
Homework 1

1. For A :=

 −8 −10 −1
7 9 1
3 2 0

, we have that cA(X) = (X − 1)2(X + 1). Since u1 := 2
−1
−4

 is an eigenvector corresponding with -1, we have that U1 := 〈u1〉 is an A-

submodule as (
r∑

j=0

αjT
j

)
(βu1) =

(
β

r∑
j=0

αj(−1)j

)
u1 ∈ U1.

Linear algebra gives that

N (A+ 1)2 =

〈 −1
1
1

 ,

 0
0
1

〉 .
is the generalized eigenspace for the eigenvector 1, with the first vector listed being an
eigenvector for 1. Now taking

u3 :=

 0
0
1

 , and u2 := (A+ 1)u3 =

 −1
1
1

 ,

we have that U2 := 〈u2, u3〉 = 〈u3〉 is a A-submodule as Au2 = u2 ∈ U2 and Au3 =
u2 + u3 ∈ U2.

Also, {v1, v2, v3} is a basis for V1 so that V1 = 〈u1〉 ⊕ 〈u3〉 = U1 ⊕ U2.

However, U2 is not irreducible as 〈u2〉 is a proper A-submodule of U2. Also U2 is not
completely reducible as the only possible compliment of 〈u2〉 would be 〈u3〉 , which
is not a submodule as Au3 = u2 6∈ 〈u3〉. This also means that V1 is not completely
reducible.

We compute the Jordan form for A for our amusment: define

SA = (u1, u2, u3) =

 2 −1 0
−1 1 0
−4 −1 1


and

JA = (Au1, Au2, Au3) =

 −1 0 0
0 1 1
0 0 1

 ,

so that A = SJS−1.
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Continuing, let B :=

 −3 2 −4
4 −1 4
4 −2 5

. Then cB(X) = cA(X) = (X − 1)2(X + 1)

and the Jordan form for B is JB =

 −1 0 0
0 1 0
0 0 1

 with conjugating matrix SB = −1 1 0
1 2 2
1 0 1

. In particular, this means that B has 3 independent eigenvectors

v1 :=

 −1
1
1

 , v2 :=

 1
2
0

 , and v3 :=

 0
2
1


so that 〈v1〉,〈v2〉, and 〈v3〉 are all submodules of V2 and V2 = 〈v1〉 ⊕ 〈v2〉 ⊕ 〈v3〉 so that
V2 is completely reducible. We have, however, that V1 is not completely reducible so
that V2 is not isomorphic with V1.

2. Let V = 〈e1, e2 · · · em〉. We have that

ej1 ⊗ ej2 ⊗ · · · ⊗ ejn = eσj1 ⊗ eσj2 ⊗ · · · ⊗ eσjn

in SnV for any σ ∈ Sn since if σ = τ1 ◦ τ2 ◦ · · · ◦ τr for transposition s τj, then

ej1⊗ej2⊗· · ·⊗ejn = eτrj1⊗eτrj2⊗· · ·⊗eτrjn = eτr−1τrj1⊗eτr−1τrj2⊗· · ·⊗eτr−1τrjn = · · · =

eτ1···τr−1τrj1 ⊗ eτ1···τr−1τrj2 ⊗ · · · ⊗ eτ1···τr−1τrjn = eσj1 ⊗ eσj2 ⊗ · · · ⊗ eσjn .

This shows that two tensors are equal in the symmetric product if their component
vectors are permuted. We can then assume that any tensor can be expressed with its
components in non-decreasing order as follows:

r1︷ ︸︸ ︷
e1 ⊗ e1 ⊗ · · · ⊗ e1⊗

r2︷ ︸︸ ︷
e2 ⊗ e2 ⊗ · · · ⊗ e2⊗ · · ·

rm︷ ︸︸ ︷
em ⊗ em ⊗ · · · ⊗ em︸ ︷︷ ︸

n

with rj ≥ 0. Then two tensors will be equal if they have the same number of e1’s, the
same number of e2’s, etc., so that the problem is reduced to selecting r1, r2 . . . rm with
rj ≥ 0 and r1 + r2 + · · · rm = n.

Now we all know that there are

(
n+m− 1

r

)
ways to put n balls into m baskets, for,

you see, the m baskets, when placed side by side, have m − 1 interior walls, so that
we only have to count the number of ways to select n of n+m− 1 objects to be balls
(and not walls), giving the formula above.

Now, returning to the symmetric product, we see that selecting rj ≥ 0 with
∑

j rj = n

is equivalent to putting n balls into m baskets so that there will be

(
n+m− 1

r

)
ways

to do so. Hence, dimSnV =

(
n+m− 1

r

)
.
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3.

(
n∧
ρ)(e1 ∧ e2 ∧ · · · ∧ en) = ρe1 ∧ ρe2 ∧ · · · ∧ ρen =∑

i

ai,1ei ∧
∑

i

ai,2ei ∧ · · · ∧
∑

i

ai,nei =

∑
σ∈Sn

sgn(σ)(aσ(1),1aσ(2),2 · · · aσ(n),n)(e1 ∧ e2 ∧ · · · ∧ en) = detA(e1 ∧ e2 ∧ · · · ∧ en).

4. If gh = k, then h = g−1k so that

g

(∑
h

αheh

)
=
∑

h

αhegh =
∑

k

αg−1kek.

We identify the vector
∑

h αheh with the C-valued function
∑

h αhIh and make the
collection R1 of C-valued function into a G-module by defining

gϕ(k) := ϕ(g−1k)

for ϕ ∈ R1 and g, k ∈ G. Then

g

(∑
h

αhIh

)
(k) =

(∑
h

αhIh

)
(g−1k) = αg−1k

so that

g

(∑
h

αhIh

)
=
∑

k

αg−1kIk.

Then under the identification above, g (
∑

h αheh) corresponds with g (
∑

h αhIh) as
required.

Let R2 be the space of functions on G made into a module by the action

gϕ(k) := ϕ(kg)

for ϕ ∈ R2 and k, g ∈ G.

