A). Check that Trϕx,y = TrxTry by
considering the natural basis {Ei,j : 1 ≤ i, j ≤ n} of A and computing each xEi,jy.

Let A = CG. We have the left regular map

a 7→
[
ρa : x 7→ ax

]
and the right regular map

a 7→
[
ψa : x 7→ xa

]
.

The right regular map is an anti-representation because ψaψb = ψa (xb) = xba whereas
ψab (x) = xab. We therefore consider A as an A⊗ A-module or an A-bimodule by

g ⊗ h 7→
[
x 7→ gxh−1

]
. (6)
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Remark 4 The trace of the regular representation R afforded by ρa is

R (g) =

{
|G| g = 1
0 g 6= 1

We compute the trace of (6) in two ways.

1. The trace of g⊗h is the number of x ∈ G such that x = gxh−1, that is, x−1gx = h.
In particular, if g is not conjugate to h, then the trace is 0. Fix x ∈ G with
x−1gx = h. Then for any y ∈ G, we have

y−1gy = h⇔ xy−1 ∈ CG (g)⇔ yx−1 ∈ CG (g)⇔ y ∈ CG (g) · x

so that

Tr (g ⊗ h) =

{
|CG (g)| g, h conjugate
0 otherwise

2. We have A =
⊕r

j=1Aj for Aj simple two sided ideals. Then the trace of g ⊗ h is

r∑
j=1

χj (g)χj
(
h−1
)

where χj is the irreducible character corresponding to Aj by Exercise 2.

We therefore have

r∑
j=1

χj (g)χj
(
h−1
)

=

{
|CG (g)| g, h conjugate
0 otherwise

This is known as the second orthogonality relation. It gives a relation between the columns
of the character table.

Example 11 The character table for S3.

1 (123) (12)

χ1 1 1 1
χ2 1 −1 1
χ3 2 −1 0

We can rewrite the second orthogonality relation as

r∑
j=1

χj (g)χj (g) = |CG (g)| (7)

since

χj (g) =
∑
k

εk =
∑
k

εk =
∑
k

ε−1
k = χj

(
g−1
)

where εk are the eigenvalues of ρj (g).
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Take {gj ∈ Cj : 1 ≤ j ≤ r} to be representatives of the conjugacy classes of G and
write (7) in matrix form as follows.

χ1 (g1) χ2 (g1) · · · χr (g1)
χ1 (g2) χ2 (g2)

...
χ1 (gr) χr (gr)




χ1 (g1) χ2 (g1) · · · χr (g1)

χ1 (g2) χ2 (g2)
...

χ1 (gr) χr (gr)



=


|CG (g1)| 0

|CG (g2)|
. . .

0 |CG (gr)|


But since AB = D for D diagonal implies that BA = D, we have

χ1(g1)
m1

χ2(g1)
m2

· · · χr(g1)
mr

χ1(g2)
m1

χ2(g2)
m2

...
χ1(gr)
m1

χr(gr)
mr




χ1 (g1) χ2 (g1) · · · χr (g1)
χ1 (g2) χ2 (g2)

...
χ1 (gr) χr (gr)

 = Ir

where mj = |CG (gj)|. Then

r∑
j=1

χk (gj)χl (gj)

mj

=

{
1 k = l
0 otherwise

so that
1

|G|

r∑
j=1

|Cj|χk (gi)χl (gj) =
1

|G|
∑
g∈G

χk (g)χl (g) = δk,l

and this is known as the first orthogonality relation. This is a relation between the rows
of the character table.

Now if N C G and ψ is a representation of G/N , we get a representation of G by

ψ̃ : g 7→ ψ (gN). Then ψ̃ is a pullback as in

G −→ G/N −→ GL (n, k)

and ψ is irreducible if and only if ψ̃ is irreducible. We can see this more easily via the
orthogonality relations.

September 29
Definition 16 C (G) is the vector space over C of class functions on G.

There is a natural inner product on C (G) given by

〈ϕ1, ϕ2〉 =
1

|G|
∑
g∈G

ϕ1 (g)ϕ2 (g)
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Then the set of irreducible characters {χ1, χ2 · · ·χr} form an orthonormal basis of C (G).
Now if χ is any character, we can write χ =

∑
j njχj for nj ≥ 0, nj ∈ Z and 〈χ, χj〉 = nj.

Note also that any character χ is irreducible iff 〈χ, χ〉 = 1. In terms of modules, if
χ corresponds with M and χj corresponds with Sj, then M ∼=

⊕
j njSj where nj =

dim HomA (Sj,M) = dim HomA (M,Sj) by Schur’s lemma since HomA (Si, Sj) = δi,j.

Proposition 13 If χ, ψ are irreducible characters of G and H respectively, then χ ×
ψ defined (χ× ψ) (x, y) = χ (x)ψ (y) is an irreducible character of G × H and all the
irreducible characters of G×H are obtained in this way.

Proof. Show that

1

|G×H|
∑
(x,y)

(χ× ψ) (x, y) (χ× ψ) (x, y) = 1

and also note that the number of conjugacy classes of G×H is the number of conjugacy
classes of G times the number of conjucacy classes of H.

If χ is a virtual character, that is, χ =
∑

j njχj with nj ∈ Z, then ±χ is an irreducible
character iff 〈χ, χ〉 = ±1. This will not be true, however, if nj 6∈ Z. For example, if
χ = 1

2
χ1 + 1

2
χ2 + 1

2
χ3 + 1

2
χ4, then 〈χ, χ〉 = 1.

Let ρ be a representation of G with character χ and let g ∈ G. Then the eigenvalues
of ρ (g) are {εj : 1 ≤ j ≤ n} where εj is an mth root of unity if g has order m. Note that
χ (g) =

∑
j εj and that

|χ (g)| =

∣∣∣∣∣∑
j

εj

∣∣∣∣∣ ≤∑
j

|εj| = n

with equality iff each εj is real. Hence, χ (g) = n = χ (1) iff ρ (g) = I. Note that if we
consider the subgroup 〈g〉 ⊂ G and look at an irreducible representation ρ on 〈g〉, we
have that ρ (g) are scalar matrices. From the character table, we see that if χ (g) = n,
then g ∈ ker ρ. Hence, we can identify normal subgroups of G from the character table.

October 1
Comments on homework 3.

If M is a completely reducible A-module and e is a central idempotent in A, then
M = eM ⊕ (1− e)M . Note that since e is central, we have that eM and (1− e)M are
submodules, and e2 = e. Therefore e acts as a projection of M on eM . eM is the sum of
all the simple submodules of M isomorphic to the simple A-module corresponding to e.
For example, A =

⊕
Aej is a special case with M =A A.

In the homework problem on finding f3, take H = 〈(12)〉 and take e to be 1
2
(1 + (12)).

This is an idempotent corresponding to the trivial representation of the subgroup H. Now
take M to be Ae. Then Ae = Aee3⊕Ae (1− e3) and apply the above comments. In other
words, we find the part of the module Ae which gives the representation of dimension 2,
which is Aee3 and is irreducible. Thus we can take f3 to be ee3.

We consider characters of Abelian groups. Let G be Abelian and let ρ be an irreducible
representation of G over C as usual. By Schur’s lemma, if g ∈ G, ρ (g) = λgI. But
since block diagonal matrices can’t be irreducible, we must have that dim ρ = 1, that
is, ρ (g) = λg so that ρ : G → C× is a homomorphism. (We can also show that each
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irreducible representation of an Abelian group is of dimension 1 by Wedderburn theory;
see e.g. [DF, p.827].)

For general G, if g ∈ G and ρ is any representation of G, consider 〈g〉. Since ρ is
completely reducible, we have ρ (g) is diagonalizable since 〈g〉 is Abelian. Last time we
saw that χ (g) = χ (1) implies each εj is 1. Then ρ (g) = I so that g ∈ ker ρ. The converse
is also true, that is, if g ∈ ker ρ, then χ (g) = χ (1).

We therefore have that normal subgroups can be detected from the character table. In
fact, N C G iff

N =
⋂
j

{
kerχj : χj irreducible with N ⊂ kerχj

}
(8)

Proof. First note that the intersection of the kernels of all the χj is precisely {1} by the
Wedderburn decomposition A =

⊕
j Aej. Then if N C G, consider G/N and note that

the irreducible representations of G/N are obtained from the irreducible representations
of G which contain N in their kernel. Conversely, every irreducible representation of G/N
gives rise to a representation of G containing N in its kernel. This proves (8).

Next, we want to construct the central idempotents of A = CG. Consider Z = Z (A).
(Incidentally, note that x ∈ Z if x is a linear combination of class sums; this can be used in
homework 3.) Then Z has dimension r and a basis {Cj : 1 ≤ j ≤ r} where Cj =

∑
g∈Cj

g.

Let hj = |Cj|. Also, note that Z =
⊕r

j=1 Zej with Zej ∼= C. So {ej : 1 ≤ j ≤ r} is
another basis of Z. Let Ci =

∑
j ai,jej and ei =

∑
j bi,jCj. We want bi,j ∈ C.

Observe that Zej is the center of Aej and χj is the character of the representation
corresponding to Aej by our notational convention.

Note that χi (ej) = 0 when i 6= j and χi (ej) = ni = χi (1). Now Ci are represented
(in the representation corresponding to χj), by scalar matrices, say

Ci 7→


ωj (Ci)

ωj (Ci)
. . .

ωj (Ci)

 .

Taking traces, hiχj (gi) = njωj (Ci). Here gi ∈ Ci. So we let

ωj (Ci) =
hiχj (gi)

nj
.

The notation ωj (Ci) reflects the fact that Ci 7→ ωj (Ci) is a homomorphism of Z into C.
The ωi are the characters (1-dimensional representations) of Z into C.

Then for g ∈ Ci, χj (Ci) = hiχj (gi) = ai,jnj so that

ai,j =
hiχj (gi)

nj
= ωj (Ci) .

Substituting, we have

Ci =
∑
j

hiχj (gi) ej
nj

,
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1

|G|

r∑
i=1

χk (gi)Ci =
1

|G|
∑
j

∑
i

hi
nj
χj (gi)χj (gi)ej =

∑
j

1

nj
ejδj,k =

ek
nk

so that

ek =
nk
|G|

r∑
i=1

χk (gi)Ci.

See DF, p.836 for a different way of getting the ek. This method is important because we
will be using the ωj later. This proof can be found in [CR2, p.236].

October 3
We explain the idea behind the calculation of the central idempotents. Let Ci be the

class sum, gi ∈ Ci, nk = χk (1), and hi the number of elements of Ci.
We have two bases of Z(A) given by

Ci =
∑
j

ai,jej (9)

ei =
∑
j

bi,jCj. (10)

The ai,j are easier to find. We have χj (Ci) =
∑

j ai,jχj (ej) = ai,jnj since χj (ei) = δi,jnj,
but on the other hand, χj (Ci) = hiχj (gi). So hiχj (gi) = ai,jnj or ai,j = hiχj (gi) /hj.

Invert the equation (9) to get (10) by multiplying (9) by χk (gi) and summing over i to
get the idempotents ej.

Let

ωj (Ci) =
hiχj (gi)

nj
(11)

Then ωj : Z → C given by (11) is a character of Z obtained by restricting χj to Z, that
is, in the representation of A corresponding to Aej, Ci → ωj (Ci) I

We digress to consider algebraic integers [see, e.g. DF p. 853]. If K ⊃ Q is an extension
field, an element a ∈ K is algebraic over Q if a is a root of a monic polynomial p (x) ∈
Q [x]. If p (x) ∈ Z [x], then a is an algebraic integer.

We have [e.g. DF, p 853] that

1. sums and products of algebraic integers are algebraic integers,

2. if a ∈ C, a is an algebraic integer over Q iff Z [a] is a finitely generated Z=module,

3. if a is an algebraic integer and is in Q, then a ∈ Z.

Returning to characters, we have that χj (gi) is an algebraic integer, since it is a sum of
roots of unity. We want to show that ωj (Ci) is an algebraic integer

Now

ωj (Ci) =
hiχj (gi)

nj
.

Consider the basis {Ci} of Z = Z (A) and write CkCj =
∑

l ck,j,lCl for some ck,j,l. In
fact, cj,k,l is the number of pairs g, g′ with gg′ = h a fixed element in Cl where g ∈ Ck and
g′ ∈ Cj. In particular, cj,k,l is an integer. Since ωi is a character of Z, ωi (Ck)ωi (Cj) =∑

l ck,j,lωi (Cl). Hence, Z [1, ωi (Ck) : 1 ≤ i, k ≤ r] is finitely generated. Since Z is a PID,
Z [ωj (Ci)] is finitely generated so that ωj (Ci) is an algebraic integer.
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Theorem 6 If χi (1) = ni, then ni
∣∣ |G| for each i.

Proof.

r∑
j=1

ωi (Cj)χi (gj) =
r∑
j=1

hjχi (gj)χi (gj)

ni
=

1

ni

r∑
j=1

χi (gj)χi (gj) =
|G|
ni
.

Now we use the fact that |G|
ni

is an algebraic integer and is rational, hence an integer.

Remark 5 ni
∣∣ |G| is not true in fields of characteristic p where p

∣∣ |G|
Our last topic in this section is that of induced representations. Many of our com-

putations have involved lifting characters from normal subgroups. When we don’t have
normal subgroups, we want to be able to do something similar for arbitrary subgroups.
If H ≤ G and ρ is a representation of G, then we get a restriction of ρ to H, written ρH ,
ρ|H , or ResGH (ρ). Can we go the other way?

Now if ρ is a representation of H, we want to construct IndGH (ρ) a representation of G
and correspondingly for characters, that is, if ψ is a character of H, we want to construct
a character IndGH (ψ). and we would like〈

IndGH (ψ) , ζ
〉

=
〈
ResGH (ζ) , ψ

〉
,

where ζ is an arbitrary character of G. That is, Ind and Res should be adjoint operators.

