Richy's Second Talk

This talk is about the characters in $\operatorname{Irr}_{p^{\prime}}\left(N_{S(\Omega)}(D)\right)$ and is based on a paper by Paul Fong in J Algebra.

Let Ω be a set of size n with $n=n_{0}+n_{1} p+n_{2} p^{2}+\ldots$ Then $\Omega=\Omega_{-} \cup \Omega_{+}$where $\left|\Omega_{-}\right|=n_{-}=n_{0}$ and $\left|\Omega_{+}\right|=n_{+}=n_{1} p+n_{2} p^{2}+\ldots$ Let Δ_{k} be disjoint sets of size n_{k} for $k \geq 1$. Define $I=\{1,2, \ldots, p\}$ and $\Omega_{k}=\left(I^{k}\right)^{\Delta_{k}}$ so that $\left|\Omega_{k}\right|=n_{k} p^{k}$.

Note that $S\left(I^{k}\right)^{\Delta_{k}}$ and $\prod_{k \geq 1} S\left(I^{k}\right)^{\Delta_{k}}$ act componentwise on Ω_{k} and on Ω_{+}respectively.

Let X_{1} be the Sylow p-subgroup of $S(I)$, so $X_{1}=\langle(123 \ldots p)\rangle$.
Recall the definition of the Wreath product $G<H$ where G is a finite group and $H \leq S_{n}$. Look this up in Kerber and James, Chapter 4 for more details. Define

$$
G^{n}=\{f: f: \bar{n} \rightarrow G\}
$$

where $\bar{n}=\{1,2, \ldots, n\}$. Then

$$
G \imath H=G^{n} \ltimes H=\left\{(f, \pi): f: \bar{n} \rightarrow G, \pi \in H \leq S_{n}\right\} .
$$

The Wreath product has a group structure by $(f, \pi)\left(f^{\prime}, \pi^{\prime}\right)=\left(f f_{\pi}^{\prime}, \pi \pi^{\prime}\right)$ where $f_{\pi}^{\prime}=$ $\pi \cdot f^{\prime}$ or internally,

$$
f \pi f^{\prime} \pi^{\prime}=f\left(\pi f^{\prime} \pi^{-1}\right) \pi \pi^{\prime}
$$

Observe that $|G \imath H|=|G|^{n}|H|$.
Next, we consider the k-fold Wreath product $X_{1} \imath X_{1} \imath \cdots \imath X_{1} k$-times. This group is denoted $X_{k} \subset S\left(I^{k}\right)$. Associativity holds by an argument in Kerber and James.

Then

$$
\begin{aligned}
\left|X_{1}\right| & =p=p^{p_{0}} \\
\left|X_{1} \backslash X_{2}\right| & =p^{p} \cdot p=p^{p^{1}+p^{0}} \\
& \cdots \\
\left|X_{1} \backslash X_{1} \backslash X_{1}\right|=\left|X_{k}\right| & =p^{p^{k-1}}+\cdots+1
\end{aligned}
$$

Consider the exponential valuation $\nu(p)=1$ and $\nu(n)$ the highest power of p dividing n. Then if $n=\sum_{i=1}^{k} n_{i} p^{i}$, then from a paper by MacDonald from 1971, we have that $\nu(n!)=\frac{n-\sum n_{i}}{p-1}$. Then $\nu\left(p^{k}!\right)=\frac{p^{k}-1}{p-1}=p^{k-1}+p^{k-2}+\cdots+1$ so that $X_{k} \in \operatorname{Syl}_{k}\left(S\left(I^{k}\right)\right)$. By extension of this argument, we have that $D=X_{1}^{\Delta_{1}} \times \cdots \times X_{k}^{\Delta_{k}} \in \operatorname{Syl}_{p}\left(S\left(\Omega_{+}\right)\right)$. This Sylow subgroup is a direct product of iterated Wreath products.

Let $Y_{k}=N_{S\left(I^{k}\right)}\left(X_{k}\right)$. If $k=1$, then $Y_{1}=X E$, a Frobenius group with cyclic compliment E as in James and Liebeck, example 2.5.11. Frobenius groups are described in isaacs, Chapter 4. If $1<H<G$, then $H \cap H^{g}=1$ for $g \in G \backslash H$, then H is a Frobenisu compliment and G is a Frobeinus group with compliment H.