Then

g

(∑
h

αhIh

)
(k) =

(∑
h

αhIh

)
(kg) = αkg

so that

g

(∑
h

αhIh

)
=
∑

k

αkgIk.

Define Φ : R1 −→ R2 by

Φ

(∑
h

αhIh

)
:=
∑

h

αh−1Ih.
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Then Φ is clearly a C-vector space isomorphism. To see that Φ is a G-module homo-
morphism,

Φ

(
g
∑

h

αhIh

)
= Φ

(∑
k

αg−1kIk

)
=
∑

k

αk−1gIk = g
∑

h

αh−1Ih = gΦ

(∑
h

αhIh

)
.

Cheers!

Homework 10
Marcus

1. Let V be a vector space of dimension k over C. Show that V ⊗3 is the direct sum of 4
irreducible GL(V ) = GL(k,C)-modules of dimensions

k(k + 1)(k + 2)

6
,
k(k − 1)(k − 2)

6
,
k(k2 − 1)

3
,
k(k2 − 1)

3
.

SλV is irreducible for all λ ` 3 with fewer than 4 parts. Assuming that k ≥ 3, all the
partitions of 3 have fewer than 4 parts. For λ = 13, we compute

dim S(13)V =
∏

1≤i<j≤k

λi − λj + j − i

j − i

=

(
1− 1 + 2− 1

2− 1

)(
1− 1 + 3− 1

3− 1

)(
1− 0 + 4− 1

4− 1

)
· · ·
(

1− 0 + k − 1

k − 1

)
·(

1− 1 + 3− 2

3− 2

)(
1− 0 + 4− 2

4− 2

)(
1− 0 + 5− 2

5− 2

)
· · ·
(

1− 0 + k − 2

k − 2

)
·(

1− 0 + 4− 3

4− 3

)(
1− 0 + 5− 3

5− 3

)(
1− 0 + 6− 3

6− 3

)
· · ·
(

1− 0 + k − 3

k − 3

)
·(

0− 0 + 5− 4

5− 4

)(
0− 0 + 6− 4

6− 4

)(
0− 0 + 7− 4

7− 4

)
· · ·
(

0− 0 + k − 4

k − 4

)
·

· · ·
(

0− 0 + k − (k − 1)

k − (k − 1)

)
= 1 · 1 · 4

3
· 5

4
· · · k

k − 1
·

1 · 3

2
· 4

3
· · · k − 1

k − 2
·

2

1
· 3

2
· · · k − 2

k − 3
·

1 · 1 · · · 1 ·
1

=
k

3
· k − 1

2
· k − 2

1

=
k(k − 1)(k − 2)

6
.
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We similarly compute that

dim S(2,1)V =
k(k2 − 1)

3
and dim S(3)V =

k(k − 1)(k − 2)

6

and that
V ⊗3 = S(13)V ⊕

(
S(2,1)V

)⊗2 ⊕ S(3)V

2. Let k = 3 and d = 3 as above. Let {e1, e2, e3} be a basis of V . Let λ = 2, 1.

(a) Verify that SλV has dimension 8 and that is has a basis as given in the Semis-
tandard Basis Theorem.

We compute that the semi-standard tableux are

1 1

2
,

1 1

3
,

1 2

2
,

1 2

3
,

1 3

2
,

1 3

3
,

2 2

3
, and

2 3

3
.

Now for
1 1

2
, we have(

e1 ⊗ e2 ⊗ e1
)
cλ =

(
e1 ⊗ e2 ⊗ e1

)(
1 + (12)− (13)− (132)

)
=

(
e1 ⊗ e2 ⊗ e1

)
+
(
e2 ⊗ e1 ⊗ e1

)
−
(
e1 ⊗ e2 ⊗ e1

)
−
(
e1 ⊗ e1 ⊗ e2

)
=

(
e2 ⊗ e1 ⊗ e1

)
−
(
e1 ⊗ e1 ⊗ e2

)
.

Similarly, we have(
e1 ⊗ e3 ⊗ e1

)
cλ =

(
e3 ⊗ e1 ⊗ e1

)
−
(
e1 ⊗ e1 ⊗ e3

)
,(

e1 ⊗ e2 ⊗ e2
)
cλ =

(
e1 ⊗ e2 ⊗ e2

)
−
(
e2 ⊗ e2 ⊗ e1

)
,(

e1 ⊗ e3 ⊗ e2
)
cλ =

(
e1 ⊗ e3 ⊗ e2

)
+
(
e3 ⊗ e1 ⊗ e2

)
−
(
e2 ⊗ e3 ⊗ e1

)
−
(
e2 ⊗ e1 ⊗ e3

)
,(

e1 ⊗ e2 ⊗ e3
)
cλ =

(
e1 ⊗ e2 ⊗ e3

)
+
(
e2 ⊗ e1 ⊗ e3

)
−
(
e3 ⊗ e2 ⊗ e1

)
−
(
e3 ⊗ e1 ⊗ e2

)
,(

e1 ⊗ e3 ⊗ e3
)
cλ =

(
e1 ⊗ e3 ⊗ e3

)
−
(
e3 ⊗ e3 ⊗ e1

)
,(

e2 ⊗ e3 ⊗ e2
)
cλ =

(
e3 ⊗ e2 ⊗ e2

)
−
(
e2 ⊗ e2 ⊗ e3

)
,

and(
e2 ⊗ e3 ⊗ e3

)
cλ =

(
e2 ⊗ e3 ⊗ e3

)
−
(
e3 ⊗ e3 ⊗ e2

)
We notice that no simple tensor ei⊗ej⊗ek appears more than once as a summand
of any of the 8 vectors above so that if