October 6
Today we develop the theory of induced representations, which is discussed in CR1

§10, p.227 (see also DF, p.858). As before R is a commutative ring with 1. Let H ≤ G
and let A = RG and B = RH.

In fact, let A be a ring with 1 and B a subring of A containing 1. Restriction gives a
way to produce B-modules from A-module as follows. If M is an A-module, we get a
B-module M |B or ResAB (M) obtained by restricting the scalars.

The reverse operation is called induction, which allows us to produce A-modules from B-
modules. If L is a B-module, define an A-module, written IndAB (L), by IndAB (L) = A⊗BL.
It is then regarded as a A module by

a (x⊗ l) = ax⊗ l

for a, x ∈ A and l ∈ L.

Now let A = RG. In this situation, this construction is known as Frobenius induction.
If M is an A-module, then ResGH (M) is a B-module as before, and if L is a B-module,
then IndGH (L), also written LG, is an A module by

g (x⊗ l) = gx⊗ l

for g, x ∈ G and l ∈ L.

We have alternate descriptions of IndGH (L) in the context of modules, matrix representa-
tions, and characters.
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1. (Modules) Let {x1, x2 · · ·xn} be left coset representatives for H in G. Then G =⋃
i xiH, a disjoint union. Then {xi ⊗ l : 1 ≤ i ≤ n, l ∈ L} generate LG since g ∈ G

implies g = xih for some xi and some h, so that

g ⊗ l = xih⊗ l = xi ⊗ hl.

We could express this as

LG =
n⊕
i=1

xi ⊗ L

and under this identification, 1 ⊗ L ∼= L so that L can be regarded as an RH-
submodule of LG.

2. (Matrices) Let L correspond to the matrix representation L ofH, that is, h 7→ L (h).
Now since g (xi ⊗ l) = gxi ⊗ l for g, xi ∈ G we have gxi = xjh for some coset
representative xj and some h ∈ H, and xj is unique given g and xi. Then

gxi ⊗ l = xjh⊗ l = xj ⊗ hl︸︷︷︸
∈L

.

Note that h = x−1
j gxi

Now if LG corresponds to the matrix representation LG,

LG (g) =


. . . 0

. . . 0
0 0 L

(
x−1
j gxi

)


This can be seen as follows. Given xi, g, we have x−1
j gxi ∈ H for precisely one j

and we get L (x−1gxi) in the (j, i) block of LG.

Example 12 When G = S3 and H = 〈(123)〉, let L be the trivial representation of
H. then G = H ∪ (12)H with representatives x1 = 1 and x2 = (12). We want to
compute L ((13)). Write g = (13). Then

gx1 = (13) 1 = (13) = (12) (132) = x2 · h

for h = (132) and
gx2 = (13) (12) = (123) = x1h

′

for h′ = (123). Then LG ((12)) =

(
0 1
1 0

)
. Similarly, LG ((1)) =

(
1 0
0 1

)
and

LG ((123)) =

(
1 0
0 1

)
.

Example 13 Let H ≤ G. Then IndGH (1) is the permutation representation of G
on the cosets of H. Conversely, if π is a transitive permeation representation of G
on a set S, let H be the stabilizer of a fixed element x ∈ S. Then π is equivalent to
IndGH (1).
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3. (Characters) Let A = KG and B = KH. Let λ be the character of the representa-
tion L corresponding to L. We want to find λG, the character of LG. It is sufficient
to look at blocks of the form L

(
x−1
i gxj

)
. Thus,

λG (g) =
n∑
i=1

λ
(
x−1
i gxk

)
with the convention that λ

(
x−1
i gxi

)
= 0 if x−1

i gxi 6∈ H. Alternately, set

·
λ
(
x−1
i gxi

)
=

{
λ
(
x−1
i gxi

)
x−1
i gxi ∈ H

0 otherwise

Then λG (g) =
∑n

i=1

·
λ
(
x−1
i gxi

)
.

Alternately, take

λG (g) =
1

|H|
∑
x∈G

·
λ
(
x−1gx

)
and this is choice free.

Note that λG (1) = [G : H]

Remark 6 (a) Ind is additive, that is, IndGH (L1 ⊕ L2) ∼= IndGH (L1)⊕ IndGH (L2).

(b) Ind is transitive, that is, If K ≤ H ≤ G, then

IndGK (L) = IndGHIndHK (L) .

Next time we consider Frobenius reciprocity, that is

HomRG

(
LG,M

) ∼= HomRH (L,M |H)

for L an RH-module, and M and RG-module.

October 8
Theorem 7 (Adjoint Associativity, CR1 §2.19) If A and B are two rings, L′ a left A-
module, M ′ is a (B,A)-bimodule and N ′ is a left B module. Then

HomA (L′,HomB (M ′, N ′)) ∼= HomB (M ′ ⊗A L′, N ′)

as abelian groups.

Theorem 8 (Frobenius Reciprocity CR1 p. 232) Let H ≤ G and let L be a RH-module
and M an RG-module. Then

HomRH (L,MH) ∼= HomRG

(
LG,M

)
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Proof. Set A = RH, B = RG L′ = L, M ′ = RG, and N ′ = M as in (7). Then

HomRG (L,HomRG (RG,M)) ∼= HomRG (RG⊗RH L,M)

Then the right hand side is as required. For the left hand side, we have HomRG (RG,M)
is an RH-module by

(bf) (a) = f (ab)

for b ∈ RH, a ∈ RG, and f ∈ HomRG (RG, ). Then τ : HomRG (RG,M) → M which
maps f to f(1) is an RH-isomorphism as follows.

τ (bf) = (bf) (1) = f(b) = bf(1) = bτ (f)

since f is an RG-module homomorphism. Then the left hand side is as required.

Corollary 4 If R = C or some other field of charactersic 0, ψ is a character of H and
ζ is a character of G, then 〈

IndGH (ψ) , ζ
〉
G

=
〈
ψ,ResGH (ζ)

〉
H
.

This says that Ind and Res are adjoint functors.

Returning to characters,

λG (g) =
1

|H|
∑
x∈G

·
λ
(
x−1gx

)
where λ is a character ofH and g ∈ G. Now we want to simplify this to a more manageable
form.

First we digress to consider double cosets (DF p. 119, problem 10) If H,K ≤ G, then
G =

⋃
xHxK for disjoint double cosets HxK. We count

|HxK| =
|H|

[K : K ∩ x−1Hx]

=
|K|

[H : H ∩ xKx−1]

=
|K| |H|

[H ∩ xKx−1]

We fix the following notation. Write C for the conjugacy class of g in G and

C ∩H =
s⋃
i=1

C ′i

where C ′i are the conjugacy classes of H contained in C. Let hi ∈ C ′i. Then

λG (g) = |CG (g)|
s∑
i=1

1

|CH (hi)|
λ (hi)

where λG (g) = 0 if C ∩H = ∅.
Proof. Let

Xi =
{
x ∈ G : x−1gx conjugate to hi inH

}
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Then

λG (g) =
1

|H|
∑
x∈G

x−1gx∈H

λ
(
x−1gx

)
=

1

|H|

s∑
i=1

|Xi|λ (hi) . (12)

For each i, fix ti ∈ Xi such that t−1
i gti = hi.

Then

x ∈ Xi ⇔ x−1gx = h−1hih(h ∈ H)

⇔ hx−1gxh−1 = hi = t−1
i gti

⇔
(
tihx

−1
i

)
g
(
xh−1t−1

i

)
= g

⇔ xh−1t−1
i ∈ CG (g)

⇔ x ∈ CG (g) tiH

so

|Xi| = |Cg (g) tih| =
|CG (g)| |H|∣∣H ∩ t−1

i CG (g) ti
∣∣

Substituting this into (20) and noting that
∣∣H ∩ t−1

i CG (g) ti
∣∣ = |CH (hi)| we get the

result.

Example 14 Let H = A4 and G = S4. Then

IndGH (χ2) = χ3,

IndGH (χ3) = χ3,

IndGH (χ4) = χ4 + χ5,

IndGH (χ1) = χ1 + χ2.

Now let K = S3 (acting on {1,2,3}), regarded as a subgroup of G. Then

IndGK (χ1) = χ1 + χ4.

Thus we obtain all the characters of G.

October 10
We discuss the example of G = S4, H = A4, further. By Frobenius reciprocity, χ3|H =
χ2 + χ3, χ1|H = χ2 + χ3, and χ4|H = χ5|H = χ4.

As a demonstration of induction by the simplified formula, we compute χG2 ((123)). Note
that the class of (123) splits in A4 into two classes, those of (123) and (124). Then
χG2 ((123)) = 3

(
1
3
ζ + 1

3
ζ2
)

= −1.

We discuss the characters of GL(3, 2). We first make some general comments about

G = GLn (Fq). We have |G| = q
n(n−1)

2 (q − 1) (q2 − 1) · · · (qn − 1). G acts on a vector
space V over Fq of dimension n. A flag in V is a sequence of subspaces

0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vm = V.
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Then G permutes the flags transitively. A flag is complete if n = m and dimVj = j. For
example,

0 ≤ 〈v1〉 ≤ 〈v1, v2〉 ≤ · · · ≤ 〈v1, v2 · · · vn〉 = V

is a complete flag where {v1, v2 · · · vn} is a basis of V . Then the stabilizer B (for Borel)
of a complete flag is the set of upper triangular matrices. The stabilizer of an arbitrary
flag is called a parabolic subgroup.

When n = 3, take {v1, v2, v3} to be a basis. Then B is the stabilizer of

0 ≤ 〈v1〉 ≤ 〈v1, v2〉 ≤ v.

and |B| = q3 (q − 1)3. G acts transitively on the complete flags, equivalently on the cosets
of B.

The permutation representation of G on the flags is IndGB (1) is a representation of degree
|G|
|B| = (q + 1) (q2 + q + 1).

When q = 2 as in the homework, |B| = 8. Then IndGB (1) (g) should be the number of
flags fixed by g ∈ G. This can be used to compute the values of the induced character.
(See the example below.) The trivial character will be a constituent of this by Frobenius
reciprocity.

For P the stabilizer of 0 ≤ 〈v1〉 ≤ V , IndGP (1) should be the sum of the trivial character
and one other.

We determine that P is a semidirect product (GL2 ×GL1)U , U C P and use this to
compute IndGP (ε).

As an example, if g =
(

1 1 0
0 1 0
0 0 1

)
, then consider g as an element of GL(3,Fq) where Fq is the

algebraic closure of Fq. The set of complete flags in a corresponding vector space over
Fq, fixed by g is an algebraic variety which is the intersection of two projective lines. The
number of such flags over Fq is 2q+ 1. To compute this last number, work with the basis
given above and write down the possible flags fixed by g.

Remark 7 If G = GLn (Fq) ⊂ G = GLn
(
Fq
)

then B ⊂ B. The variety over Fq of flags
fixed by g ∈ G is an important one.

We now connect ordinary (characteristic 0) and modular (characteristic p for p
∣∣ |G|)

representations of G. The representations over C can be written (by taking matrices over
C, which are finite in number) in a finite extension of Q, that is, an algebraic number
field K.

Let O ⊂ K be the ring of algebraic integers in K, p a prime ideal in O containing p.
Then O/p is a field of characteristic p. The ring O , however, is not a PID, but we can
fix this by taking the localization of O at p, which is the set Op =

{
a
b

: a, b ∈ O, b 6∈ p
}
.

Then Op is a DVR.

For the properties of a DVR, see DF p.721 or CR1 p. 81. Start with a discrete valuation
on K, i.e. a map ν : K∗ → Z with, among other properties, ν (x+ y) ≥ min (ν (x) , ν (y)).
Then R = {x ∈ K∗ : ν (x) ≥ 0} ∪ {0} is a DVR.

The valuation induces a metric on K and we can form the completion K̂ of K and R̂ of
R with respect to this metric. [See DF p. 725, or CR1, p.83.]

Our goal is to consider KG, RG, and kG where K is a field of characteristic 0, R is a
DVR in K, and p is a prime ideal in R such that k = R/p is a field of characteristic p.
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October 13
Final Homework Hint. The funny number −1+i

√
7

2
that appears in the character table

is a sum of three seventh roots of unity.
Final Remarks on CG.

1. The number of linear characters of G is [G : G′], the index of the commutator
subgroup of G (DF p.827).

2. To compute characters of abelian groups, we write the group as a direct product of
cyclic groups. We know how to compute characters for cyclic groups and for direct
products.

3. An application of the theory of representations over CG is the classical theorem of
Burnside that a group of order paqb is solvable for p and q primes (see DF p. 852).
This theorem later lead to the famous theorem of Feit and Thompson from 1963
that every group of odd order is solvable. This year is the 40th anniversary of that
famous theorem.

4. Hossein is going to Feit’s retirement conference, which also celebrates that anniver-
sary.

Let p be a fixed prime. We call (K,R, k) a p-modular system when K is a field of
characteristic 0, usually an algebraic number field, that is, a finite extension of Q, in which
we can write the complex irreducible representations of G and its subgroups. R ⊂ K is a
DVR, sometimes taken to be complete, p is a prime ideal of R containing p, and k = R/p,
a field of characteristic p.

We can take p = Rπ to be a principal ideal. If K is complete and a ∈ K, then

a = π−k (a0 + a1π + · · · )

and a ∈ R if and only if a = a0 + a1π + · · · . The ai ∈ S, a set of representatives of R
over p.

Consider KG, RG, and kG. We have RG ⊂ KG, KG = K ⊗R RG (known an
extension of scalars) and kG = k ⊗R RG (known as reduction mod p). Also, KG and
kG are finite-dimensional algebras over K and k respectively and hence are artinian. We
don’t know much about the structure of RG, but KG and kG/J are semisimple. Write

kG/J =
⊕
i

(kG/J)fi

for fi primitive, orthogonal idempotents. Surprisingly, we can lift this decomposition to
kG and provided that R is complete, we can lift the decomposition of kG to RG.

