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This talk is on Clifford Theory from the point of view of characters. The reference
for this talk is Isaacs’ Character Theory, chapter 6.

Let H ≤ G and take χ ∈ Irr (G). We can’t say much about χH in general, but when
H C G, the situation changes for the better.

Let ϑ be a class function on H. Define Let x ∈ G and for h ∈ H define

ϑx (h) = ϑ
(
xhx−1

)
.

Lemma 1 Let ϕ, ϑ be class functions on H, let χ be a class function on G, and let
x, y ∈ G. Then we have the following.

1. ϑx is a class function.

2. (ϑx)y = ϑxy.

3. 〈ϕ, ϑ〉 = 〈ϕx, ϑx〉.

4. 〈χH , ϑ〉 = 〈χH , ϑ
x〉.

5. ϑx is a character iff ϑ is.

Proof. To see 4, observe that (χH)x = χH since χ is a class function on G and use 3.
The remaining parts are left as an exercise.

We can think of G as permuting Irr (H) by g : ϑ→ ϑg.

Theorem 1 (Clifford) Let H C G and let χ ∈ Irr (G). Suppose that ϑ ∈ Irr (H) is such
that ϑ is a constituent of χ|H . Let ϑ1, ϑ2, . . . ϑt be the distinct G-conjugates of ϑ. Then

χH = e

t∑
i=1

ϑj

where e = 〈χH , ϑ〉.

Proof. Observe that the ϑj are irreducible since ϑ is. We have

(
ϑG

)
H

(h) =
1

|H|
∑
x∈G

ϑ̇
(
xhx−1

)
=

1

|H|
∑
x∈G

ϑ̇x (h) .

Thus,

|H|
(
ϑG

)
H

=
∑
x∈G

ϑx.

Now if λ ∈ Irr (H) with λ 6∈ {ϑj}, then
〈(
ϑG

)
H
, λ

〉
= 0 so that 〈χH , λ〉 = 0 by Frobenius

and because ϑ is a constituent of χ. Then

χH =
t∑

j=1

〈χH , ϑj〉ϑj,
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but by Lemma 1, we have 〈χH , ϑj〉 = 〈χH , ϑ〉 for all j so that

χH = e
t∑

j=1

ϑj

for e = 〈χH , ϑ〉.

Definition 1 Let H C G and let ϑ ∈ Irr (H). Define

T = {x ∈ G : ϑx = ϑ} .

T is called the inertia group of ϑ.

The inertia group is the stabilizer of the action of G on Irr (G). Thus, [G : T ] = t. This
also implies that t divides [G : H] since H ≤ T .

Theorem 2 (Clifford) Let H C G, ϑ ∈ Irr (H). Define

A = {ψ ∈ Irr (T ) : 〈ψH , ϑ〉 6= 0}
B = {χ ∈ Irr (G) : 〈χH , ϑ〉 6= 0}

Then

1. If ψ ∈ A, then ψG ∈ B.

2. The map A→ B given by ψ → ψG is a bijection.

3. If ψG = χ, then ψ ∈ A is the unique irreducible constituent of χT that lies in A.

4. If ψG = χ with ψ ∈ A, then 〈ψH , ϑ〉 = 〈χH , ϑ〉.

Proof. Let ψ ∈ A and choose χ ∈ Irr (G) such that
〈
ψG, χ

〉
6= 0. By Frobenius, we have

〈ψ, χT 〉 =
〈
ψG, χ

〉
6= 0

so that ψ is a constituent of χT . Restricting to H, we have

0 < 〈ψH , ϑ〉 ≤ 〈χH , ϑ〉 . (1)

This shows that χ ∈ B.
Look at the distinct G conjugates ϑ1, . . . , ϑt, where t = [G : T ]. By Theorem 1, we

have

χH = e

t∑
j=1

ϑj

where e = 〈χH , ϑ〉. Using Theorem 1 again, we have

ψH = f
∑
x∈T

ϑx = fϑ

since T stabilizes ϑ where f = 〈ψH , ϑ〉. 2



We have

χ (1) = χH (1) = e

t∑
j=1

ϑj (1) = etϑ (1) . (2)

But since χ is a constituent of ψG, we have

χ (1) ≤ ψG (1) = tψ (1) = tψH (1) = tfϑ (1) ≤ teϑ (1) . (3)

Combining (2) and (3), we have

etϑ (1) = χ (1) ≤ ψG (1) ≤ teϑ (1)

so we have equality all the way through. This means that χ (1) = ψG (1) so that χ = ψG

and 1 follows.
Additionally, this means e = f so that 4 follows. To see 3, notice that if we have

ψ1 ∈ A with ψ1 6= ψ and 〈ψ1, χT 〉 6= 0, then we have

e = 〈χH , ϑ〉 ≥ 〈(ψ + ψ1)H , ϑ〉 = 〈ψH , ϑ〉+ 〈(ψ1)H , ϑ〉 > 0 + 〈ψH , ϑ〉 = f,

a contradiction and we have 3. Observe also that 3 is the statement that ψ → ψG is
injective, since if we have ψ1 ∈ A with ψG

1 = χ, then ψ1 = ψ.
To see that this map is surjective, observe that if ϑ ∈ B, then there must exist

ψ ∈ Irr (T ) with 〈ψ, χT 〉 6= 0. But then 〈ψH , ϑ〉 6= 0 so that ψ ∈ A and χ is a constituent
of ψG, so χ = ψG.

Application 1 (Ito’s Theorem) If A M G with A abelian. Then χ (1) divides [G : A] for
all χ ∈ Irr (G).

Suppose N C G and let ϑ ∈ Irr (N). Then

ϑG =
∑

ejχj

for χj ∈ Irr (G) and ej ≥ 0. By Clifford Theory, we have

(χj)N = ej

t∑
k=1

ϑk

where ϑ1, . . . , ϑt are the G-conjugates of ϑ. Then

ϑT =
∑

ejψj

where ψG
j = χj by the bijection above.

Assume that T = G, that is, ϑ is invariant in G. Hence,

ϑG =
∑

ejχj

(χj)N = ejϑ

χj (1) = ejϑj (1) .
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Additionally, we have

[G : N ]ϑ (1) = ϑG (1) =
∑

ejχj (1) =
∑

e2jϑ (1) .

Thus,

[G : N ] =
∑

e2j .

It can be proved using projective representations that ej| [G : N ]. If it were true that
e1 = 1, then (χ1)N = ϑ and in this situation, ϑ is called extensible to χ.

Theorem 3 (Gallagher) If there exists {ej} such that e1 = 1, then the {ej} are exactly
the character degrees of G/N .

Note that if N is abelian, then ej = χj (1), and also by Ito’s theorem, ej| [G : N ].
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