Then $N_{S(\Omega)}(D)=S\left(\Omega_{-}\right) \times \prod_{k>1} Y_{k} \swarrow S\left(\Delta_{k}\right)$. The irreducible characters of this are of the form $\omega_{k} \times \phi$ where $\omega_{k} \in \operatorname{Irr}\left(S\left(\Omega_{-}\right)\right)$and $\phi=\prod \phi_{k}$ for $\phi_{k} \in \operatorname{Irr}\left(Y_{k} \backslash S\left(\Delta_{k}\right)\right)$ and the p^{\prime} characters are those with $p \nmid\left(\omega_{k} \times \phi\right)(1)$.

Using Clifford theory, since $D \triangleleft N_{S(\Omega)}(D)$, we have $\left.p \Lambda\left(\phi_{k}\right)\right|_{D}(1)$ so that $\left.\phi_{k}\right|_{D}=$ $\sum a_{k} \lambda_{i}$ for $\lambda_{i} \in \operatorname{Irr}(D), \lambda_{i}(1)=1$. Hence, $\omega_{k} \times \phi \in \operatorname{Irr}\left(N_{S(\Omega)}(D) / D\right)$.

By a theorem of Olsson, we have $Y_{k} / X_{k}^{\prime}=Y_{1}^{k}$ so that in our case, $N_{S(\Omega)}(D) / D^{\prime} \cong$ $S(\Omega) \times \prod_{k>1} Y_{1}^{k} \imath S\left(\Delta_{k}\right)$. so $\phi_{k} \in \operatorname{Irr}\left(Y_{1}^{k} \imath S\left(\Delta_{k}\right)\right)^{V}$.

Recall that $\operatorname{Irr}\left(Y_{1}\right)=\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{p}\right\}$ where $\xi_{1}, \ldots \xi_{p-1}$ are linear and ξ_{p} has degree $\underline{p}-1$. Then $\operatorname{Irr}\left(Y_{1}^{k}\right)$ are k-tuples of the ξ_{i}. We write this as $\xi_{\bar{i}}=\left(\xi_{i_{1}}, \xi_{i_{2}}, \ldots, \xi_{i_{k}}\right)$ for $\bar{i} \in \mathrm{I}^{k}$.

Using this language, we can label ϕ_{k} by a function f_{k} mapping $\operatorname{Irr} Y_{1}^{k} \rightarrow \operatorname{Irr}\left(S\left(\Delta_{k}\right)\right)$ We do this as follows.

Partition Δ_{k} into disjoint subsets $\Delta_{k, \bar{i}}$ of size $\left|f_{k}\left(\xi_{\bar{i}}\right)\right|$. Let $\zeta_{k} \in \operatorname{Irr}\left(\left(Y_{1}^{k}\right)^{\Delta_{k}}\right)$. have component $\xi_{\bar{i}}$ is positions indexed by elements of $\Delta_{k, \bar{i}}$.

Then the stabilizer of ξ_{k} in $s\left(\Delta_{k}\right)$ is $\prod_{\bar{i} \in I^{k}} S\left(\Delta_{k, \bar{i}}\right)=S\left(\Delta_{k}\right)_{\xi_{k}}$ so that $Y_{k}^{\Delta_{k}} S\left(\Delta_{k}\right)_{\xi_{k}}$ is the inertia roup of ξ_{k} in $Y_{k} \prec S\left(\Delta_{k}\right)$. We have $E\left(\xi_{k}\right)$ extends ξ_{k} so $Y_{k}^{\Delta_{k}} S\left(\Delta_{k}\right)_{\xi_{k}}$.

Now let ω_{k} be the character of $S\left(\Delta_{k}\right)_{\xi_{k}}$ with component $\omega_{f_{k}\left(\xi_{i}\right)}$ on $S\left(\Delta_{k, \bar{i}}\right)$. Define

$$
\phi_{k}=\operatorname{Ind}_{Y_{k}^{\Delta_{k}} S\left(\Delta_{k}\right)_{\xi_{k}}}^{Y_{k}^{\Delta_{k}} S\left(\Delta_{k}\right)} E\left(\xi_{k}\right) \omega_{k} .
$$

We have by Clifford theory then $\varphi_{k} \in \operatorname{Irr}\left(Y_{k} \backslash S\left(\Delta_{k}\right)\right)$.

