Richy's Talk on Clifford Theory

This talk is on Clifford Theory from the point of view of characters. The reference for this talk is Isaacs' *Character Theory*, chapter 6.

Let $H \leq G$ and take $\chi \in Irr(G)$. We can't say much about χ_H in general, but when $H \triangleleft G$, the situation changes for the better.

Let ϑ be a class function on H. Define Let $x \in G$ and for $h \in H$ define

$$\vartheta^x \left(h \right) = \vartheta \left(x h x^{-1} \right).$$

Lemma 1 Let φ, ϑ be class functions on H, let χ be a class function on G, and let $x, y \in G$. Then we have the following.

- 1. ϑ^x is a class function.
- 2. $(\vartheta^x)^y = \vartheta^{xy}$.
- 3. $\langle \varphi, \vartheta \rangle = \langle \varphi^x, \vartheta^x \rangle.$

4.
$$\langle \chi_H, \vartheta \rangle = \langle \chi_H, \vartheta^x \rangle$$

5. ϑ^x is a character iff ϑ is.

Proof. To see 4, observe that $(\chi_H)^x = \chi_H$ since χ is a class function on G and use 3. The remaining parts are left as an exercise.

We can think of G as permuting Irr (H) by $g: \vartheta \to \vartheta^g$.

Theorem 1 (Clifford) Let $H \triangleleft G$ and let $\chi \in \text{Irr}(G)$. Suppose that $\vartheta \in \text{Irr}(H)$ is such that ϑ is a constituent of $\chi|_H$. Let $\vartheta_1, \vartheta_2, \ldots \vartheta_t$ be the distinct G-conjugates of ϑ . Then

$$\chi_H = e \sum_{i=1}^t \vartheta_j$$

where $e = \langle \chi_H, \vartheta \rangle$.

Proof. Observe that the ϑ_i are irreducible since ϑ is. We have

$$\left(\vartheta^{G}\right)_{H}(h) = \frac{1}{|H|} \sum_{x \in G} \dot{\vartheta}\left(xhx^{-1}\right) = \frac{1}{|H|} \sum_{x \in G} \dot{\vartheta^{x}}(h)$$

Thus,

$$|H| \left(\vartheta^G\right)_H = \sum_{x \in G} \vartheta^x.$$

Now if $\lambda \in \text{Irr}(H)$ with $\lambda \notin \{\vartheta_j\}$, then $\langle (\vartheta^G)_H, \lambda \rangle = 0$ so that $\langle \chi_H, \lambda \rangle = 0$ by Frobenius and because ϑ is a constituent of χ . Then

$$\chi_H = \sum_{j=1}^t \left\langle \chi_H, \vartheta_j \right\rangle \vartheta_j,$$
1

but by Lemma 1, we have $\langle \chi_H, \vartheta_j \rangle = \langle \chi_H, \vartheta \rangle$ for all j so that

$$\chi_H = e \sum_{j=1}^t \vartheta_j$$

for $e = \langle \chi_H, \vartheta \rangle$.

Definition 1 Let $H \triangleleft G$ and let $\vartheta \in Irr(H)$. Define

$$T = \left\{ x \in G : \vartheta^x = \vartheta \right\}.$$

T is called the inertia group of ϑ .

The inertia group is the stabilizer of the action of G on Irr(G). Thus, [G:T] = t. This also implies that t divides [G:H] since $H \leq T$.

Theorem 2 (Clifford) Let $H \triangleleft G$, $\vartheta \in Irr(H)$. Define

$$A = \{ \psi \in \operatorname{Irr} (T) : \langle \psi_H, \vartheta \rangle \neq 0 \}$$
$$B = \{ \chi \in \operatorname{Irr} (G) : \langle \chi_H, \vartheta \rangle \neq 0 \}$$

Then

1. If $\psi \in A$, then $\psi^G \in B$.

- 2. The map $A \to B$ given by $\psi \to \psi^G$ is a bijection.
- 3. If $\psi^G = \chi$, then $\psi \in A$ is the unique irreducible constituent of χ_T that lies in A.
- 4. If $\psi^G = \chi$ with $\psi \in A$, then $\langle \psi_H, \vartheta \rangle = \langle \chi_H, \vartheta \rangle$.