0 = α1

(
e2 ⊗ e1 ⊗ e1 − e1 ⊗ e1 ⊗ e2

)
+ α2

(
e3 ⊗ e1 ⊗ e1 − e1 ⊗ e1 ⊗ e3

)
+ · · ·

= 0 ·
(
e1 ⊗ e1 ⊗ e1

)
− α1

(
e1 ⊗ e1 ⊗ e2

)
+ · · ·

then by the independence of

{
ei ⊗ ej ⊗ ek|1 ≤ i, j, k ≤ 3

}
, we have that αj = 0

for all 1 ≤ j ≤ 8 so that the above vectors are independent. Thus these vectors
form a basis for SλV .
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(b) Let g =

x1 0 0
0 x2 0
0 0 x3

. Verify the character formula given in Fulton and Harris

in Theorem 6.3

We compute the character of SV at g =

x1 0 0
0 x2 0
0 0 x3

 directly by determining

the images of the basis vectors computed in the previous problem under the action
of g. We have thatx1 0 0

0 x2 0
0 0 x3

 ·
(
e2 ⊗ e1 ⊗ e1 − e1 ⊗ e1 ⊗ e2

)
= x2e2 ⊗ x1e1 ⊗ x1e1 − x1e1 ⊗ x1e1 ⊗ x2e2

= x2
1x2

(
e2 ⊗ e1 ⊗ e1 − e1 ⊗ e1 ⊗ e2

)
and similarly for the other basis elements so that the matrix corresponding with
this action is x

2
1x2 0 · · ·
0 x2

1x3
...

. . .


and the trace of this matrix is

x2
2x3 + x1x

2
2 + x2

3x2 + 2x1x2x3 + x2
1x2 + x1x

2
3 + x2

1x3

which corresponds with the Schur polynomial I computed with Maple.

We further corroborate the claim that the Schur polynomials Sλ are in fact the
characters of Sλ by computing the trace of

(
g, (12)

)
on V ⊗3 and verifying that

this is
∑

λ∈Λ(3,3) Sλ(x1, x2, x3)χλ(12), the trace of (g, (12) on
⊕

λ∈Λ(3,3) SλV ⊗ Vλ.

To compute the trace on V ⊗3, we note that only the basis vectors ej ⊗ ej ⊗ ek will
be fixed under the right action of (12) and that in this situation,x1 0 0

0 x2 0
0 0 x3

 , (12)

 · ej ⊗ ej ⊗ ek =

x1 0 0
0 x2 0
0 0 x3

 · ej ⊗ ej ⊗ ek

 · (12)

= (xjej ⊗ xjej ⊗ xkek) · (12)

= xjej ⊗ xjej ⊗ xkek

= x2
jxk

(
ej ⊗ ej ⊗ ek

)
.
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where · generically represents all actions involved. Thus,

Trace of

x1 0 0
0 x2 0
0 0 x3

 , (12)

 on V ⊗3 = Tr



x3
1 0 0 0 · · ·
0 x2

1x2 0 0 · · ·
0 0 x2

1x3 0 · · ·
0 0 0 0 · · ·
...
0 0 0 x2

1x2


=

∑
1≤j,k≤3

x2
jxk

= (x1 + x2 + x3)(x
2
1 + x2

2 + x2
3)

Maple gives that

S13(x1, x2, x3) = x1x2x3

S2,1(x1, x2, xe) = x2
2x3 + x1x

2
2 + x2

3x2 + 2x1x2x3 + x2
1x2 + x1x

2
3 + x2

1x3

S3(x1, x2, x3) = x3
2 + x2

2x3 + x1x
2
2 + x2

3x2 + x1x2x3 + x2
1x2 + x3

3 + x1x
2
3 + x2

1x3 + x3
1.

Substituting these polynomials for χS13V (x1, x2, x3), χS2,1V (x1, x2, x3), and χS3V (x1, x2, x3),
we have

Trace of

x1 0 0
0 x2 0
0 0 x3

 , (12)


on

⊕
λ∈Λ(3,3)

SλV ⊗ Vλ =
∑

λ∈Λ(3,3)

χSλV (x1, x2, x3)χλ(12)

= χS13V (x1, x2, x3)χ13(12) + χS2,1V (x1, x2, x3)χ2,1(12)

+χS3V (x1, x2, x3)χ3(12)

= χS13V (x1, x2, x3) · (−1) + χS2,1V (x1, x2, x3)χ2,1(12) · 0
+χS3V (x1, x2, x3)χ3(12) · 1

= x3
2 + x2

2x3 + x1x
2
2 + x2

3x2

+x2
1x2 + x3

3 + x1x
2
3 + x2

1x3 + x3
1

= (x1 + x2 + x3)(x
2
1 + x2

2 + x2
3)

= Trace of

x1 0 0
0 x2 0
0 0 x3

 , (12)

 on V ⊗3

Homework 2
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Let W be some representation of D4 = 〈r, s|r4 = s2 = 1, srs = r3〉. When we allow2.
the abelian subgroup 〈r〉 ≤ D4 to act on W , we have by Maschke that W =

⊕m
j=1 Vj for

irreducible 〈r〉-submodules Vj, but by Schur, Vj = 〈vj〉 for eigenvectors vj of r. Moreover,
the eigenvalue for vj is ikj , kj = 0, 1, 2, 3.

1. Now suppose vj is an eigenvector for r with eigenvalue i. Then

rsvj = sr3vj = si3vj = −isvj

so that svj is also an eigenvector for r with eigenvalue −i. Then vj and svj are
independent, having different eigenvalues, so that W1 = 〈vj, svj〉 is a D4-submodule of
W .

Now W1 is irreducible since any proper subspace 〈αvj + βsvj〉 ≤ W1, is not D4-stable
as s(αvj +βsvj) = βvj +αsvj ∈ 〈αvj +βsvj〉 so that α = ±β and we can assume α = 1
and β = ±1, but r(vj ± svj) = ivj ∓ isvj 6∈ 〈vj ± svj〉.
Thus W1 is a irreducible two-dimensional D4-module.

2. If vj is an eigenvector for r with eigenvalue −1, then by a similar argument, we have
that svj is also an eigenvector for r with eigenvalue −1.