Let V be a KG-module with basis {v1, v2 · · · vn}. Let M be the RG-module defined by

M =
n∑
i=1

RGvi =
∑
g∈G

n∑
i=1

Rgvi.

Then M is a finitely generated, torsion-free R-module and R a PID. Hence, M is a
free R-module. Pick a basis {u1, u2, . . . , um} of M (over R). Then

V = K ⊗RM32



so that m = n and {u1, u2, . . . , um} is a also a basis of V over K. This all means that we
can find a basis of V which generates, over R, an RG-module M , that is, starting with a
representation ρ of G such that ρ(g) has entries in K, we find an equivalent representation

ρ̂ of G which has entries in R. Then reducing modp, we have that ρ̂ (g) are matrices over
k. Note that M is not unique since we could have selected a different basis for V initially.
We call M an RG-lattice in V .

Furthermore, we can take
M = k ⊗RM

giving us modules V over K, M over R, and M over k.

Preview of Idempotent Lifting Let A be an R-algebra for R a commutative ring with
1. If N is an ideal of A the N-adic topology on A consists of the system of neighborhoods
of a ∈ A given by a+Nk for k = 0, 1, 2 · · · .

Theorem 9 Let N be an ideal of A such that A is complete in the N-adic topology. Let
f be an idempotent of A/N . Then there is an idempotent e ∈ A such that e = f where ·
denotes reduction modN . Furthermore, e is primitive if and only if e is primitive.

October 15
Further Hint for Homework, if you want to use MAPLE

We have P ≤ G with |P | = 24. If we take a suitable ε, the induced character will
be irreducible. Select coset representatives as follows. Let S be the 7-Sylow subgroup

generated by A =
(

0 0 1
1 0 1
0 1 0

)
. Now for G/P (not a group, a set of cosets) take representatives

{Aj : 0 ≤ j ≤ 6}. We need to determine if x−1
j gxi ∈ H and then put in ε

(
x−1
j gxi

)
in the

formula for the induced character. As g runs over the representatives of conjugacy classes
of G, find out whether A−jgAi ∈ P using Maple.

Let A be a ring, N a two sided ideal in A such that A is complete in the N -adic topol-
ogy. This is explained as follows. That is, if a ∈ A, the neighborhoods of A are{
a+Nk : k = 0, 1, 2 · · ·

}
. A Cauchy sequence {an : n ≥ 1} is a sequence where given

Nk, we have am − an ∈ Nk for m,n > n0 for some n0. A is complete if every Cauchy
sequence converges to some point in A, that is, there exists l ∈ A such that given Nk,
an − l ∈ Nk for n > n0.

For example, if A is Artinian and N ⊂ J , then A is complete since Nk = 0 for sufficiently
large k.

Theorem 10 Let A be a ring and let N be a two-sided ideal such that A is complete in
the N-adic topology. Write A = A/N .

1. If f is an idempotent of A, then there exists an idempotent e of A with e = f .

2. Furthermore, if N ⊂ J(A), e is primitive if and only if f is primitive.

For example, if A were Artinian, then A/J would be semisimple so that the idempotents
of A/J we found previously would lift to idempotents of A.

Proof. In Z [x], write

1 = x+ (1− x) = (x+ (1− x))2n =
2n∑
j=0

(
2n

j

)
x2n−j (1− x)j .
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Let

fn (x) =
n∑
j=0

(
2n

j

)
x2n−j (1− x)j ∈ Z [x] .

We make the following preliminary computations.

1. fn ≡ 0 (modxn), since every term in fn is divisible by xn.

2. fn ≡ 1 (mod (x− 1)n) since

1 = fn (x) +
2n∑

j=n+1

(
2n

j

)
x2n−j (1− x)j .

3. fn (x)2 ≡ fn (x) (modxn (1− x)n) from above.

4. fn (x) ≡ fn−1 (x)
(
modxn−1 (x− 1)n−1) since

fn − fn−1 =

(
2n

n

)
xn−1 (x− 1)n−1 .

5. Finally, f1 (x) ≡ x (modx− x2) since

f1 = x2 + 2x (1− x) = 2x− x2

so that f1 − x = x− x2.

Returning to A, suppose f 2 = f in A. Pick a ∈ A with a = f . Then a (a− 1) = a2− a ∈
N . Since a and a− 1 commute, this means that for any j,

aj−1 (a− 1)j−1 ∈ N j−1

so that
fj (a) ≡ fj−1 (a)

(
modN j−1

)
and

fj+k (a) ≡ fk (a)
(
modNk

)
for any k so that {fn (a) : n ≥ 1} is a Cauchy sequence in A. This sequence has a limit
e ∈ A. By part 3 above, we have that e2 = e , since what part 3 means is that the
sequence fn (a)2 − fn (a) has the limit 0. Also we have e − a ∈ N and so e = f by the
last two calculations.

October 17
Final, Final Homework Hint. P ∼= S4. You will use the character table of GL(3, 2)
to verify the Alperin-Mckay and Isaacs-Navarro conjectures for this group.

Last time we had A complete in the N -adic topology and f an idempotent of A =
A/N . We picked a ∈ A with a = f . Then a2 − a ∈ N . We defined a sequence
{fn (a) ∈ A : n ≥ 1} and showed that

f1 (a)− a ∈ N
...

fn (a)− fn−1 (a) ∈ Nn−1
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and that fn (a)2 − fn (a) ∈ Nn. We let limn→∞ fn (a) = e so that e2 = e and e = a = f .
We now consider the second part of the claim. Assuming N ⊂ J (A), we want to show

that f is primitive if and only if e is primitive.

Proof. If e = e1 + e2 for e21 = e2, e
2
2 = e2, e1e2 = e2e1 = 0, then e = e1 + e2. If e is

primitive, then one e1 = 0 say, that is, e1 ∈ N ⊂ J . But then 1 − e1 has a left inverse
which is not possible as (1− e1) e1 = 0.
Conversely, if e = e′1 + e′2 for e′21 = e1 etc, pick a ∈ A with a = e′1. Let b = eae. Then

be = eb = b and b = ee′1e = e′1 (13)

Let limn→∞ fn (b) = e1 ∈ A. Then e1 = e′1
(
= b
)

and ee1 = e1e = e1 by 13.
Let e− e1 = e2 so that e = e1 + e2 and e1e2 = 0 and e22 = e2. Then e is not primitive.

Apply the lifting of idempotents to the group algebras RG and kG where (K,R, k) is a
p-modular system with R/P ∼= k. We apply the theorem in the following cases. The
notation below is insane and is not intended to match that of Theorem (3).

1. A = kG and N = J
(
A
)
. The completeness follows from the fact that A is artinian,

so that J is nilpotent.

In this situation, A/J
(
A
)

is semisimple so that

A/J
(
A
) ∼= ⊕

i

A/J
(
A
)
ẽi

where the ẽi are primitive, orthogonal idempotents.

Then
A =

⊕
i

Aei

where the ei are primitive, orthogonal idempotents. The Aei are generally not
irreducible and have composition factors. We have

J
(
A
)
ei ⊂ Aei

with Aei/J
(
A
)
ei completely reducible.

2. We go from kG to RG = A. Note that A/PA ∼= A.

Recall Nakayama’s Lemma (DF p. 717, CR1 5.7)

Lemma 3 If A is a ring, M is a finitely generated A-module, and L ≤ M , then
L+ J (A) = M implies L = M .

We use this to show the following lemma.

Lemma 4 PA ⊂ J (A)
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Proof. Since M is a simple A-module, M = Am for some 0 6= m ∈ M . Then
(PA)M ≤ M so that (PA)M is M or 0. If (PA)M = M , then by Nakayama’s
lemma, M = 0 since P = J (R) and M is finitely generated as R-module. Hence
(PA)M = 0, PA kills every simple module, that is, PA ⊂ J (A)

Finally, A/PA = A is artinian and

J (A/PA) = J (A) /PA

so that J (A)t ⊂ PA for some t. A is a finitely generated R-module and R is
complete in the P -adic topology imply that A is complete in the PA-adic topology.
This implies that A is also complete in the J-adic topology.

We have, by lifting from A/PA to A,

A

J (A)

PA

A = A/PA =
⊕

Aei leads to A =
⊕

Aei for A = RG where the ei are a set of
primitive orthogonal idempotents. Thus we have lifted idempotents from charac-
teristic p to characteristic 0. We can also lift from A/J(A) to A, and this will be
done next time.

October 20
Further discussion on Homework 5. Let G = GL3 (F2). Then B, the subgroup of
upper triangular matrices, has order 8 and is the stabilizer of a “standard flag”

〈v1〉 ≤ 〈v1, v2〉 ≤ V

where {v1, v2, v3} is a basis of the vector space V over F2 on which G acts. G acts
transitively on the set of flags, and thus the induced representation IndGB (1) is just the
permutation representation of G on the set of flags. Given an element g ∈ G, we can
compute the number of flags fixed by g, and this gives the value of this induced character
at g. For example if g is unipotent (eigenvalues 1) with Jordan blocks of sizes 2 and 1,
we compute the number of flags fixed by g to be 5 (1 + 2q if we replace F2 by Fq).

From last time, we have the rings A = RG which is neither semisimple nor artinian and
A = A/PA = kG, which is not semisimple but artinian. We have

A =
⊕
i

Aei

where the ei are lifted from idempotents ẽi in A/JA and

A =
⊕
i

Aei
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where the ei are lifted from the idempotents ei.
In fact we can also look at A/JA which is semisimple so that

A/JA =
⊕
i

(A/JA) ẽi.

We want to consider the structure of Aei and Aei when ei and ei are primitive.

Proposition 14 For A any ring with e a primitive idempotent, Ae is an indecomposable
left A-module.

Proof. Let Ae = L1 ⊕ L2 for left ideals L1 and L2 and let e = e1 + e2 for e1 ∈ L1,
e2 ∈ L2. For any x ∈ Ae, xe = x for x = ye, xe = ye2 = ye = x so e1e = e1 so
e1 = e1 (e1 + e2) = e21 + e1e2 where e21 ∈ L1 and e1e2 ∈ L2. Hence e1 = e21 and e1e2 = 0.
Similarly, e22 = e2 and e2e1 = 0. Therefore e1, e2 are orthogonal idempotents. Thus e is
not primitive. Hence Ae is indecomposable.

Conversely, if Ae is indecomposable, suppose e = e1 + e2 with e21 = e1, e
2
2 = e2

and e1e2 = e2e1 = 0. Then x ∈ Ae implies x = xe = xe1 + xe2 ∈ Ae1 + Ae2. Also,
Ae1 ∩ Ae2 = 0 since xe1 = ye2 implies xe2

1 = ye2e1 = 0 so that xe1 = 0
Hence irreducible in the semisimple case is replaced by indecomposable in the general

case. In the semisimple case, if M is an irreducible A-module, then EndA (M) is a division
ring. In the general case, we will see that M is indecomposable implies that EndA (M) is
a local ring.

Recall that a local ring is a ring which has a unique maximal left ideal and that a ring A is
local if and only if J (A) is maximal. Also, M is indecomposable if and only if EndA (M)
has no idempotents except 0 and 1 since and idempotent in EndA is a projection on a
direct summand.

October 22
Let A be any ring and e an idempotent in A. We showed last time that e is prim-

itive if and only if Ae is indecomposable. We also know that if Ae is irreducible, then
EndA (Ae) ∼= eAe is a division ring by Schur’s lemma. We want to prove the correspond-
ing claim that Ae is indecomposable implies EndA (Ae) is a local ring. If B is a ring,
recall that the following are equivalent.

1. B is a local ring

2. B has a unique maximal left ideal

3. J (B) is maximal

4. the non-units form a left ideal

5. B/J (B) is a division ring.

The proof of this claim is similar to the proof of the commutative case given in DF, p.684.
For the general case see CR§5.21.
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Example 15 Let A = kG for k a field of characteristic p and G a p-group. Then J (A) is
spanned by {1− x : x ∈ G} since (1− x)p

n

= 0 where pn = |G|. Also, dimk A/J (A) = 1
so J (A) is maximal and A is a local ring.

Now let A be any ring. We begin with the following important lemma.

Lemma 5 (Fitting’s Lemma) Let M a an A-module with ACC and DCC. Then M has
a composition series. Let f ∈ EndA (M). Then M = Im (fn) ⊕ ker (fn) for sufficiently
large n. (DB, Lemma 1.4.4; DF p. 646 in some form)

Proof. Since M has ACC and DCC, we can find n with Im (fn) = Im
(
fn+k

)
and

ker (fn) = ker
(
fn+k

)
for k > 0. Let x ∈M . Then fn (x) = f 2n (x) and

x = fn (x)︸ ︷︷ ︸
∈Im(fn)

+ (x− fn (x))︸ ︷︷ ︸
∈ker fn(x)

.

If x ∈ Im (fn) ∩ ker (fn), then x = fn (y) so that 0 = fn (x) = f 2n (y) = fn (y) = x.

Proposition 15 Let M be an indecomposable A-module with ACC and DCC. Then
EndA (M) is a local ring.

Proof. Let E = EndA (M) and let I be a maximal ideal in E. Let a 6∈ I. We show that a
is a unit in E. We have E = Ea+ I as I is maximal so we have 1 = λa+µ for 0 6= λ ∈ E
and µ ∈ I. Then 1 − µ = λa and µ is not a unit since µ ∈ I. Hence Im (µ) 6= M .
By Fitting’s Lemma, M = Im (µn)⊕ ker (µn). Now since M is indecomposable, we have
Im (µn) = 0 and ker (µn) = M so that µn = 0. Then 1−µ has the inverse 1+µ+· · ·+µn−1

so that λa is invertible and a is a unit.

