Richy's Talk on Clifford Theory

24 June 2004
This talk is on Clifford Theory from the point of view of characters. The reference for this talk is Isaacs' Character Theory, chapter 6.

Let $H \leq G$ and take $\chi \in \operatorname{Irr}(G)$. We can't say much about χ_{H} in general, but when $H \triangleleft G$, the situation changes for the better.

Let ϑ be a class function on H. Define Let $x \in G$ and for $h \in H$ define

$$
\vartheta^{x}(h)=\vartheta\left(x h x^{-1}\right) .
$$

Lemma 1 Let φ, ϑ be class functions on H, let χ be a class function on G, and let $x, y \in G$. Then we have the following.

1. ϑ^{x} is a class function.
2. $\left(\vartheta^{x}\right)^{y}=\vartheta^{x y}$.
3. $\langle\varphi, \vartheta\rangle=\left\langle\varphi^{x}, \vartheta^{x}\right\rangle$.
4. $\left\langle\chi_{H}, \vartheta\right\rangle=\left\langle\chi_{H}, \vartheta^{x}\right\rangle$.
5. ϑ^{x} is a character iff ϑ is.

Proof. To see 4, observe that $\left(\chi_{H}\right)^{x}=\chi_{H}$ since χ is a class function on G and use 3 . The remaining parts are left as an exercise.

We can think of G as permuting $\operatorname{Irr}(H)$ by $g: \vartheta \rightarrow \vartheta^{g}$.
Theorem 1 (Clifford) Let $H \triangleleft G$ and let $\chi \in \operatorname{Irr}(G)$. Suppose that $\vartheta \in \operatorname{Irr}(H)$ is such that ϑ is a constituent of $\left.\chi\right|_{H}$. Let $\vartheta_{1}, \vartheta_{2}, \ldots \vartheta_{t}$ be the distinct G-conjugates of ϑ. Then

$$
\chi_{H}=e \sum_{i=1}^{t} \vartheta_{j}
$$

where $e=\left\langle\chi_{H}, \vartheta\right\rangle$.
Proof. Observe that the ϑ_{j} are irreducible since ϑ is. We have

$$
\left(\vartheta^{G}\right)_{H}(h)=\frac{1}{|H|} \sum_{x \in G} \dot{\vartheta}\left(x h x^{-1}\right)=\frac{1}{|H|} \sum_{x \in G} \dot{\vartheta}^{x}(h) .
$$

Thus,

$$
|H|\left(\vartheta^{G}\right)_{H}=\sum_{x \in G} \vartheta^{x} .
$$

Now if $\lambda \in \operatorname{Irr}(H)$ with $\lambda \notin\left\{\vartheta_{j}\right\}$, then $\left\langle\left(\vartheta^{G}\right)_{H}, \lambda\right\rangle=0$ so that $\left\langle\chi_{H}, \lambda\right\rangle=0$ by Frobenius and because ϑ is a constituent of χ. Then

$$
\chi_{H}=\sum_{j=1}^{t}\left\langle\chi_{H}, \vartheta_{j}\right\rangle \vartheta_{j},
$$

but by Lemma 1, we have $\left\langle\chi_{H}, \vartheta_{j}\right\rangle=\left\langle\chi_{H}, \vartheta\right\rangle$ for all j so that

$$
\chi_{H}=e \sum_{j=1}^{t} \vartheta_{j}
$$

for $e=\left\langle\chi_{H}, \vartheta\right\rangle$.

Definition 1 Let $H \triangleleft G$ and let $\vartheta \in \operatorname{Irr}(H)$. Define

$$
T=\left\{x \in G: \vartheta^{x}=\vartheta\right\} .
$$

T is called the inertia group of ϑ.
The inertia group is the stabilizer of the action of G on $\operatorname{Irr}(G)$. Thus, $[G: T]=t$. This also implies that t divides $[G: H]$ since $H \leq T$.

Theorem 2 (Clifford) Let $H \triangleleft G, \vartheta \in \operatorname{Irr}(H)$. Define

$$
\begin{aligned}
& A=\left\{\psi \in \operatorname{Irr}(T):\left\langle\psi_{H}, \vartheta\right\rangle \neq 0\right\} \\
& B=\left\{\chi \in \operatorname{Irr}(G):\left\langle\chi_{H}, \vartheta\right\rangle \neq 0\right\}
\end{aligned}
$$

Then

1. If $\psi \in A$, then $\psi^{G} \in B$.
2. The map $A \rightarrow B$ given by $\psi \rightarrow \psi^{G}$ is a bijection.
3. If $\psi^{G}=\chi$, then $\psi \in A$ is the unique irreducible constituent of χ_{T} that lies in A.
4. If $\psi^{G}=\chi$ with $\psi \in A$, then $\left\langle\psi_{H}, \vartheta\right\rangle=\left\langle\chi_{H}, \vartheta\right\rangle$.