(a) If vj and svj are not independent, then svj = cvj for some constant c ∈ C. Then
applying s to both sides,

vj = csvj = c2vj

so that c = ±1.

i. If svj = vj, then let W2 = 〈vj〉. W2 is an irreducible D4-module.

ii. If svj = −vj, then let W3 = 〈vj〉. W3 is also an irreducible D4-module.

(b) If vj and svj are independent, then 〈vj, svj〉 is a D4-submodule, but is not irre-
ducible as 〈vj + svj〉 and 〈vj − svj〉 are proper D4-submodules of 〈v, svj〉 with
〈vj + svj〉⊕ 〈vj − svj〉 = 〈vj, svj〉. These modules are isomorphic with W2 and W3

above.

3. If vj is an eigenvector for r with eigenvalue 1, then as above, svj is also an eigenvector
for r with eigenvalue 1.

(a) If vj and svj are not independent, then as above, svj = ±vj

i. If svj = vj, then W4 = 〈vj〉 is an irreducible submodule and is isomorphic
with the trivial module.

ii. If svj = −vj, then W5 = 〈vj〉 is a irreducible submodule.

(b) If vj and svj are independent, then 〈vj, svj〉 is a D4-submodule, but is not irre-
ducible as 〈vj + svj〉 and 〈vj − svj〉 are proper D4-submodules of 〈v, svj〉 with
〈vj + svj〉⊕ 〈vj − svj〉 = 〈vj, svj〉. These modules are isomorphic with W4 and W5

above.
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We have thus computed that the only irreducibleD4-modules areW1, which is two-dimensional,
and W2, W3, W4, and W5, which are one-dimensional.

S2V has basis {α2, αβ, β2} with1.11

τα2 = τα · τα = ωα · ωα = ω2α2.

We similarly compute
τα2 = ω2α2 σα2 = β2

ταβ = αβ σαβ = αβ
τβ2 = ωβ2 σβ2 = α2.

We have, by arguments similar to those given in problem 2 above, that 〈αβ〉 and 〈α2, β2〉
are irreducible submodules and

S2V = 〈αβ〉 ⊕ 〈α2, β2〉 ∼= U ⊕ V.

Similarly, {α3, α2β, αβ2, β3} is a basis for S3V . We compute

τα3 = α3 σα3 = β3

τα2β = ωα2β σα2β = αβ2

ταβ2 = ω2αβ2 σαβ2 = α2β
τβ3 = β3 σβ3 = α3.

Then
S3V = 〈α2β, αβ2〉 ⊕ 〈α3 + β3〉 ⊕ 〈α3 − β3〉.

This approach is extremely direct. You will hate every word of it. We use matrices to1.12
compute the eigenvectors for τ .

Eigenvector for τ Eigenvalue
v1 1 + τ + τ 2 1
v2 σ + στ + στ 2 1
v3 1 + ω2τ + ωτ 2 ω
v4 σ + ωστ + ω2στ 2 ω
v5 1 + ωτ + ω2τ 2 ω2

v6 σ + ω2στ + ωστ 2 ω2

and note that v3 and σv3 = v6 are independent, being eigenvectors for τ which correspond
with different eigenvalues. Similarly, v4 and σv4 = v5 are independent. Moreover, 〈v3, v6〉
and 〈v4, v5〉 are irreducible as demonstrated in problem 2 above. Moreover,

〈v3, v6〉 ∼= 〈v4, v5〉 ∼= V

where V is the standard module.
Finally, we can all see that v1 and σv1 = v2 are independent. However, 〈v1, v2〉 is not

irreducible as 〈v1 + v2〉 ⊕ 〈v1 − v2〉 = 〈v1, v2〉. Moreover,

〈v1 + v2〉 ∼= U and 〈v1 − v2〉 ∼= U ′

where U is the trivial module and U ′ is the alternating module.
Hence, we have that R ∼= U ⊕ U ′ ⊕ V 2.
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Homework 3
1. (a) Let Vj := 〈e1, e2 . . . ej〉 where ej = (0, 0 . . . 1 . . . 0) with the 1 in the jth position.

Then Vj is a B-submodule. Now as Vj/Vj−1 = 〈ej〉 + Vj−1
∼= 〈ej〉, we have that

Vj/Vj−1 is irreducible and that

V ≥ Vn−1 ≥ Vn−1 ≥ · · · ≥ V2 ≥ V1 ≥ 0

Write ρj for the representation of B induced by Vj/Vj−1. Then for M ∈ B we
have

M



v1

v2
...

vj−1

vj

0
...
0


=



♠
♠
...
♠

mj,jvj

0
...
0


so that ρj(M) : vjej + Vj−1 7→ mj,jvjej + Vj−1. Thus, M acts as multiplication by
mj,j.

(b) Write Ei,j for the matrix with 1 in the (i, j) position and 0’s elsewhere. Define
Bj = 〈E1,j, E2,j . . . Ej,j〉. Then Bj is a B-submodule with B =

⊕n
j=1Bj.

Write ρk for the representation of B induced by Bk. To describe ρk, it suffices
to describe the transformations ρk(Ei,j) for Ei,j, i ≤ j, the generators of B. Now
in general, left multiplication by Ei,j replaces the the jth row with the ith row
and clobbers everything else. Then for M ∈ Bk, where only the kth column is
non-zero, we have Ei,jM = mj,kEi,k, that is, ρk(Ei,j) is the transformation which
extracts the (j, k) entry and moves it to position (i, k), and clobbers everything
else.

2. (a) Let ρg : h 7→ gh for all h ∈ G. Then ρa : aj 7→ aj+1 and this transformation has
matrix 

0 0 · · · 0 1
1 0 0 0
0 1 0 0
...

. . .

0 1 0


with respect to the basis G of KG.

(b) Computation gives that the characteristic polynomial for A is cA(X) = (X − 1)p.
To find the Jordan form of A, we locate a basis for Cn consisting of (A−1)-strings.
There are at least two good ways to do this.