Remark 8 Fitting’s Lemma is sometimes stated as the following. IfM is indecomposable
and µ ∈ EndA (M), then µ is an isomorphism or is nilpotent. Note the analogy with
Schur’s Lemma.

Theorem 11 (Krull-Schmidt Theorem, CR1 p.128) Let A be any ring and M a finitely
generated A-module which is a direct sum M =

⊕r
i=1Mi for Mi indecomposable and

EndA (Mi) local. Then if also M =
⊕s

j=1Nj with Nj indecomposable, then r = s and
Mi
∼= Nj after some reordering.

Proof. We prove this by induction on r. When r = 1 the statement is clear. Assume
r ≥ 2. We then have

M = M1 ⊕M2 ⊕ · · · ⊕Mr

M = N1 ⊕N2 ⊕ · · · ⊕Ns.

Let µi : M →Mi and ν : M → Ni be projections. Then
∑s

j=1 νj = 1. On M1, we have

s∑
j=1

µ1νj = 1M .

Now since EndA (M1) is a local ring so that a sum of non-units is a non-unit, we have
that some µ1νj is a unit, say µ1ν1 after some reordering.
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Let ϕ = µ1ν1 : M1 →M1. Then

ν1 : M1 → N1

ϕ−1µ1 : N1 →M1 (14)

are inverses of one another, that is,(
ϕ−1µ1

)
ν1 = 1M1 ,

that is, N1 is a direct summand ofM1. SinceM1 is indecomposable, we haveN1 = ν1 (M1).
Consider M ′ = N1⊕M2⊕ · · · ⊕Mr ≤M . If n1 +m2 + · · ·+mr = 0, then µ1 (n1) = 0

so that n1 = 0 since µ1 is injective by (14). Then m2 = · · · = mr = 0, that is, the sum is
direct.

Next we show that M ′ = M and that we have an automorphism ρ : M → M which
takes M1 → N1 and hence induces an isomorphism M/M1 → M/N1. We then apply
induction.

October 24
The philosophy of modular representations is to obtain global information from local

information. Having fixed a prime p, obtaining local or p-local information means gath-
ering information from subgroups of G such as number of characters or character values,
which is related to p-subgroups such as normalizers of p-subgroups.

We complete the proof of the Krull-Schmidt Theorem:
Proof. Given

M = M1 ⊕M2 ⊕ · · · ⊕Mr

M = N1 ⊕N2 ⊕ · · · ⊕Nr

we defined projections

µi : M →Mi

νi : M → Ni

µ1 : M →Mi

ϕ−1µ1 : N1 →M1

with the last two being isomorphisms, and we defined

M ′ = N1 ⊕M2 ⊕ · · · ⊕Mr ≤M

Now
∑

i µi = 1M . If x ∈ N1,

x = µ1 (x) + µ2 (x) + · · ·+ µr (x)

µ1 (x) = x︸︷︷︸
∈N1

−µ2 (x)− · · · − µr (x)︸ ︷︷ ︸
∈M2⊕···⊕Mr
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so that µ1 (x) ∈M ′, that is, µ1 (N1) ⊂M ′, that is, M1 ⊂M ′ so M = M ′

Then ν1µ1 +µ2 · · ·µr is an action on M which takes M1 → N1 and Mi →Mi for i > 1
and this induces an isomorphism

M2 ⊕ · · · ⊕Mr
∼= M/M1 →M/N1

∼= N2 ⊕ · · · ⊕Ns.

Applying induction, we are done.
Hence we have uniqueness of decomposition into indecomposable submodules of a

module M if M has ACC and DCC.
This can be applied to the A-modules A = KG and A = kG, which are finite dimen-

sional algebras. It remains to show that Krull-Schmidt Theorem for RG. For this, we
need to show that if A = RG and M is a finitely generated A-module, then EndA (M) is
a local ring.

The following discussion is in CR1 p. 105 and p. 112.

Lemma 6 If f : B → B′ is a surjective map of rings, then f (J (B)) ⊂ J (B′) and we
get a surjective map f : B/JB → B′/JB′.

This can be verified by considering maximal left ideals.

Proposition 16 If R is a commutative, local ring, P ⊂ R A a finitely generated R-
algebra which is finitely generated as an R-module, then A/JA is artinian semisimple.

Proof. We proved in Lemma 4 that PA ⊂ JA. Therefore, A/JA ∼= A/PA
JA/PA

by the
isomorphism theorems. We then have a map

f : A/PA→ A/JA

which induces a surjective homomorphism as in the Lemma 6

A/PA

J (A/PA)
→ A/JA

since J (A/JA) = 0. We also have an onto homomorphism A→ A/PA inducing

A/JA→ A/PA

A (A/PA)
.

Therefore, A/PA is a finite dimensional algebra over R/P = k, so by comparing dimen-
sions, we have JA = J (J/PA).

We now want to apply this to our situation KG, RG, kG, V a KG-module, M an
RG-module, and V = K ⊗R M . Let A = RG and E = EndA (M) ⊂ EndR (M). Then
since EndR (M) is finitely generated, we have EndA (M) is finitely generated as an R-
module. Now let M be an indecomposable R-complete A-module. It remains to show
the following.

Proposition 17 E is a local ring.
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Proof. Consider E/J (E). If this is not a division ring, suppose it has a proper non-zero
left ideal L. E/JE is artinian semisimple, so there exists an idempotent 1 6= ε ∈ L. Since
R is complete, we can lift ε to an idempotent e 6= 1 of E. But since M is indecomposable,
this is not possible.

Hence, the Krull-Schmidt Theorem holds for A-modules when A is KG, RG, and kG.
We make the following comparison

General case, kG, and RG The semisimple case and KG
Indecomposable module M Irreducible module M

EndA (M) is local EndA (M) is a division ring
Krull-Schmidt Theorem Jordan-Hölder Theorem

A =
⊕

Aei for indecompasble left ideals A =
⊕

Afi for minimal left ideals

Finally, review Proposition 30 on p. 369 of DF. on projective modules.

October 31
Homework Comments. There is a typographic error in the character table for S5 given
in DF. The character of degree 6 has the value 1 at the class of elements of order 5.
Also, recall that χ (x−1) = χ (x). From this it follows that if x and x−1 are conjugate in
a finite group G, then χ (x) = χ (x−1) = χ (x) so that χ (x) is real.
Also note that

NA5 (〈(12345)〉) = 〈(12345) , (25) (34)〉 ∼= D10.

Remark 9 The connection between A5 and the simple group of order 168 is that A5
∼=

PSL (2, 5) and the simple group of order 168 is isomorphic to PSL (2, 7), that is, both
are PSL (2, q) for some q.

Let A = RG and A = kG where (K,R, k) is a p-modular system with R/p ∼= k. We
have the decomposition

A = Ae1 ⊕ Ae2 ⊕ · · · ⊕ Aer
A = Ae1 ⊕ Ae2 ⊕ · · · ⊕ Aes.

The Aei are indecomposable left ideals of A and the Aei are are indecomposable left
ideals of A. Hence, they are projective A-modules and A-modules respectively, being
direct summands of free modules. They are called principal indecomposable modules or
PIMs for A and A respectively.

One of the main problems of modular representation theory is the following. Given G and
p, describe the PIMs. This is a difficult problem. To do this, we typically take K to be
some finite extension of Q in which we can write all the (complex) irreducible characters
of G, O the ring of integers in K, R = Op, the localization at a prime ideal p which
contains p, and k = Op/p, a field of characteristic p.

We want to consider now the central idempotents of A and A. Consider A, Z (A) and
Z
(
A
)
. We can apply the theory of idempotent lifting to Z (A) and Z

(
A
)
, since in

the natural homomorphism A → A, we have Z(A) → Z
(
A
)
. This follows from the

observation that we have a basis for Z (A) given by class sums.
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Suppose in A we have
1 = E1 + E2 + · · ·+ Ek (15)

for Ei central primitive idempotents, and in Z (A) we have

1 = E1 + E2 + · · ·+ Ek

for Ei central primitive idempotents. Then

A = AE1 ⊕ AE2 ⊕ · · · ⊕ AEk

A = AE1 ⊕ AE2 ⊕ · · · ⊕ AEk

where the AEi are indecomposable two-sided ideals of A and similarly for A.

Remark 10 Just as for the ei, we could look at A/J
(
A
)
, which is semisimple and lift

its central idempotents. Then we get (15).

The AEi are called blocks or p-blocks of A. Similarly, AEi are p-blocks of A. Each AEi
is a sum of indecomposable left ideals of A. Hence, we have a (possibly easier) problem
of finding the p-blocks of A. This is done for Sn and the solution is attractive.

We revisit the example G = S3. We computed the central idempotents in QG to be

f1 =
1

6

(
(1) + (12) + · · ·+ (123)

)
f2 =

1

6

(
(1)− (12) + · · ·+ (123)

)
f3 =

2

3
(1)− 1

3

(
(123) + (132)

)

Let p = 2. Let E1 = f1 + f2, E2 = f3. Then E1 and E2 are central primitive
idempotents in A and E1 and E2 are central primitive idempotents in A. Thus AE1 and
AE2 are the 2-blocks of A.

November 3
We consider Proposition 30 from DF, which corresponds with CR1 p.29. Let R be a

ring and P an R-module. The following are equivalent.

1. P is projective

2. P is a direct summand of a free R-module

3. Given an exact sequenceM
ϕ→ N → 0 and anR-module homomorphism f : P → N ,

we have an R-module homomorphism F : P → M such that the diagram below
commutes.

P
F

~~ ~>
~>

~>
~>

f
��

M
ϕ // N // 0
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4. Any short exact sequence of the following form splits. That is, given

0 // L //M
ψ // P // 0

we have an R-module homomorphism µ : P →M such that ψ ◦ µ = i.

0 // L //M
ψ //

P
µ
oo // 0

5. Given a short exact sequence

0 // L //M // P // 0

we have that

0 // Hom (P,L) // Hom (P,M) // Hom (P,N) // 0

is exact.

Returning to (K,R, k) with A = RG and A = kG, we recall that the PIM’s of A are Aei
for ei primitive, and the PIM’s of A are Aei for ei primitive. A large open problem is to
describe the PIM’s of A.

For this section, let A be a finite dimensional algebra over k and assume A-modules
have composition series. Fitting’s lemma therefore holds in this case.

Proposition 18 If two indecomposable, projective A-modules P1 and P2 have isomorphic
quotients, then P1

∼= P2. [CR]

Proof. Lifting the map P1
π1−→ V1

α−→ V2, we get P1
ξ−→ P2 with π2ξ = απ1 by part 3

above as in the following diagram.

P1

ξ

~~ ~>
~>

~>
~>

απ1

��
P2

π2 // V2
// 0

Similarly, we get µ : P2 → P1 with π1µ = α−1π2 as in the diagram below.

P1

π1

��

ξ //
P2

µ
oo

π2

��
V1

��

α //
V2

��

α−1
oo

0 0

Then
π1µξ = α−1π2ξ = α−1απ1 = π1

and similarly π2ξµ = π2.
Now µξ ∈ EndA (P1) which is local since P1 is indecomposable. Let β = µξ. Then β

is either nilpotent or an automorphsim by Fitting’s Lemma. We have

π1β = π1 =⇒ π1β
2 = π1β = π1 =⇒ . . . =⇒ π1β

k = π1

for k ≥ 1. This means that βk 6= 0 for all k ≥ 1 since otherwise, we would have π1 = 0.
Thus, β is an automorphsim. Similarly, ξµ is an automorphism of P2 so that P1

∼= P2.43



Proposition 19 If Q is an indecomposable, projective A-module, then any quotient is
also indecomposable

Q

π

��

η // Q

π

��
U

��

ε // U

��
0 0

If U is not indecomposable, there exists ε ∈ EndA (U) with ε2 = ε and ε 6= 0, 1. Since Q
is projective, there exists η ∈ EndA (Q) with πη = επ. Then

πη2 = επη = ε2π = επ = πη

and similarly πηk = πη for k ≥ 1. If ηk = 0, then πη = 0. But then η = 0 since π is
surjective. Hence, η is an automorphsim of Q so that

(πη) (Q) = π (Q) = U

επ (Q) = ε (U) ( U,

a contradiction. Therefore, U is indecomposable.

Definition 17 If M is any A-module, define

Rad M =
⋂

M maximal

M.

Corollary 5 If Q is indecomposable and projective, then Q has a unique maximal sub-
module Rad Q.

Proof. If M1 and M2 are maximal submodules of Q, then

Q/M1 ∩M2
∼= Q/M1 ⊕Q/M2,

a contradiction since Q/M1 ∩M2 is indecomposable.
Returning to A = kG which is artinian and semisimple, we have

A =
⊕
i

Aei

is the sum of indecomposable projective modules, and

Ã = A/J
(
A
)

=
⊕
i

Ãẽi

is the sum of irreducible modules. In fact,

Ãẽi ∼= Aei/Jei.

Then Jei is the unique maximal submodule of Aei and

Aei/Jei

is a simple A-module. Also,
Aei ∼= Aej

if and only if
Aei/Jei ∼= Aej/Jej.
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Remark 11 Dualizing, we have a similar theory for injective modules. In fact, the Aei
are also injective, and have a unique minimal submodule.

November 5
Here are some comments on the homework. To construct the normalizer of the Sylow

7-subgroup in GL (3, 2), recall the construction for groups of order pq with q|p − 1. Let
S1 be a Sylow p-subgroup and S2 a Sylow q-subgroup. Then we have G = S1S2 with
S1 C G and

G =
〈
a, b : ap = bq = 1, b−1ab = ar for r with rq ≡ 1 (mod p)

〉
.

with S1 = 〈a〉 and S2 = 〈b〉.
For groups of order 21, we have a7 = b3 = 1 and b−1ab = a2 and the conjugacy classes

and their sizes are as follows.

element 1 a a3 b ab
size 1 3 3 7 7

Also note that a Sylow 2-subgroup of GL(3, 2) is the group of all upper triangular ma-
trices with diagonal entries 1, and that S3 is naturally embedded in GL(3, 2) as the group
of permutation matrices. Note that the normalizer of a Sylow 3-subgroup is isomorphic
to S3.