Proof. Let $\psi \in A$ and choose $\chi \in \operatorname{Irr}(G)$ such that $\left\langle\psi^{G}, \chi\right\rangle \neq 0$. By Frobenius, we have

$$
\left\langle\psi, \chi_{T}\right\rangle=\left\langle\psi^{G}, \chi\right\rangle \neq 0
$$

so that ψ is a constituent of χ_{T}. Restricting to H, we have

$$
\begin{equation*}
0<\left\langle\psi_{H}, \vartheta\right\rangle \leq\left\langle\chi_{H}, \vartheta\right\rangle \tag{1}
\end{equation*}
$$

This shows that $\chi \in B$.
Look at the distinct G conjugates $\vartheta_{1}, \ldots, \vartheta_{t}$, where $t=[G: T]$. By Theorem 1, we have

$$
\chi_{H}=e \sum_{j=1}^{t} \vartheta_{j}
$$

where $e=\left\langle\chi_{H}, \vartheta\right\rangle$. Using Theorem 1 again, we have

$$
\psi_{H}=f \sum_{x \in T} \vartheta^{x}=f \vartheta
$$

since T stabilizes ϑ where $f=\left\langle\psi_{H}, \vartheta\right\rangle$.

We have

$$
\begin{equation*}
\chi(1)=\chi_{H}(1)=e \sum_{j=1}^{t} \vartheta_{j}(1)=\operatorname{et\vartheta }(1) . \tag{2}
\end{equation*}
$$

But since χ is a constituent of ψ^{G}, we have

$$
\begin{equation*}
\chi(1) \leq \psi^{G}(1)=t \psi(1)=t \psi_{H}(1)=t f \vartheta(1) \leq t e \vartheta(1) . \tag{3}
\end{equation*}
$$

Combining (2) and (3), we have

$$
\operatorname{et\vartheta }(1)=\chi(1) \leq \psi^{G}(1) \leq t e \vartheta(1)
$$

so we have equality all the way through. This means that $\chi(1)=\psi^{G}(1)$ so that $\chi=\psi^{G}$ and 1 follows.

Additionally, this means $e=f$ so that 4 follows. To see 3, notice that if we have $\psi_{1} \in A$ with $\psi_{1} \neq \psi$ and $\left\langle\psi_{1}, \chi_{T}\right\rangle \neq 0$, then we have

$$
e=\left\langle\chi_{H}, \vartheta\right\rangle \geq\left\langle\left(\psi+\psi_{1}\right)_{H}, \vartheta\right\rangle=\left\langle\psi_{H}, \vartheta\right\rangle+\left\langle\left(\psi_{1}\right)_{H}, \vartheta\right\rangle>0+\left\langle\psi_{H}, \vartheta\right\rangle=f,
$$

a contradiction and we have 3. Observe also that 3 is the statement that $\psi \rightarrow \psi^{G}$ is injective, since if we have $\psi_{1} \in A$ with $\psi_{1}^{G}=\chi$, then $\psi_{1}=\psi$.

To see that this map is surjective, observe that if $\vartheta \in B$, then there must exist $\psi \in \operatorname{Irr}(T)$ with $\left\langle\psi, \chi_{T}\right\rangle \neq 0$. But then $\left\langle\psi_{H}, \vartheta\right\rangle \neq 0$ so that $\psi \in A$ and χ is a constituent of ψ^{G}, so $\chi=\psi^{G}$.

Application 1 (Ito's Theorem) If $A \Delta G$ with A abelian. Then $\chi(1)$ divides $[G: A]$ for all $\chi \in \operatorname{Irr}(G)$.

Suppose $N \triangleleft G$ and let $\vartheta \in \operatorname{Irr}(N)$. Then

$$
\vartheta^{G}=\sum e_{j} \chi_{j}
$$

for $\chi_{j} \in \operatorname{Irr}(G)$ and $e_{j} \geq 0$. By Clifford Theory, we have

$$
\left(\chi_{j}\right)_{N}=e_{j} \sum_{k=1}^{t} \vartheta_{k}
$$

where $\vartheta_{1}, \ldots, \vartheta_{t}$ are the G-conjugates of ϑ. Then

$$
\vartheta^{T}=\sum e_{j} \psi_{j}
$$

where $\psi_{j}^{G}=\chi_{j}$ by the bijection above.
Assume that $T=G$, that is, ϑ is invariant in G. Hence,

$$
\begin{aligned}
\vartheta^{G} & =\sum e_{j} \chi_{j} \\
\left(\chi_{j}\right)_{N} & =e_{j} \vartheta \\
\chi_{j}(1) & =e_{j} \vartheta_{j}(1) .
\end{aligned}
$$

Additionally, we have

$$
[G: N] \vartheta(1)=\vartheta^{G}(1)=\sum e_{j} \chi_{j}(1)=\sum e_{j}^{2} \vartheta(1) .
$$

Thus,

$$
[G: N]=\sum e_{j}^{2} .
$$

It can be proved using projective representations that $e_{j} \mid[G: N]$. If it were true that $e_{1}=1$, then $\left(\chi_{1}\right)_{N}=\vartheta$ and in this situation, ϑ is called extensible to χ.

Theorem 3 (Gallagher) If there exists $\left\{e_{j}\right\}$ such that $e_{1}=1$, then the $\left\{e_{j}\right\}$ are exactly the character degrees of G / N.

Note that if N is abelian, then $e_{j}=\chi_{j}(1)$, and also by Ito's theorem, $e_{j} \mid[G: N]$.