First, we know by the theorem in Professor Radford’s book about the number o
(A− 1)-strings that there are

Rank(A− 1)p+1 + Rank(A− 1)p−1 − 2Rank(A− 1)p = Rank(A− 1)p−1
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(A − 1)-strings of length p in any basis of (A − 1)-strings. But the range of
(A− 1)p−1 is the nullspace of A− 1 as (A− 1) [(A− 1)p−1v] = (A− 1)pv = 0 by
Caley-Hamilton. Thus, the nullity of A− 1 is 1 as

N (A− 1) = N


−1 0 · · · 0 1
1 −1 0 0
0 1 0 0
...

. . .

0 1 −1

 =

〈
1
1
1
...
1


〉

so that there exits an (A− 1)-string of length p.

Alternately, if we know that (A − 1)p−1 6= 0 for some other reason, then we can
produce an (A− 1)-string of length p by defining vn := ej, where ej is a standard
basis element of Cp and j is the column of (A−1)p−1 which has a non-zero element.
Define also vk := (A− 1)vk−1. Then {vk} forms an (A− 1)-string of length p.

Now, to show that (A− 1)p−1 is not 0, we note that if

0 = (A− 1)p−1 =

p−1∑
j=0

(
p− 1

j

)
AjIp−1−j =

p−1∑
j=0

(
p− 1

j

)
Aj,

then applying this transformation to the group-algebra element 1, we have

0 =

p−1∑
j=0

(
p− 1

j

)
aj,

but since {aj} forms a basis for CG, we have that
(

p−1
j

)
= 0 for all j, a contra-

diction.

Incidently, taking vn := e1 and vk = (A − 1)k−1e1, we can easily compute vk for
all 1 ≤ k ≤ p, since vk is the first column of

(A− 1)k−1 =
k−1∑
j=0

(
k − 1

j

)
Aj

and we can easily compute powers of A. For example, the first column of
(A− 1)2 = A2 − 2A+ I is

0
0
1
...
0

+


0

−2
0
...
0

+


1
0
0
...
0

 =


1

−2
1
...
0

 .

Note also that vp = (A − 1)p−1 =
∑p−1

j=0

(
p−1

j

)
Aj 6= 0 as the first columns of

I, A,A2, . . . Ap−1 have entries in different positions and the
(

p−1
j

)
are not all zero

in Fp.

11



This basis of Cp yields the basis {1, 1− 2a+ a2,−1 + 3a− 3a2 + a4 . . .} of CG.

Now taking one of the (A− 1)-strings generated above as a basis, we have that

A ∼



1 1 0 · · · 0
0 1 1 0
0 0 1 0
...

. . .

0 1
0 1


so that defining Vj = 〈e1, e2 · · · ej〉 as in the previous problem, we have that Vj

are submodules and that

V ≥ Vp−1 ≥ Vp−1 ≥ · · · ≥ V2 ≥ V1 ≥ 0

with Vj/Vj−1
∼= 〈ej〉 irreducible.

3. (a) Let V = 〈v1, v2〉 be the two-dimensional irreducible CG-module with sv1 = v2,
sv2 = v1, rv1 = iv1, and rv2 = −iv2. Then V induces a representation ρ of CG
on V defined by

ρ

(∑
j

αjgj

)
(v) =

(∑
j

αjgj

)
· v

where · represents the action of group ring on the module described above. In
particular, this means that

ρ : r 7→
(
i 0
0 −i

)
and ρ : s 7→

(
0 1
1 0

)
with respect to the basis {v1, v2} of V . Using this information, we compute

ρ

(
−1

2
ir − 1

2
r2

)
=

(
1 0
0 0

)
,

ρ

(
1

2
isr +

1

2
s

)
=

(
0 1
0 0

)
,

and similarly for the other two generators of M2(C) , so that ρ is surjective.

(b) The procedure employed in this computation is justified by the following:

Lemma. Let N C G. If
∑

gN∈G/N αgNgN is idempotent in C (G/N), then
1
|N |
∑

g∈G απ(g)g is idempotent in CG where π(g) = gN is the cannonical pro-

jection of G onto G/N .

Proof.

Since

∑
gN∈G/N

αgNgN =

 ∑
gN∈G/N

αgNgN

2

=
∑

gN∈G/N

( ∑
h1Nh2N=gN

αh1Nαh2N

)
gN,

12



we have that for each gN ,

αgN =
∑

h1Nh2N=gN

αh1Nαh2N .

But for each fixed pair h1N, h2N with h1h2N = gN , we have that

h1,jNh2,kN = gN

for all |N | of the elements h1,j ∈ h1N and for all |N | of the elements h2,j ∈ h2N .
But of the |N |2 pairs h1,j, h2,k, exactly |N | of them satisfy h1,jh2,k = g and the
product απ(h1,j)απ(h2,k) = αh1Nαh2N remains fixed for each such pair. Thus∑

h1h2=g

απ(h1)απ(hh) = |N |
∑

h1Nh2N=gN

αh1Nαh2N = |N |αgN

so that(
1

|N |
∑
g∈G

απgg

)2

=
1

|N |2
∑
g∈G

( ∑
h1h2=g

απ(h1)απ(hh)

)
g =

1

|N |
∑
g∈G

απgg.

Now getting down to buisness, we take the normal subgroup 〈r〉 of D8. Then
D8/〈r〉 ∼= Z2 and the idempotents for the quotient are

ẽ1 =
1

2

(
〈r〉+ s〈r〉

)
and ẽ2 =

1

2

(
〈r〉 − s〈r〉

)
Lifting as in the lemma above, we have

e1 :=
1

8

(
1 + r + r2 + r3 + s+ sr + sr2 + sr3

)
and

e2 :=
1

8

(
1 + r + r2 + r3 − s− sr − sr2 − sr3

)
.

Repeating the above procedure for the subgroups 〈s, r2〉 and 〈sr, r2〉, we generate

e3 :=
1

8

(
1− r + r2 − r3 + s− sr + sr2 − sr3

)
and

e4 :=
1

8

(
1− r + r2 − r3 − s+ sr − sr2 + sr3

)
.