Returning to A = kG, we have

A =
⊕
i

Aei

and each Aei has a unique maximal submodule J (ei) with

Aei/J (ei) ∼= Aej/J (ej) iff Aei ∼= Aej.

This says that there is a bijection

{PIMs (up to isomorphism)} ←→ {Irreducible modules (up to isomorphism)}

A similar result holds for A = RG as in (CR1 §6.6, p. 123). If P1 and P2 are
finitely generated A-modules and we have N ⊂ J (A), V1 = P1/NP1 and V2 = P2/NP2,
then V1

∼= V2 if and only if P1
∼= P2. The proof consists of diagram arguments and an

application of Nakayama’s Lemma.

I’ll do this later

There exists a map ξ : P1 → P2 with π2ξ = απ1. Let T = P2/ζ (P1). We need to show
that NT = T , that is, that P2 ≡ NP2 (mod ζ (P1)). To do this, let x ∈ P2. Then
α−1π2 ∈ V1 so there exists y ∈ P1 with

π1 (y) = α−1π2 (x) so that απ1 (y) = π2 (x) (16)

Then π2 (x− ξ (y)) = π2 (x) − π2ξ (y) = 0 from (16) Then T = NT and T is finitely
generated, so by Nakayama’s lemma, we have T = 0. Then P2 = ξ (P1) implies ξ is
surjective. Consider

0→ ker ξ → P1 → P2 → 0
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which splits since P2 is projective, so ker ξ is finitely generated. Now if x ∈ ker ξ, then
π2ξ (x) = 0 so that π1 (x) = 0 and x ∈ NP1 so that ker ξ = N ker ξ and ker ξ = 0 again.
Hence P1

∼= P2.

Thus we have, also for A, a bijection

{PIMs (up to isomorphism)} ←→ {Irreducible modules (up to isomorphism)} .

In addition we have Aei ∼= Aej as A-modules if and only if Aei ∼= Aej as A-modules. This
follows by taking N = J (A) or N = PA.

Write Â = KG, a semisimple algebra. Then we study Â for the ordinary irreducible
representation of G, A = RG (not semisimple) for the principal indecomposable represen-
tations of G over R, and A = kG (also not semisimple) for the principal indecomposable
and modular irreducible representations of G over k.

As in the case of Â we want to study characters of modular representations, i.e.
representations of A = kG. The usual definition of “trace” leads to difficulties. For
example, if we have a representation of dimension divisible by p, then the trace of the
identity matrix would be 0. The concept of Brauer characters (discussed in CR1 §17)
handles this difficulty.

Definition 18 Let (K,R, k) be a p-modular system and G a group with |G| = pam and
(p,m) = 1. Then g ∈ G is p-regular if the order of g is prime to p and hence divides m.

Choose K and k large enough to contain the mth roots of unity and choose a bijection{
Group of mth roots of unity in K×}←→ {

mth roots of 1 in k×
}

Write ω ←→ ω. Given a p-regular g, suppose that in a representation ρ of G over k, the
eigenvalues of ρ (g) are

{
ωi1 , ωi2 , . . . ωin

}
. Define a Brauer character λ of ρ to be given

by
λ (g) = ωi1 + ωi2 + · · ·+ ωin ∈ K.

Thus λ is a function from G to K.

November 7
Example 16 (See CR2, p.648.) For G = S4 and p = 2, consider

Gp′ = {1 and the elements of order 3} ≤ G

We have
1 (123)

χ1 1 1 ←− remains irreducible
χ2 1 1
χ3 2 −1 ←− irreducible as follows
χ4 3 0 ←− χ3 + χ1

χ5 3 0

If the two-dimensional representation was reducible mod 2, then all matrices would be

of the form

(
1 ♣
0 1

)
hence would have trace 0. This would contradict the values in the

character table. So it must be irreducible. So the irreducible Brauer characters are χ1

and χ3. Note that the degrees of the characters need not divide the order of the group.
A difficult problem is to find the Brauer characters, or at least their degrees.
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Next we consider blocks. Let Â = KG, A = RG, and A = kG. Let {Vj : 1 ≤ j ≤ s}
be irreducible Â-modules up to isomorphism. Let Mi ≤ Vi so that K ⊗R Mi

∼= Vi for
1 ≤ i ≤ s. Write Mi for the reduction of Mi mod P for P a prime ideal of R. Then
Mi
∼= k ⊗RMi and

Z
(
Â
)

=
s⊕
i=1

ÂFi

for Fi central primitive idempotents which can be computed from the character by the
formula

Fi =
χ1 (1)

|G|
∑
g∈G

χi (g) g
−1.

In Z (A), write 1 = E1 +E2 + · · ·+Et where each Ei is a sum of some of the Fj. The

Ei are central primitive idempotents in Z (A) but not primitive in Z
(
Â
)
. Then

A = AE1 ⊕ AE2 ⊕ · · · ⊕ AEt

is the sum of indecomposable two-sided ideals. The AEi are called the blocks or p-blocks
of G.

Also,
A = AE1 ⊕ AE2 ⊕ · · · ⊕ AEt

and the AEi are also called p-blocks of G. Also

Â = ÂE1 ⊕ ÂE2 ⊕ · · · ⊕ ÂEt

. Each ÂEi is the sum of matrix algebras, hence corresponds to a set of ordinary char-
acters. Thus, {χ1, χ2, . . . , χs} are divided into disjoint subsets, also called p-blocks of
G.

Example 17 For G = S3 and p = 2, the 2-blocks are {χ1, χ2} and {χ3}.

Recall that

ωi (Cj) =
χi (gj)

χi (1)
hj

for 1 ≤ i ≤ s where the χi are the characters of Z
(
Â
)
, the Cj are the class sums of Cj,

hj = |Cj|, and gj ∈ Cj is a representative of its conjugacy class. Take K to be sufficiently
large.

Now since ωi (Cj) is an algebraic integer, we can assume ωi (Cj) ∈ R and hence we
can reduce mod P . Let

ωi : Z
(
A
)
→ k be given by Cj 7→ ωi (Cj).

Then the ωi are all the characters of Z
(
A
)

as follows.

ker (ωi) =
⊕
l 6=i

Z
(
A
)
El ⊕ J

(
Z
(
A
))
Ei.

Z
(
A
)

= Z
(
A
)
E1 ⊕ Z

(
A
)
E2 ⊕ · · · ⊕ Z

(
A
)
Et

.
(To be continued next time.)
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November 10
Recall that Â = KG, A = RG and A = kG with K and k sufficiently large so that the
irreducible representations of G over C can be realized over K.

To study p-blocks, consider

Z (A) = Z (A)E1 ⊕ . . . Z (A)Et

and in fact
A = AE1 ⊕ . . . AEt

where each AEi is a p-block. The Ei are primitive in RG, but not in KG. Write

Ei = Fi,1 + Fi,2 + · · ·+ Fi,αi

where Fi,1 = Fi, and the Fi,j are primitive central idempotents in KG. Then

A = AE1 ⊕ · · · ⊕ AEt.

The AEt are also p-blocks. Then

Z
(
A
)

= Z
(
A
)
E1 ⊕ · · · ⊕ Z

(
A
)
Et. (17)

Each Fi and hence χi corresponds to a character ωi of Z
(
Â
)

and

ωi (Cj) =
χi (gj)hj
χi (1)

∈ R (18)

where Cj are the class sums of Cj, gj ∈ Cj, and hj = |Cj|. Then ωi (Fi) = 1 and ωi (Fj) = 0
for i 6= j. Hence ωi (Ei) = 1 and ωi,j (Ei) = 1 for 1 ≤ j ≤ αj where ωi,j is the character
corresponding to Fi,j and ωi = ωi,1.

Define ω : Z
(
A
)
→ k by ω (Cj) = ωi (Cj). Then we get t linear characters of Z

(
A
)
.

We can compute kerωi as follows. We have from (17) that

ωi,l
(
Ej
)

= 0

if i 6= j. Also, we have kerωi is a maximal ideal of Z
(
A
)
. Hence,

kerωi =
⊕
l 6=i

Z
(
A
)
El ⊕ J

(
Z
(
A
))
Ei︸ ︷︷ ︸

unique maximal

ideal of Z(A)Ei

.

Since (17) is the unique decomposition of Z
(
A
)

into indecomposable ideals, any maximal

ideal is of this form. Therefore, ωi are the only irreducible characters of Z
(
A
)
. Hence χi

and χj are in the same p-block if and only if ωi = ωj if and only if ωi ≡ ωj (mod P ) as
functions. Thus, blocks are identified by characters of the center of KG mod p. (Note
that here we are going back to the old notation of characters χi, i = 1, 2, . . . s of G.)

Definition 19 Bp (G) is the block containing the trivial character, called the principal
block.
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Example 18 (CR2, p. 649) Work out the ωi (Cj) from the character table. For S4, we
have the following table.

(1) (12) (123) (1234) (12)(34)
1 1 1 1 1
1 −1 1 −1 1
2 0 −1 0 2
3 1 0 −1 −1
3 −1 0 1 −1

We compute the character table for Z
(
A
)

using formula 18. For example, ω4 (C2) =
1
3
6 = 2 and we have the following table.

1 6 8 6 3
1 −6 8 −6 3
1 0 −4 0 3
1 2 0 −2 −1
1 −2 0 2 −1

Mod 2, this table becomes
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1
1 0 0 0 1

so we have only one block. Mod 3, we have

1 0 2 0 0
1 0 2 0 0
1 0 2 0 0
1 2 0 1 2
1 1 0 2 2

so that the first three form one block and the last two each form one block.

Look next at the restrictions of the ordinary characters to the 3-regular classes. We have
four Brauer characters, two arising from the first three characters of S4 and one each
for the last two characters. (Recall that by a Brauer character we mean the character
of a p-modular irreducible representation, regarded as a complex function by Brauer’s
procedure.) Note that the first two characters of S4 (trivial and sign) give two Brauer
characters, whereas the third character of S4 is the sum of the first two.

Example 19 For G = A5, B5 (G) = {1, χ4, χ3, χ
′
3}. Note that the degree of the character

is the subscript here. Note also that χ3 and χ′3 are not rational. Write ζ = e2πi/5. Then
χ3 ((12345)) = ζ + ζ4, χ′3 ((12345)) = ζ2 + ζ3. To show that these two characters are in
the same 5-block, check that

(1− ζ)
(
1− ζ2

) (
1− ζ3

) (
1− ζ4

)
= 5

which follows from
∑4

j=0 ζ
j = 0. For p = 5, take P = (1− ζ), K = Q (ζ) and R the ring

of integers Z
[

1+ζ
2

]
(see e.g. DF, p.230). Then ζ ≡ ζ2 (mod P ), ζ3 ≡ ζ4 (mod P ). From

this we can show that ω3 ≡ ω3′ (mod P ). (This example will be continued next time.)
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November 12
Continuing with ωi (Cj) for A5, we have

ω1 1 20 15 12 12
ω4 1 5 0 −3 −3
ω5 1 −4 3 0 0

ω3 1 0 −5 2
(
1 +
√

5
)

2
(
1−
√

5
)

ω′3 1 0 −5 2
(
1−
√

5
)

2
(
1 +
√

5
)

For this example, we took R = Z [ζ], P = (1− ζ). Note that in this case, for our
purpose of calculating the blocks, we didn’t need to take the localization of R at P or
the completion.

Note: We have ζ + ζ4 + 1 = 1+
√

5
2

and ζ2 + ζ3 + 1 = 1−
√

5
2

. This is used in computing the
blocks, using the calculations of last time.

The Isaacs-Navarro conjecture looks at the degrees of characters of G and NG (P ). We
refine this in the following ways.

1. Take Bp (G)

2. There should be a bijection of characters, not just equality of number of characters.
That is, χ is attached to ±γ in some way. The handout calls this map Ip, an isotypy.

3. We want to know the significance of the sign in the map in 2. There is a sign
involved in the Isaacs-Navarro conjecture, where you look at congruence classes k
or −k mod p. There is a sign involved in isotypies. Is there a connection?

Note that in the table above ω5 is in a block by itself. This isn’t an accident as
explained in the following proposition.

Proposition 20 Let A = RG and Â = KG. Let F be a primitive central idempotent
of Â such that F corresponds to χ, an irreducible ordinary character of G and pa|χ (1)
where |G| = pam for (m, p) = 1. Then F ∈ A and AF is a block of A, that is, χ is the
only irreducible character in its block.

Proof. Take

F =
χ (1)

|G|
∑
g∈G

χ
(
g−1
)
g =

pal

pam

∑
g∈G

χ
(
g−1
)
g ∈ RG

Then AF ⊂ ÂF so that AF ∼= Mn (R) and AF ∼= Mn (k).

Corollary 6 χ is irreducible mod p.

Returning now to A5 with p = 5, we can use this information to compute the Brauer
characters. Restricting the ordinary characters to G5′ , we have the following.

1 (123) (12) (34)
ϕ1 1 1 1

4 1 0
ϕ3 5 −1 1
ϕ2 3 0 −1

3 0 −1
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The first and third are irreducible. We discard the last character, and it remains to
consider which is the other Brauer character, since there can be only three. It turns out
that the fourth character is irreducible as we will discover next time. Then the Brauer
characters are the ones labeled ϕ1, ϕ2 and ϕ3 in the table above. Normally it won’t be
so easy to compute the Brauer characters. Then we have

χ1|G5′
= ϕ1

χ3|G5′
, χ3′|G5′

= ϕ2

χ4|G5′
= ϕ1 + ϕ2

χ5|G5′
= ϕ3

Writing this information in matrix form, we have

ϕ1 ϕ2 ϕ3

χ1 1 0 0
χ2 0 1 0
χ3 0 1 0
χ4 1 1 0
χ5 0 0 1

This matrix is called the decomposition matrix, to be discussed below.