Proof. Let $\psi \in A$ and choose $\chi \in Irr(G)$ such that $\langle \psi^G, \chi \rangle \neq 0$. By Frobenius, we have

$$\langle \psi, \chi_T \rangle = \left\langle \psi^G, \chi \right\rangle \neq 0$$

so that ψ is a constituent of χ_T . Restricting to H, we have

$$0 < \langle \psi_H, \vartheta \rangle \le \langle \chi_H, \vartheta \rangle. \tag{1}$$

This shows that $\chi \in B$.

Look at the distinct G conjugates $\vartheta_1, \ldots, \vartheta_t$, where t = [G:T]. By Theorem 1, we have

$$\chi_H = e \sum_{j=1}^{\iota} \vartheta_j$$

where $e = \langle \chi_H, \vartheta \rangle$. Using Theorem 1 again, we have

$$\psi_H = f \sum_{x \in T} \vartheta^x = f \vartheta$$

since T stabilizes ϑ where $f = \langle \psi_H, \vartheta \rangle$.

We have

$$\chi(1) = \chi_H(1) = e \sum_{j=1}^t \vartheta_j(1) = et\vartheta(1).$$
(2)

But since χ is a constituent of ψ^G , we have

$$\chi(1) \le \psi^G(1) = t\psi(1) = t\psi_H(1) = tf\vartheta(1) \le te\vartheta(1).$$
(3)

Combining (2) and (3), we have

$$et\vartheta\left(1\right) = \chi\left(1\right) \le \psi^{G}\left(1\right) \le te\vartheta\left(1\right)$$

so we have equality all the way through. This means that $\chi(1) = \psi^G(1)$ so that $\chi = \psi^G$ and 1 follows.

Additionally, this means e = f so that 4 follows. To see 3, notice that if we have $\psi_1 \in A$ with $\psi_1 \neq \psi$ and $\langle \psi_1, \chi_T \rangle \neq 0$, then we have

$$e = \langle \chi_H, \vartheta \rangle \ge \langle (\psi + \psi_1)_H, \vartheta \rangle = \langle \psi_H, \vartheta \rangle + \langle (\psi_1)_H, \vartheta \rangle > 0 + \langle \psi_H, \vartheta \rangle = f,$$

a contradiction and we have 3. Observe also that 3 is the statement that $\psi \to \psi^G$ is injective, since if we have $\psi_1 \in A$ with $\psi_1^G = \chi$, then $\psi_1 = \psi$.

To see that this map is surjective, observe that if $\vartheta \in B$, then there must exist $\psi \in \operatorname{Irr}(T)$ with $\langle \psi, \chi_T \rangle \neq 0$. But then $\langle \psi_H, \vartheta \rangle \neq 0$ so that $\psi \in A$ and χ is a constituent of ψ^G , so $\chi = \psi^G$.

Application 1 (Ito's Theorem) If A riangle G with A abelian. Then $\chi(1)$ divides [G:A] for all $\chi \in Irr(G)$.

Suppose $N \triangleleft G$ and let $\vartheta \in \operatorname{Irr}(N)$. Then

$$\vartheta^G = \sum e_j \chi_j$$

for $\chi_j \in \text{Irr}(G)$ and $e_j \ge 0$. By Clifford Theory, we have

$$(\chi_j)_N = e_j \sum_{k=1}^t \vartheta_k$$

where $\vartheta_1, \ldots, \vartheta_t$ are the *G*-conjugates of ϑ . Then

$$\vartheta^T = \sum e_j \psi_j$$

where $\psi_i^G = \chi_j$ by the bijection above.

Assume that T = G, that is, ϑ is invariant in G. Hence,

$$\vartheta^{G} = \sum_{\substack{i \in j \\ (\chi_{j})_{N} = e_{j}\vartheta}} e_{j}\chi_{j}$$
$$\chi_{j}(1) = e_{j}\vartheta_{j}(1).$$

Additionally, we have

$$[G:N] \vartheta(1) = \vartheta^G(1) = \sum e_j \chi_j(1) = \sum e_j^2 \vartheta(1).$$

Thus,

$$[G:N] = \sum e_j^2.$$

It can be proved using projective representations that $e_j | [G : N]$. If it were true that $e_1 = 1$, then $(\chi_1)_N = \vartheta$ and in this situation, ϑ is called *extensible to* χ .

Theorem 3 (Gallagher) If there exists $\{e_j\}$ such that $e_1 = 1$, then the $\{e_j\}$ are exactly the character degrees of G/N.

Note that if N is abelian, then $e_j = \chi_j(1)$, and also by Ito's theorem, $e_j | [G : N]$.