Finally, to construct the fifth idempotent f , note that since
∑5

j=1 ej = 1 by the
definition of the ej, we have

1−
4∑

j=1

ej =
1

2

(
1− r2

)
.

13



(a) Subject to further consideration.

(b) i. Take v to be an eigenvector for a with eigenvalue i. Then as in the proceeding
homework, the computation

a(bv) = ba3v = −i(bv)

shows both that bv is an eigenvector for a with eigenvalue −i and that v and
bv are independent. This together with the observation that

b(bv) = a2v = −v

proves that W := 〈v, bv〉 is a CG submodule. W is irreducible since if 〈αv +
βbv〉 is any proper subspace, then

a(αv + βbv) = iαv − iβbv 6∈ 〈αv + βbv〉

so that 〈αv+ βbv〉 is not G-stable. Now if ρ is the representation induced by
this module, then by the above computations,

ρ(a) =

(
i 0
0 −i

)
and ρ(b) =

(
0 −1
1 0

)
.

ii. If ρ is a one-dimensional representation, then ρ(a4) = ρ(1) = (1) which we
will write as 1, so that ρ(a) = ij, j = 0, 1, 2, or 3.
If ρ(a) = i, then since

ρ(b)−1iρ(b) = ρ(b−1)ρ(a)ρ(b) = ρ(b−1ab) = ρ(a−1) = ρ(a)−1 = −i,

we have that
iρ(b) = ρ(b)(−i) = −iρ(b)

which is impossible, so we conclude that ρ(a) 6= i. Similarly, ρ(a) 6= −i.
This means that ρ(a) = ±1 and in both cases, ρ(b) is easily seen to be ±1.

iii. Knowing that
1

2

(
〈a〉+ b〈a〉

)
and

1

2

(
〈a〉 − b〈a〉

)
,

are idempotent in C(Q8/〈a〉), we have that

e1 :=
1

8

(
1 + a+ a2 + a3 + b+ ba+ ba2 + ba3

)
and

e2 :=
1

8

(
1 + a+ a2 + a3 − b− ba− ba2 − ba3

)
are idempotent in CQ8. By replacing 〈a〉 in the above argument with 〈b〉 and
〈ba〉, we similarly generate

e3 :=
1

8

(
1− a+ a2 − a3 + b− ba+ ba2 − ba3

)
14



and

e4 :=
1

8

(
1− a+ a2 − a3 − b+ ba− ba2 + ba3

)
.

Finally, as
∑5

j=1 ej = 1, we have that

e5 =
1

2

(
1− a2

)
.

Multiplication (not shown here for sanity) confirms that e2j = ej for all j and
that ejek = 0 for ej 6= ek so that the ej are mutually orthogonal.

iv. Assume that ρ is a representation of G over R and assume also (why?) that

ρ(a) =

(
0 −1
1 0

)
.

Now if

ρ(b) =

(
x y
z w

)
for x, y, z, w ∈ R, we compute

ρ(ab) =

(
0 −1
1 0

)(
x y
z w

)
=

(
−z −w
x y

)
and

ρ(ba−1) =

(
x y
z w

)(
0 1
−1 0

)
=

(
−y x
−w z

)
.

Then, as ρ(ab) = ρ(ba−1), we must have x = −w and y = z. Then write

ρ(b) =

(
x y
y x

)
and note that since(

x2 + y2 2xy
2xy x2 + y2

)
= ρ(b2) = ρ(a2) =

(
−1 0
0 −1

)
,

we have that x2 + y2 = −1 which contradicts x, y ∈ R.

(c) i. Since

(x− x1)(x− x2) · · · (x− xn) = xn − E1x
n−1 + E2x

n−2 + · · ·+ (−1)nEn,

we have all of the following:

0 = (x1 − x1)(x1 − x2) · · · (x1 − xn) = xn
1 − E1x

n−1
1 + E2x

n−2
1 + · · ·+ (−1)nEn

0 = (x2 − x1)(x2 − x2) · · · (x2 − xn) = xn
2 − E1x

n−1
2 + E2x

n−2
2 + · · ·+ (−1)nEn

...

0 = (xn − x1)(xn − x2) · · · (xn − xn) = xn
n − E1x

n−1
n + E2x

n−2
n + · · ·+ (−1)nEn
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so that adding we have

0 = pn − pn−1E1 + pn−2E2 + · · ·+ (−1)nnEn

which is the nth equation.
Now for the (n− 1)st equation, factor out the xj:

0 = x1

(
xn−1

1 − E1x
n−2
1 + E2x

n−3
1 + · · ·+ (−1)n−1En−1 +

1

x1

(−1)nEn

)
0 = x2

(
xn−1

2 − E1x
n−2
2 + E2x

n−3
2 + · · ·+ (−1)n−1En−1 +

1

x2

(−1)nEn

)
...

0 = xn

(
xn−1

n − E1x
n−2
n + E2x

n−3
n + · · ·+ (−1)n−1En−1 +

1

xn

(−1)nEn

)
but as xj 6= 0, begin indeterminants, we have

0 = xn−1
1 − E1x

n−2
1 + E2x

n−3
1 + · · ·+ (−1)n−1En−1 +

1

x1

(−1)nEn

0 = xn−1
2 − E1x

n−2
2 + E2x

n−3
2 + · · ·+ (−1)n−1En−1 +

1

x2

(−1)nEn

...

0 = xn−1
n − E1x

n−2
n + E2x

n−3
n + · · ·+ (−1)n−1En−1 +

1

xn

(−1)nEn.

Note that the sum of the last terms of each equation is

(−1)nEn

(
1

x1

+
1

x2

+· · ·+ 1

xn

)
= (−1)nEn

x2x3 · · ·xn + x1x3 · · ·xn + · · ·x1x2 · · ·xn−1

x1x2 · · ·xn

= (−1)nEn
En−1

En

= (−1)nEn−1.