Next,we want to consider the Cartan invariants and the decomposition numbers. Let K
be sufficiently large and A = RG. Write

A = Ae1 ⊕ Ae2 ⊕ · · · =
s⊕
i=1

Ae1 ⊕
⊕
i=s+1

Ae2.

where the Aei in the first expression are the representatives of the isomorphism classes
of the Aej. Write Qi = Aei. Therefore, the Qi are the projective indecomposable A-
modules. Also, write Pi = Aei for the projective, indecomposable A modules. Write
Q̂i = Âei and Si = Pi/J

(
A
)
Pi for 1 ≤ i ≤ s. The Si are simple A-modules. Write

Vi for the irreducible Â modules for 1 ≤ i ≤ r. Let Mi be an A-module with Mi ≤ Vi
such that Vi = K ⊗R Mi. Then di,j, the i, j entry in the decomposition table above,
are the multiplicity of Sj as a composition factor of Mi. Our shorthand for this will be
di,j =

(
M : Sj

)
.

November 14
Homework Addition: Add Part 6 to Homework 8: Do for p = 7 what you were asked
to do in Part 5 for p = 3.

Remark 12 The Brauer characters are known for SL (2, p) for p prime (see CR1, 17.17)
This is used for A5, p = 5, as mentioned last time, and for the 168-group, which is
isomorphic to PSL(2, 7), for p = 7.

Remark 13 If ζ = e2πi/5, then ζ + ζ−1 = 2 cos
(

2π
5

)
∈ R and

1 + ζ + ζ−1 =
1 +
√

5
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and

1 + ζ2 + ζ−2 =
1−
√

5

2

Use this information to confirm the character table of A5.

We fix the following notation, introduced last time. A reference for this section is DB,
p.19.

Â = KG A = RG A = kG
{Vi simple : i = 1, 2, . . . , s} Mi ≤ Vi {Si simple; i = 1, . . . , r}

Vi ←→ χi RG-lattice in Vi
Vi = K ⊗RMi Qi projective, indecomposable lift of Pi Si ←→ Pi projective, indecomposable

Q̂i = K ⊗R Qi di,j =
(
M i : Sj

)
ci,j = (Pj : Si)

For anyKG-module L, write (L : Vi) for the multiplicity of Vi as a composition factor of L.
Similarly, for any kG-module L, write (L : Si) for the multiplicity of Si as a composition
factor of L.

Definition 20 di,j =
(
M i : Sj

)
are the decomposition numbers and ci,j = (Pj : Si) are

the Cartan invariants.

Another major problem in modular representation theory is to determine the decompo-
sition numbers and Cartan invariants, given G and p.

D = (di,j) is a s× r matrix. It connects the characteristic 0 and the characteristic p
representations, and C = (ci,j) is an r × r matrix which connects projective and simple
modules in characteristic p. The matrixD can be expressed as a transition matrix between
ordinary and Brauer characters as

χi =
r∑
j=1

di,jϕj

restricted to Gp′ , the set of p regular elements.

We are now curious as to the connection between C and D. Note K, R, and k are chosen
sufficiently large as before.

Proposition 21

HomA (Pi, Sj) =

{
k if i = j

0 if i 6= j

Proof. We showed that Si is the unique top composition factor of Pi. Since any homo-
morphism of Pi → Si can be regarded as the canonical homomorphism composed with
an element of HomA (Si, Si), we get the proposition.

Remark 14 Also we have that ci,j = dimk HomA (Pi, Pj) This follows from a more gen-
eral proposition below.

Proposition 22
dimk HomA (Pi,M) = (M : Si)

for any A-module M .
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Proof. Suppose Sj is a top composition factor of M . Then we have an exact sequence

0→M ′ →M → Sj → 0

now since Pi is projective, we have

0→ HomA (Pi,M
′)→ HomA (Pi,M)→ HomA (Pi, Sj)→ 0

is exact. If i 6= j, we have HomA (Pi, Sj) = 0 which implies that HomA (Pi,M
′) ∼=

HomA (Pi,M). Apply induction on the composition length of M . Then

dimk HomA (Pi,M) = dimk HomA (Pi,M
′) = (M ′ : Sj) = (M : Sj)

Next if j = i,
dimk HomA (Pi,M) = dimk HomA (Pi,M

′) + 1

and (M : Si) = (M ′, Si) + 1 and we have the result.
We can now compute the ci,j. We have

di,j =
(
M i, Sj

)
= dimk HomA

(
Pj,M i

)
= rankRHomA (Qj,Mi)

since Qj is projective. That is, a homomorphism of Pj into M i can be lifted to a homo-

morphism of Qj into Mi. Note also that rankRHomA (Qj,Mi) = (Q̂j : Vi).

Qj

  A
A

A
A

// Pj

  A
AA

AA
AA

A
// 0

Mi
//M i

// 0

Now consider
dk,idk,j =

(
Mk : Si

)
(Qj : Mk)

where (Qj : Mk) is interpreted as rankRHomA (Qj,Mk) ) =
(
Mk : Si

) (
Q̂j : Vi)

)
. Then∑

k dk,idk,j =
∑

k

(
Q̂j : Vk

) (
Mk, Si

)
. This counts the number of composition factors

isomorphic to Si where Q̂j is taken mod P which is (Pj : Si) = ci,j.
Hence we have the following.

Theorem 12 C =t DD.

November 17
Recall that we have the following situation.

ÂKG A = RG A = kG
Vi irreducible Mi ≤ Vi Si ireducible

(χi) (ϕi)

Q̂i Qi projective, Pi projective,
indecomosable indecomposable

Theorem 13 C = DTD.
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Proof. Write dij =
(
M i : Sj

)
. (Then note χi|G′

p
=
∑

j di,jϕj.) The last proposition
showed that

di,j = dimk HomA

(
Pj,Mi

)
= rankRHomA (Qj,Mi) = dim HomÂ

(
Q̂j, Vi

)
=
(
Q̂j : Vi

)
Then

∑
k dk,idk,j =

∑
k

(
Q̂j : Vk

) (
Mk, Si

)
. This counts the number of composition fac-

tors isomorphic to Si where Q̂j is taken mod P , which is (Pj : Si) = ci,j

Returning to A5 with p = 5, we computed

D =


1 0 0
0 1 0
0 1 0
1 1 0
0 0 1


The third is the same as the second mod 5, the fourth is a linear combination of the first
two, and the last character is in a block by itself. Then

C =t DD =

2 1 0
1 3 0
0 0 1


The block

(
2 1
1 3

)
shows that P1 corresponds with the trivial module S1 and the only

possible composition series is
S1

��
S2

��
S1

P2 has one of the following composition series.

S2

��

S2

��
S1

��

S2

��
S2

��

S1

��
S2 S2

We have not yet shown that the irreducible ordinary character mod 3 is irreducible mod
5. This would be the same as showing that there is a 5-modular irreducible representation
of degree 3. Recall for the following discussion that A5

∼= PSL (2, 5).

54



We can show (see CR1, 17.17, hand-out) that G = SL (2, p) has p irreducible modular

representations over a field k of characteristic p. Take g =

(
α β
γ δ

)
∈ G. Then G can be

regarded as acting on a vector space of dimension 2, and then on k [x, y] by

g · x = αx+ βy g · y = γx+ δy.

Take Md to be the subspace of k [x, y] spanned by xd, xd − 1y, . . . , yd. We can show that
Md is irreducible. For example, when d = 2, we have M2 = 〈x2, xy, y2〉. Then(

1 1
0 1

)
:

{
x→ x

y → x+ y(
1 0
1 1

)
:

{
x→ x+ y

y → y

Now let V = 〈v1, v2, v3〉 be a vector space of dimension k over k. In kG, take(
0 1
0 0

)
=A =

(
1 1
0 1

)
−
(

1 0
0 1

)
(

0 0
1 0

)
=B =

(
1 0
1 1

)
−
(

1 0
0 1

)
.

Then

A :


v1 → 0

v2 → v1

v3 → 2v2 + v1

B :


v1 → 2v2 + v3

v2 → v3

v3 → 0

and

A→

0 1 1
0 0 2
0 0 0

 B →

0 0 0
2 0 0
1 1 0


on V . We then have

A2 :


v1 → 0

v2 → 0

v3 → 2v1

and B2 :


v1 → 2v3

v2 → 0

v3 → 0

.

It is easy to check that if 0 6= U ≤ V , and αv1 + βv2 + γv3 ∈ U with at least one of α,
β, γ not 0, by applying A, A2, B, and B2 to this element we get all of V . Thus V is
irreducible.

Returning to GL (3, 2) = G, we look at the characters from the point of view of the
general theory for GL (n, q). We had characters of degrees 1, 3, 3, 6, 7, and 8. We

obtained them by taking B =


∗ ∗ ∗0 ∗ ∗

0 0 ∗

 of size 8 and P =


∗ ∗ ∗∗ ∗ ∗

0 0 ∗

 of size

24. We found IndGP (1) = χ1 + χ2 by counting lines fixed by P . χ2 is the character of
degree 6. We found IndGB (1) = 2χ1 + χ2 + χ4 by counting flags fixed by B. χ3 is the
character of degree 8. Finally, IndGP (ε) = χ3 is the character of degree 7. The remaining
characters χ5 and χ6 were obtained from S, the Sylow 7-subgroup.
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November 19
Complete the series of homeworks on GL (3, 2) by writing an intoduction to GL (3, 2)

which begins “Let G = GL (3, 2). We compute. . . ”. This should be a one-page document.
Recall that in computing the characters of GL (3, 2), the characters of degree 1, 6, 7,

and 8 came from IndGB (1), IndGP (1), and IndGP (ε). The two characters of degree 3 remain
and are explained in terms of Harish-Chandra Theory or Theory of Cusp Forms.

First let G be any finite group and let H ≤ G. Write A = KG for K sufficiently large.
We want to decompose IndGH (1) into a sum of irreducible representations of G. Recall
that A is artinian and semisimple so that we have such a decomposition.

Recall from September 12 that

HomA (V1 ⊕ V2,W1 ⊕W2)

is isomorphic the group of matrices

(
θ1,1 θ2,1

θ1,2 θ2,2

)
where θi,j ∈ Hom (Vi,Wj). The θi,j

involve injections and projections. This is relevant because decomposing V = IndGH(1)
involves projections in EndA (V ).

More generally, if

V = V1 ⊕ V2 ⊕ · · · ⊕ Vm
W = W1 ⊕W2 ⊕ · · · ⊕Wn,

then HomA (V,W ) will be isomorphic to a group of matrices (θi,j) with θi,j ∈ HomA (Vi,Wj)
and if V = W , the matrices are (θi,j) with θi,j ∈ HomA (Vi, Vj).

Returning to A = KG with A semisimple, suppose

V ∼=
s⊕
i=1

niSi

for Si simple modules. Then in this case, we have HomA (Si, Sj) = δi,jK. ( Since K is
sufficiently large, a matrix commuting with all the matrices representing elements of G
in the representation corresponding to Si is a scalar matrix. This is one way of saying
that EndA(V ) ∼= K. Hence

E := EndA (V ) ∼=
⊕
i

Mni
(K)

This connects the representations of A and E given a fixed V . Let Li be the simple
Mni

(K)- module. There is only one up to isomorphism. Hence, we have a bijection

{Irreducible A-modules in V } ←→ {Irreducible E-modules}

given by Si ←→ Li Also ni = (V : Si) = dimK Li

Example 20 Returning to G = GL (3, 2), we computed V = IndGB (1) has character
χ1 + 2χ2 +χ4 so E has irreducible representations of degree 1, 2, and 1. We observe that
S3 also has irreducible representations of degree 1, 2, and 1 and in fact, E ∼= KS3 by the
theory we will develop later.
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Let H ≤ G, A = KG, and V = IndGH (1). We want to consider E = EndA (V ). In
B = KH, the trivial representation is realized by Be where

e =
1

|H|
∑
h∈H

h. (19)

Proposition 23 Let e be any idempotent in B. Then Ae is the module corresponding to
the representation of A induced from the representation of B given by Be.

Proof. The module for the induced representation is

A⊗B Be ∼= Ae.

Now take e as in (19) and consider Ae. Recall that

HomA (Ae,M) ∼= M ∼= eM

and
EndA (Ae) ∼= (eAe)op .

Hence, we want to study H := eAe, the ”opposite” of the endomorphism algebra of Ae
which is called the Iwalori-Hecke Algebra. (A reference for this is CR1, 11D.)

Now eAe is a subalgebra of A where e = 1
|H|
∑

h∈H h. Then a basis for H is given by

{exe : x runs over a set of representatives for H\G/H}

because H is spanned by {exe : x ∈ G} and exe = eye⇐⇒ x = hyh′ for h, h′ ∈ H.

Definition 21 indx = |H|
|H∩xH|

Note that

|HxH| = |H| |H|
|H ∩x H|

.

Let {xj : j = 1, 2, . . . } be a set of representatives of H\G/H.

Definition 22 aj = (indxj) exje.

Then H has basis {aj} with multiplication given by aiaj =
∑

k µi,j,kak. Next time we will
consider how to describe the µi,j,k.