Now, adding the equations,

0 = pn−1 − pn−2E1 + pn−2E2 + · · ·+ (−1)n−1nEn−1 + (−1)nEn−1

= pn−1 − pn−2E1 + pn−2E2 + · · ·+ (−1)n−1En−1(n− 1),

which is the (n− 1)st equation. Similarly for the others.

ii. Suppose that we are given some character χ of G of dimension n and let g
be some fixed element of G. Write x1, x2 . . . xn for the eigenvalues of g. Then
p1 = χ(g), p2 = χ(g2), etc, since, for example

χ(g) = tr(ρ(g)) = tr(Sρ(g)S−1) = tr(J) =
n∑

j=1

xj = p1
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where J is the Jordan form for ρ(g). Thus, the pj are known for j = 1, 2, . . . n.
We can then inductively determine the Ej. For example, E1 = p1, E2 =
1
2
(E1p1 − p2), etcetera. Then, the characteristic polynomial for g is given by

cg(X) = (X−x1)(X−x2) · · · (X−xn) = Xn−E1X
n−1+E2X

n−2+· · ·+(−1)nEn

so that the eigenvalues xj are determined provided we can find the roots of
this polynomial, and that’s not my problem.

Homework 5
We begin with the trivial and alternating characters0.

1 (12) (12)(34) (123) (123)(45) (1234) (12345)
χU 1 1 1 1 1 1 1
χU ′ 1 −1 1 1 −1 −1 1

We directly compute the character for

V =

{∑
j

αjvj

∣∣∣∣∑
j

αj = 0

}
= 〈v1 − v2, v2 − v3, v3 − v4, v4 − v5〉

where vj are a basis for the permutation module. For example, to compute χV (12), we
compute that

(12)(v1 − v2) = −(v1 − v2)

(12)(v2 − v3) = v1 − v3 = (v1 − v2) + (v2 − v3)

(12)(v3 − v4) = v3 − v4

(12)(v4 − v5) = v4 − v5

so that

ρV (12) =


−1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and so χV (12) = 2. Similarly for the other elements. The character for V ′ := U ′ ⊗ V
is given by multiplication.

Next, we compute the character for
∧2 V directly. A basis for

∧2 V is

v1 − v2 ∧ v2 − v3 = v1 ∧ v2 − v1 ∧ v3 + v2 ∧ v3

v1 − v2 ∧ v3 − v4 = v1 ∧ v3 − v2 ∧ v3 − v1 ∧ v4 + v2 ∧ v4

v1 − v2 ∧ v4 − v5 = v1 ∧ v4 − v2 ∧ v4 − v1 ∧ v5 + v2 ∧ v5

v2 − v3 ∧ v3 − v4 = v2 ∧ v3 − v2 ∧ v4 + v3 ∧ v4

v2 − v3 ∧ v4 − v5 = v2 ∧ v4 − v3 ∧ v4 − v2 ∧ v5 + v3 ∧ v5

v3 − v4 ∧ v4 − v5 = v3 ∧ v4 − v3 ∧ v5 + v4 ∧ v5

17



Now to compute the value of the character at (12), we compute

(12)(v1 ∧ v2 − v1 ∧ v3 + v2 ∧ v3) = −(v1 ∧ v2 − v1 ∧ v3 + v2 ∧ v3)

(12)(v1 ∧ v3 − v2 ∧ v3 − v1 ∧ v4 + v2 ∧ v4) = −(v1 ∧ v3 − v2 ∧ v3 − v1 ∧ v4 + v2 ∧ v4)

(12)(v1 ∧ v4 − v2 ∧ v4 − v1 ∧ v5 + v2 ∧ v5) = −(v1 ∧ v4 − v2 ∧ v4 − v1 ∧ v5 + v2 ∧ v5)

(12)(v2 ∧ v3 − v2 ∧ v4 + v3 ∧ v4) = v2 ∧ v3 − v2 ∧ v4 + v3 ∧ v4 +

v1 ∧ v3 − v2 ∧ v3 − v1 ∧ v4 + v2 ∧ v4

(12)(v2 ∧ v4 − v3 ∧ v4 − v2 ∧ v5 + v3 ∧ v5) = v2 ∧ v4 − v3 ∧ v4 − v2 ∧ v5 + v3 ∧ v5 +

v1 ∧ v4 − v2 ∧ v4 − v1 ∧ v5 + v2 ∧ v5

(12)(v3 ∧ v4 − v3 ∧ v5 + v4 ∧ v5) = v3 ∧ v4 − v3 ∧ v5 + v4 ∧ v5

so that

ρV2 V (12) =


−1 0 0 0 0 0
0 −1 0 1 0 0
0 0 −1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


and so χV2 V (12) = 0. Similarly for the other elements. Compiling this information,
we have

S5 1 (12) (12)(34) (123) (123)(45) (1234) (12345)
χU 1 1 1 1 1 1 1
χU ′ 1 −1 1 1 −1 −1 1
χV 4 2 0 1 −1 0 −1
χV ′ 4 −2 0 1 1 0 −1
χV2 V 6 0 −2 0 0 0 1

We also verify that χV2 V is irreducible as

〈χV2 V , χ
V2 V 〉 = 1.

We recall a portion of the character table for S4:

S4 1 (12) (12)(34) (123) (1234)
χU 1 1 1 1 1
χV 3 1 −1 0 −1

Let g1 = 1, g2 = (15), g3 = (25), g4 = (35), and g5 = (45) be representatives of
the cosets of S4 in S5. Then the character of S5 induced by the character χV of S4

evaluated at (12) is

IndS5
S4
χV (12) =

∑
j

χV

(
g−1

j ggj

)
= χV (1(12)1) + χV (15)(12)(15) + χV (25)(12)(25) + χV (35)(12)(35) + χV (45)(12)(45)

= χV (12) + χV (25) + χV (15) + χV (12) + χV (12)

= 1 + 0 + 0 + 1 + 1

= 3.
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Similarly for the other elements. Then the induced character together with the char-
acter for

∧2 V are

1 10 15 20 20 30 24
S5 1 (12) (12)(34) (123) (123)(45) (1234) (12345)

χV2 V 6 0 −2 0 0 0 1

χ
Ind

S5
S4

χV
15 3 −1 0 0 −1 0.