November 21
Recall that H ≤ G and H = eAe. A in this case is KG, thought this works sometimes

in more general cases. Recall that EnA (Ae) ∼= (eAe)op and that e = 1
|H|
∑

h∈H h. Then

H is spanned by {exe : x a representative of H\G/H}. We also write

ind x =
|H|

|H ∩x H|
.
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Theorem 14 A basis for H is given by

aj =
1

|H|
∑
x∈Dj

x

where Dj = HxjH for 1 ≤ j are the double cosets of H in G. Then aiaj =
∑

k µi,j,kak
where

µi,j,k = |H|−1
∣∣Di ∩ xkD−1

j

∣∣ .
Proof. We know that H is spanned by the exje for 1 ≤ j and these are also independent
as exje and exke for j 6= k contain distinct elements of G. For simplicity, write x = xj.
Then

exe =
1

|H|2
∑

h1,h2∈H

h1xh2
1

|H|2
∑

h1xh2∈D

|H ∩x H|h1xh2

where the sum is taken over distinct elements in D and this works because the number
of elements in D is

|H|2

|H ∩x H|
In particular, exe 6= 0 since K in this case has characteristic 0. This may not work so
will for other fields. Let

aj = (ind xj) exe ==
|H|

|H ∩x H|
exe =

|H|
|H ∩x H|

1

|H|2
|H ∩x H|

∑
y∈D

y =
1

|H|
∑
y∈D

y.

Then

aiaj =
1

|H|2

(∑
y∈D

y

)(∑
z∈D

z

)
and count the number of times xk appears in this product, that is, the number of pairs
y ∈ Di, z ∈ Dj with yz = xk. That is, z = y−1xk and y = xkz

−1 ∈ Dk ∩ xkD−1
j where

D−1 = {d−1 : d ∈ D}. Hence, the number of such pairs is
∣∣Di ∩ xkD−1

j

∣∣ and the coefficient
of xk in aiaj is

1

|H|2
∣∣Di ∩ xkD−1

j

∣∣ .
Hence,

1

|H|
µi,j,k =

1

|H|2
∣∣Di ∩ xkD−1

j

∣∣
so that µi,j,k = 1

|H|

∣∣Di ∩ xkD−1
j

∣∣ as required. Consider G = GL (n, q) with H = B, the

subgroup of upper triangular matrices. We need the double coset decomposition B\G/B.
This can be accomplished by the famous Bruhat decomposition.

Theorem 15 G is the disjoint union

G =
⋂
w

BwB

for w ∈ Sn.
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Proof. Let Xi,j (α) be the elementary matrix
1

1 α
. . .

0 1


where the α is in position i, j. We want to show that if g ∈ G, g = b1wb2 for b1, b2 upper
triangular and w a unique permutation matrix. By multiplying g on the left by matrices
of the form Xi,j (α), we get every entry in the first column except the k1 position to be
zero for some k1. After all, we can never have all the elements zero or g wouldn’t be
invertible. Repeat for the other columns giving a matrix for which the ith column is zero
for every row except kith row. Since g is invertible, (k1, k2, . . . , dn) is a permutation of
(1, 2, . . . , n). We now have b−1

1 g for some b1 ∈ B since all the Xi,j (α) are upper triangular.
Now left-multiplying by some w−1 ∈ Sn makes w−1b−1

1 g =: b2 upper triangular. Then
g = b1wb2.

This gives us the double coset decomposition since b1wb2 ∈ BwB. Next, we want to
see that this decomposition is unique.
Proof. (Uniqueness) If we had

b1wb2 = b′1w
′b′2,

then we would have
wb2b

′−1
1 = b−1

1 b′1w
′

so that
wb− 2b′−1

2 = b−1
1 b′1 ∈ B

If wb1w
′−1 is upper triangular, then w = w′. For example, if we had0 1 0

0 0 1
1 0 0


︸ ︷︷ ︸

w1

b1 ∗ ∗
0 b2 ∗
0 0 b3

 =

 0 b2 ∗
0 0 b3
b1 ∗ ∗



but the only w ∈ S3 which takes this matrix to an upper triangular matrix is w−1
1 .

November 24
If w1 = (132), then

w1 · b =

0 1 0
0 0 1
1 0 0

b1 ♣ ♣
0 b2 ♣
0 0 b3

 =

 0 b2 ♣
0 0 b3
b1 ♣ ♣


Now if w1bw2 ∈ B, then w2 = w−1 . Note that this does not mean that w1bw

−1
1 is in B.

It could be in B for some b. This shows that if G = GL (n, q) and B is the set of upper
triangular matricies, then

G =
⋃
w∈W

BwB

is a disjoint union with W = Sn. Then consider H = (eAe)op, A = KG, and e =
1
|B|
∑

g∈B g. 59



Proposition 24 H has basis {aw : w ∈ W} where aw =
∑

1|B|sumg∈BwBg with multi-
plication constants as described earlier.

Lemma 7 (CR, Exercise 11.19) Let G be any finite group and H ≤ G and define H as

before. Also, define ind (x) = |H|
|H∩xH| as before for x ∈ H. Then the linear map

ind : H → K given by

aj → ind (xj)

is a character of H. Recall that

aj =
1

|H||
∑
x∈Dj

g and Dj = HxjH

Proof. Consider the trivial character ψ of KG restricted to H. We have

ψ (aj) =
1

|H|
|Dj|

=
1

|H|
|HxjH|

=
1

|H|
|H|2

|H ∩xj H|
= ind (xj)

Remark 15 Recall that the dimensions of the irreducible representations of H give the
multiplicities of the multiplicities of the irreducible constituants of IndGH (1).

Application. Let n = 2, G = GL (2, q), H = B, and W = S2 = {1, 2}. Then H
has basis {a1, aw}. Recall that aiaj =

∑
k µi,j,kak and µi,j,k = 1

|H|

∣∣Di ∩ xkD−1
j

∣∣. Then
a1 · a1 = a1 and a1 · aw = a2 · a1 = aw which is easy to check. It is more difficult to
compute aw · aw. Let aw · aw = µa1 + λaw for somr µ and λ. Then

µ =
1

|B|
(
(BwB) ∩ (BwB)−1) =

1

|B|
|BwB|

since w = w−1 But since G = B ∪ BwB, we have |G| = |B| + |BxB| giving |BwB| =
q (q − 1) (q2 − q) = q2 (q − 1)2 so that

µ =
q2 (q − 1)2

q (q − 1)2 = q.

Then a2
2 = qa1 + λaw. Apply the charaacter from the lemma to this formula giving

(ind aw)2 = q (ind a1) + λ (ind aw) (20)

so that ind (a1) = 1 and ind (aw) = q since B ∩w B = T , the subgroup of diagonal

matricies giving ind (aw) = q(q−1)2

(q−1)2
= q. From (20), we have

q2 = q + λq

λq = q (q − 1)

λ = q − 1
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Thus, for n = 2 we have H = 〈a1, aw〉 with multipliciation given by a2
1 = a1, a1aw =

awa1 = a2 and a2
w = qa1 + (q − 1) aw. Note that if q = 1, then H is isomorphic to the

group algebra of S2.

Remark 16 In general, for G = GL (n, q), H is isomorphic to the group algebra of Sn,
which explains why for GL (3, 2), the constituants of of IndGB (1) occur with mulitpilicities
1, 2, and 1, the degrees of the characters of S3.

The Harish-Chandra theory or Theory of Cusp Forms similarly develops H for charac-
ters other than the trivial character. Let G = GL (n, q) and B the set of upper- triangular
matricies.

Definition 23 A Borel subgroup of G is any conjugate of B

Then the Borel subgroups are solvable subgroups and B = TU for T the diagonal ma-

tricies and U the unipotent matricies. Then |U | = q
n(n−1)

2 is a p-group as q = pm, so U is
solvable. Also, T is abelian and U C B so that B/U ∼= T .

Definition 24 A parabolic subgroup of G is one which contains a Borel subgroup.

November 26
Let G = GL (n, q) and T the subgroup of diagonal matrices. Then B = TU for U the

subgroup of unipotent matrices in B. (Note that the set of unipotent matrices in G is
not a subgroup.) A Borel subgroup is any conjugate of B and a parabolic subgroup is a
subgroup containing a Borel subgroup. A parabolic subgroup is conjugate to a subgroup
of the form 


♣ ♣

♣
. . .

0 ♣




For n = 3, for example, there are, up to conjugacy, four parabolic subgroups B, P1, P2,
and G

Insert picture here

and P1 is not conjugate to P2.
We have a Levi decomposition of P given by P = LV , a semidirect product, with V

the unipotent radical of P , that is, the maximal normal unipotent subgroup of P . Then
L is a direct product GL (n1, q)×GL (n2, q)× · · · ×GL (nr, q). If P is as in the example
above, we have

L =



♣ 0

♣
. . .

0 ♣




and

V =



I 0

I
. . .

0 I




In fact, V is a p-group.
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Remark 17 The characters of U are not known.

To conclude this section, we want to state the main result of the Harish-Chandra
theory. We consider representations of G over a field K of characteristic 0.

If ψ is a character of L, we get a character ψ̃ of P since L ∼= P/V . Recall that this
is accomplished as follows. If g ∈ P , then g = lv for some l ∈ L, v ∈ V and we take

ψ̃ (g) = ψ (l). Then we consider IndGP

(
ψ̃
)
. Note that IndGB (1) is a special case.

Definition 25 An irreducible character χ of G is said to be cuspidal or in the discrete
series if 〈

IndGP

(
ψ̃
)
, χ
〉

= 0

for any P < G with P 6= G and any ψ.

Now cuspidal characters are defined for L where P = LV and

L = GL (n1, q)×GL (n2, q)× · · · ×GL (nr, q) .

Then a cuspidal character ψ of L is (ψ1, ψ2, . . . , ψr) for ψi cuspidal in the ith block of L

Definition 26 Let P1 and P2 be parabolic subgroups. Then P1 and P2 are associated if
P1 = L1V1 and P2 = L2V2 for L1 conjugate to L2 in G.

Theorem 16 (CR1, Vol II, §70B, 70.15A and B but stated there in more generality)
Let χ be an irreducible character of G. Then there is a unique pair (P, ψ) such that ψ

is cuspidal for L where P = LV , and such that
〈
IndGP

(
ψ̃
)
, χ
〉
6= 0. That is, if (P1, ψ1)

and (P2, ψ2) are two such pairs, then xL1 = L2 and xψ1 = ψ2 for some x ∈ G.

Recall that the last statement means xL1x
−1 = L2 and ψ2 (xl1x

−1) = ψ1 (l1) for l1 ∈ L1.
Hence, the characters of G are divided into disjoint sets called Harish-Chandra fami-

lies, each family corresponding to a ”cuspidal pair” (L, ψ).

Example 21 Let G = GL (3, 2). One family is {χ1, χ2, χ4} of degrees 1, 6, and 8, from
the pair (T, 1) where T is the diagonal subgroup. The second family is {χ3} from the pair
(L, ε) where L ∼= GL (2, 2) × GL (1, 2) ∼= S3 and ε is the sign character on the GL (2, 2)
block and is cuspidal for L. The remaining characters χ5 and χ6 of degree 3 are cuspidal
for G.

The remaining characters in the homework discussed above were constructed an an ad-hoc
manner. Indeed, there are two remaining problems.

1. Decompose IndGP

(
ψ̃
)
.

2. Construct cuspidals for G (and hence for L).

The following is from the file Hints518 on ftp://dirichlet.math.uic.edu

Hints for Homework
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Brauer characters for p = 3:

You can first use the following theorem. If pa is the exact power of p dividing the order of
the group, and if χ is an irreducible character of the group whose degree is divisible by pa

then χ is irreducible mod P , and is in a block by itself. (This was proved on November
12 )

Note that two characters in different blocks will not have any Brauer characters in com-
mon. This follows from the decomposition of A or A as a sum of indecomposable two-sided
ideals.

Using this one gets four Brauer characters for p = 3. You have to find only one more.
Look at the character of degree 7. Can this decompose mod P? Or is it irreducible?
That is what you have to answer.

Brauer characters for p = 7:

Here you have to use the fact that G ∼= PSL(2, 7). We described (and you have a
hand-out) describing the representations of SL(2, 7) over a field of characteristic 7. The
Brauer characters you get from these have degrees 1 through 7, of which the ones of
degrees 1,3,5,7 will be Brauer characters for PSL(2, 7). You can take elements of orders
1, 2, 3, 4 (which are the ones you want) in SL(2, 7), and in fact since you only want
the traces of these elements in the representations, you can take them to be diagonal in
some extension field. For example, an element of order 4 in SL(2, 7) can be taken to
be a diagonal matrix D with i,−i on the diagonal (here i is a fourth root of unity in
an extension of F7). Suppose you consider the representation of degree 3, which is in
a space spanned by X2, XY, Y 2 (see the hand-out; this was also discussed in class, on
November 17). How does D act on this space? It will have eigenvalues i2, i(−i), (−i)2,
with trace −1 + 1 + (−1) = −1, which is exactly what you expect. (Why? Look at the
reduction mod P of the character(s) of degree 3 of G to the 7-regular elements; you get
the values 3,−1, 0, 1. Note that D modulo the center of SL(2, 7) is of order 2, and so
you should expect −1 for the value of the character of degree 3 there, and this is what
you got above.) For the element of order 4 in G you must start with a diagonal matrix
with eighth roots of unity along the diagonal in SL(2, 7), and so on. So the solution is
just computational, once you know the theory for SL(2, p).

December 1
Here is a summary of the techniques we used so far to produce characters.

1. Frobenius induction. Given a character ψ of H ≤ G (here G is any finite group),
we can find a character IndGHψ of G. This also works for some groups other than
finite groups.

2. Harish-Chandra induction. This works for groups G of Lie type such as GL (n, q).
If G = GL (n, q) we take a parabolic subgroup P ≤ G and write P = LV where L
is a product of smaller GL’s. We take a character ψ of L and inflate (or pull-back)

ψ producing a character ψ̃ of P We then get the induced character IndGH

(
ψ̃
)

of G.

This also works for some groups other than finite groups.

3. Cuspidal characters of G do not arise as constituents of IndGH

(
ψ̃
)

for any ψ
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From this procedure, the characters of G fall into Harish-Chandra families, one for each
P up to associativity (which means the L’s are conjugate; see the definition given earlier)
and a cuspidal character of L, or equivalently for each ”cuspidal pair” (L, ψ) up to G-
conjugacy.

For GL (2, q), the conjugacy classes are described in terms of their ”types”. Suppose that
in Fq we have selected a primitive (q2 − 1)

st
root of unity ε, that is εq

2−1 = 1 and ε is a
generator of F×q2 . Let ρ = εq+1. Then ρ generates F×q . Then we can pick representatives
for the conjugacy classes as follows.

The identity:

(
1 0
0 1

)
Classes arising from the decomposition B = TU :

(
1 1
0 1

)
from U and

(
ρa 0
0 ρb

)
from

T with a 6= b.

Classes containing elements of the form

(
εa 0
0 εaq

)
for a 6≡ 0 (mod q + 1), over Fq2 .

Over Fq such elements would be given in rational form.

Other classes are omitted such as

(
x 0
0 x

)
and

(
x 1
0 x

)
.

We pick a complex primitive (q2 − 1)
st

root of unity ε̃ and let ρ̃ = ε̃q+1. We have a
correspondence ρa ←→ ρ̃a and εa ←→ ε̃a.

Most importantly, we do the Harish-Chandra induction from B = TU writing

T =

{(
ρa 0
0 ρb

)}
as a direct product of two cyclic groups of order q− 1. We get characters of G in Harish-
Chandra families corresponding to pairs (T, ψ), as we see below.

We also have some cuspidal characters ofG which don’t arise as constituents IndGB

(
ψ̃
)
.

For example, {(
εa 0
0 εaq

))
≤ GL

(
2, q2

)
is a subgroup of order q2 − 1, which is conjugate in GL (2, q2) to a subgroup of GL (2, q)
in rational form. We expect some characters ”supported” by this subgroup.

We have the following table.(
1 0
0 1

) (
1 1
0 1

) (
ρa 0
0 ρb

) (
εa 0
0 εaq

)
1 1 1 1 1 and other linerar characters

IndGB

(
ψ̃
)
,m 6= n q + 1 1 ρ̃amρ̃bn + ρ̃anρ̃bm 0

S q 0 1 −1 S is the Steinberg character of degree q

Here 1 and S arise as constituents of IndGB (1).

To construct cuspidal characters, we use an important concept called the Brauer Lift,
described in CR1, p. 436. For any G a finite group with (K,R, k) as before, we lift
characters from kG to KG. Note that this is the reverse of what we did before. Given
x ∈ G, we can write

x = su = us
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where u has order a power of p and s has order prime to p. Then we have the following
deep theorem.

Theorem 17 Let λ be the Brauer character of a kG module L. Then define a function

λ̂ : G→ K by λ̂ (x) = λ (s) .

then λ̂ is a virtual character of G, that is, a Z-linear combination of irreducible characters.

Then we take λ to be the Brauer character of the ”natural representation” representing
each element of G by itself as a matrix over k. From this we have the virtual character

2 2 ρ̃a + ρ̃b ε̃a + ε̃aq

If we subtract from this the character of degree q + 1 constructed above with m =
n = 1, we have the character

q − 1 −1 0 − (ε̃a + ε̃aq)

which is cuspidal. By using other Brauer characters we can construct all the missing
cuspidal characters.

For the character tables of GL(2, q) and GL(3, q) see a paper of Steinberg [Canadian
Journal of Math, 1951]. The Brauer lift is not used there, but was used in an important
paper of J.A.Green (Trans. Amer. Math. Soc. 88 (1955)).

December 3
Consider G = GL (3, q) and T ≤ G the diagonal matricies. Then |T | = (q − 1)3. For

Harish-Chandra induction, we use B = TU and P = LV where L =


♣ ♣ 0
♣ ♣ 0
0 0 ♣


and P =


♣ ♣ ♣
♣ ♣ ♣
0 0 ♣

. This was accomplished in Homework 5, for q = 2. Note that

|B| = q3 (q − 1)3 Let T :=


ρa 0 0

0 ρb 0
0 0 ρc

 where ρ is a generator of F×q and let

ψ = ψl,m,n :


ρa 0 0

0 ρb 0
0 0 ρc

 7→ ρ̃laρ̃mbρ̃nc

Here ρ̃ is as in the case of GL(2, q).

We must construct IndGB

(
ψ̃
)
. When l,m, n are distinct mod q − 1, we get an irre-

ducible character of degree (q + 1) (q2 + q + 1). When l ≡ m 6≡ n, we get characters of
degree q2 + q + 1 and q (q2 + q + 1). When l ≡ m ≡ n, we get characters of degree 1,
q2 + q with multiplicity 2, and q3.

For example, when q = 2 as in our group, we have |B| = 8 and [G : B] = 21. We get
charactes of degree 1, 6, and 8.
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Now construct IndGP (ϕ̃) for ϕ a cuspidal character of L of degree q − 1. We have
|P | = q3 (q − 1) (q2 − 1) (q − 1) and [G : P ] = q2 + q + 1 and we get an irreducible
character of degree (q − 1) (q2 + q + 1) = q3 − 1. For example, when q = 2 as in our
group, this produces a character of degree 7.

Finally, G has cuspidal characters of degree (q − 1) (q2 − 1). For example, when q = 2
as in our group, these are characters of degree 3.

Remark 18 To construct cuspidal characters for groups other than GL (n, q), we need
Deligne-Lusztig theory, which we will discuss next time.

Here is a summary of what we’ve done this semester, but viewing the material covered
in a different order:

Let G be a finite group and F a field. We want to study the representation of G over
F , which is the same as studying the representations of the group algebra FG, that is,
the FG-modules, which are finite-dimensional vector spaces over F . Hence, it is natrual
to consider A-modules with A an Artinian ring where we have the minimum condition
on left ideals of A. Then

1. every non-nilpotent ideal contains an idempotent,

2. J is nilpotent

3. A/J is semi-simple or completely reducible.

We then develop the Wedderburn theory for semisimple Artinian rings. Now let A = FG
and M an A-module. It is natural to ask whether M = M1 ⊕M2, and if so, whether we
can decompose further. Since A is finite dimensional, we must get M =

⊕
iMi for Mi

indecomposable. Using the Krull-Schmidt theorem, we have that this decomposition is
unique.

Next, we decompose AA =
⊕

i Li for Li indecomposable left ideals. This produces ei
orthogonal primitive idempotents by taking 1 =

∑
i ei so that A =

⊕
iAei. We notice that

Aei are projective A-modules. This implies that Aei has a unique maximal submodule
Jei and hence a unique, irreducible quotient Aei/Jei. Furthermore, Aei ∼= Aej if and
only if Aei/Jei ∼= Aej/Jej.

At this point, it is natural to consider the characteristic of F . If char F = 0, then
A is semisimple by Maschke’s theorem. We develop a character theory over C or over a
sufficiently large field K of charactersic 0. We introduce the p-modular system (K,R, k)
as a way to pass between charactersic 0 and charactersic p. The idea is that represen-
tations should give us information about the group G, hence the representations over
fields of charactersic p should give us information about, and reflect, the p- structure of
G. The homework has been intended to illustrate the ”global information” from ”local
information” philosophy.

Further hints for the homework

This is a hint for the Brauer characters for p = 3 for GL(3, 2). The main question is
whether the character of degree 7, restricted to the 3′-elements, is irreducible as a Brauer
character. Consider the value of the character at the 7- elements, which is 0. See whether
this is possible if the Brauer character decomposes, since the eigenvalues of these elements
are 7-th roots of unity.
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Further hints for the homework (added December 10)

With the hints I gave you earlier for the Brauer characters of the group of order 168
for p=3, you can get to the stage where the character of degree 7 is either irreducible (the
correct answer) or the sum of the trivial character and a Brauer character of degree 6. I
was too hasty in thinking that it is obvious to rule out the possibility that the character
of degree 7 is reducible. Here is one way of doing this.

Recall that we constructed the character of degree 7 as an induced character IndGP (ε)
where P is a parabolic subgroup (isomorphic to S4) and ε is the sign character of P . We
can take an RG-module for this induced module and go mod P (here p=3) as usual, and
get a kG-module L. Then L is still an induced module from P (the point is that the sign
character of P is irreducible mod 3). If L contains the trivial module as a composition
factor then HomkG(L, S) is non-zero, where S is a module for kG for the trivial repre-
sentation, or HomkG(S, L) is non-zero. But both these are zero by Frobenius reciprocity
(see the October 8 lecture, where it is proved that HomRH(L,MH) = HomRG(LG,M).
In this formula put L to be a module for ε and M to be S). One other point is that from
this formula you get HomkG(L, S) = 0. To show that HomkG(S, L) = 0 you use dual
modules; L is dual to itself.

December 5
More on the nasty handout. We have |SL (2, p)| = p (p− 1) (p+ 1). Also, a Sylow

p-subgroup is U =

〈(
1 1
0 1

)〉
. The elements of order p are unipotent. If x ∈ SL(2, p)

then x = su = us for s a p′-element and u a unipotent element. However, if u ∈ U , the
only s such that su = us is s = 1. So every element is either a p′-element or of order p.
Suppose s is a p′-element. If the order of s divides p−1 then s is conjugate to an element
of T , the subgroup of diagonal matrices. On the other hand if the order of s divides p+1
then s can be put in rational form. In each case, two p′-elements are conjugate if and
only if their characteristic polynomials are the same.

Brief Introduction to Deligne-Lusztig Theory [Carter, Finite Groups of Lie Type]

The philosophy is the following. Let G = GL (n, q). We have IndGB

(
ψ̃
)

irreducible in

many cases. For example, when n = 3, we can take ψ = ψl,m,n for l,m, n distinct mod

q− 1. Here B = TU , ψ is a character of T , and its lift to B is the character ψ̃ of B. But
if S is a cyclic Sylow subgroup of order qn − 1, then

S = 〈A〉 , for A =


0 0 ♣
1 0 ♣
0 1 ♣
...
0 0 1 ♣


in rational form. Here S is not a subgroup of a bigger subgroup of G. Then IndGS (θ) for
θ a character of S will be hard to decompose.
For example, in GL (3, 2), (S| = 7.
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Now look at G ≤ G̃ = GL
(
n,Fq

)
. In G̃, we have B̃ = T̃ Ũ and T ≤ T̃ and B ≤ B̃. (Here

B̃, T̃ , Ũ are defined analogously to B, T, U in G.)

Then g−1Sg ≤ T̃ for some g ∈ G̃ so that S ≤ gT̃ g−1 = T̃1 ≤ gB̃g−1 = B̃1. Set
gŨg−1 = Ũ1.

Definition 27 Define the Frobenius map to be the homomorphism

F : G̃→ G̃ given by (ai,j)→
(
aqi,j
)

Then
G = G̃F =

{
F -fixed points of G̃

}
and similarly, B = B̃F and T = T̃ F , but B̃1 need not be F -stable.

We now return to IndGB

(
ψ̃
)
. Since B = TU , we have IndGU (1) = IndGB

(
IndBU (1)

)
=

IndGB

(∑
ψ ψ̃
)

=
∑

ψ IndGB

(
ψ̃
)
. A module for IndGU (1) is

KG⊗B
(⊕

Vψ

)
where Vψ is a module for B for the 1-dimensional representation ψ̃. This is a bi-module
with G acting on the left and T acting on the right.
We have G ≤ G̃ and S ≤ B̃1 = T̃1Ũ1. Define an algebraic variety

X =
{
g ∈ G̃ : g−1F (g) ∈ Ũ1

}
(This is analogous to the coset space G/U where F (gU) = F (g)U for g ∈ G and also
F (gU) = gU . Hence, g−1F (g) ∈ U .)

We have G acting on the left and S on the right of X. If h ∈ G, g ∈ X, we have to check
that hg ∈ X. We have

(hg)−1 F (hg) = g−1 h−1F (h)︸ ︷︷ ︸
1

F (g) ∈ X

Next, we have to check that if t ∈ S and g ∈ X, then gt ∈ X which follows from: Ũ1 is
normal in B̃1. We have

(gt)−1 F (gt) = t−1g−1F (g) t︸ ︷︷ ︸
∈Ũ1

∈ Ũ1

since t normalizes Ũ1.

We need an action of G on some vector space over a field of characteristic 0 associated
with X. This is constructed using a deep theory of Grothendieck and others of l-adic
cohomology. Take l prime with l not dividing q. Take Ql the algebraic closure of the
field of l-adic numbers. We then have, corresponding to X, a vector space H i

c

(
X,Ql

)
(for each i ≥ 0) over Ql (i.e. l-adic cohomology groups with compact support). Then G
acts on the left and S acts on the right of the cohomology groups, by functoriality.
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The final step is to take θ a character of S which produces RG
S (θ), a virtual character of

G, called a Deligne-Lusztig character, given by

RG
S (θ) =

∑
i≥0

(−1)iH i
c

(
X,Ql

)
θ

where H i
c

(
X,Ql

)
θ

is the part of H i
c

(
X,Ql

)
on which S acts by the character θ. If g ∈ G,

we get the character value

RG
S (θ) (g) =

∑
i≥0

(−1)i Trace(g,H i
c

(
X,Ql

)
θ
)

.

Finally, the construction given above generalizes to finite groups of Lie type (such as
symplectic groups, orthogonal groups over finite fields). For details see the book by
Carter referred to above, p.205.

Thus we have arrived at the end of the course, which showed you some of the beautiful
aspects of the Representation Theory of Finite Groups. If you wish to go further, Bon
Voyage and Bon Courage!
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