Then

〈χV2 V , χInd
S5
S4

χV
〉 =

1

120

∑
j

χV2 V (gj)χInd
S5
S4

χV
(gj) = 1

where here the gj are the elements S5. Similarly,

〈χU , χInd
S5
S4

χV
〉 = 0

〈χU ′ , χ
Ind

S5
S4

χV
〉 = 0

〈χV , χInd
S5
S4

χV
〉 = 1

〈χV ′ , χ
Ind

S5
S4

χV
〉 = 0

Now let m and n be the degrees of the two remaining representations. Then

120 =
∑

j

(χj(1))
2 = 70 +m2 + n2

and since m and n both divide 120, trial and error gives that m = n = 5. Hence, from
the inner product argument above, we have

χ
Ind

S5
S4

= χV + χV2 V + χW

where W is one of the remaining modules of degree 5. Then subtraction gives

S5 1 (12) (12)(34) (123) (123)(45) (1234) (12345)
χV 4 2 0 1 −1 0 −1
χV2 V 6 0 −2 0 0 0 1

χ
Ind

S5
S4

χV
15 3 −1 0 0 −1 0

χW 5 1 1 −1 1 −1 0

so that the second orthogonality relation gives

1 10 15 20 20 30 24
S5 1 (12) (12)(34) (123) (123)(45) (1234) (12345)
χU 1 1 1 1 1 1 1
χU ′ 1 −1 1 1 −1 −1 1
χV 4 2 0 1 −1 0 −1
χV ′ 4 −2 0 1 1 0 −1
χV2 V 6 0 −2 0 0 0 1

χW 5 1 1 −1 1 −1 0
χW ′ 5 −1 1 −1 −1 1 0
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We first note that if V is one-dimensional vector space over C and ρ : G −→ GL(V ) ∼=2.
C∗ is a representation of G over V , then since G/ ker ρ ∼= imρ ≤ C is abelian, we must
have that G′ ≤ ker ρ. We’ll keep in mind during the following discussion that this
means that ρ maps all the elements of each coset of G′ to the same number.

Now since G/G′ is abelian, all of the representations of G/G′ are one-dimensional and
there are exactly [G : G′] of them since there are [G : G′] elements in G/G′, all of which
are singleton conjugacy classes. They all lift to different one-dimensional characters of
G so that G has at least [G : G′] one-dimensional characters.

Now if ρ is a one-dimensional character of G, then as we observed above, ρ is constant
on the cosets of G′ so that ρ̃ : gG′ 7→ ρ(g) well-defined homomorphism ρ̃ : G/G′ −→ C∗

and hence is a one-dimensional representation of G/G′. Hence, there can be no more
than [G : G′] one-dimensional representations of G. This shows that there are exactly
[G : G′] one-dimensional representations of G.

Now since G′ is normal, we have

G′ =
⋂{

ker ρj

∣∣∣∣G′ ≤ ker ρj

}
so that G′ can be determined from the character table by taking those elements which
have character 1 for all one-dimensional characters. Of course, the other elements in
those conjugacy classes are also in G′ as G′ is normal.

We compute that3.  1 a b
0 1 c
0 0 1

−1

=

 1 −a ac− b
0 1 −c
0 0 1


and that 1 −x xz − y

0 1 −z
0 0 1

 1 a b
0 1 c
0 0 1

 1 x y
0 1 z
0 0 1

 =

 1 a b− az − xc
0 1 c
0 0 1


so that conjugation changes only the (1, 3) entry. Moreover, whenever a 6= 0 or c 6= 0,

we see that the conjugacy class of

 1 a b
0 1 c
0 0 1

 contains three elements since we can

select the conjugating matrix

 1 x y
0 1 z
0 0 1

 with x and z such that b − az − xc =

0, 1, or 2. This gives the following conjugacy classes and sizes, where
a ∗

c
represents

the conjugacy class containing

 1 a b
0 1 c
0 0 1

.

20



1 1 1 3 3 3 3 3 3 3 3

G
0 0

0
0 1

0
0 2

0
1 ∗

0
2 ∗

0
0 ∗

1
1 ∗

1
2 ∗

1
0 ∗

2
1 ∗

2
2 ∗

2

The conjugacy classes of G happen to be the same sets as the cosets of G′ in G with
the exception that the three central elements comprise the trivial coset G′ but are in
singleton conjugacy classes.

We next show that G/G′ ∼= Z3 × Z3. Define ϕ : Z3 × Z3 −→ G/G′ by

ϕ(x, y) =

 1 x ∗
0 1 y
0 0 1

G′.

Then ϕ is easily seen to be a well-defined, surjective homomorphism so that G/G′ ∼=
Z3 × Z3.

The computation of the character table for Z3×Z3 is based on the following procedure.
If ρ1, ρ2 are representations of G on V , then ρ1 × ρ2 defined

(ρ1 × ρ2)(g1, g2) : v1 ⊗ v2 7→ (ρ1g1)v1 ⊗ (ρ2g2)v2

is a representation of G×G on V ⊗V , where vj is a basis for V . Then (ρ1×ρ2)(g1, g2)
has matrix  a1,1B a1,2B · · ·

a2,1B a2,2B · · ·
...


with respect to vj where A is the matrix for ρ1g1 and B is the matrix for ρ2g2. Thus,
the character for ρ1 × ρ2 at (g1, g2) is χ1g1χ2g2. The details of all the above assertions
are available upon request.

We recall the character table for Z3:

Z3 0 1 2
χ0 1 1 1
χ1 1 ω ω2

χ2 1 ω2 ω

Using these characters, we construct the characters for Z3 × Z3. For example, the
character for χ1 × χ0 at (1, 0) is χ1(1)χ0(0) = ω · 1 = ω and similarly,

Z3 × Z3 (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)
χ1 × χ0 1 ω ω2 1 ω ω2 1 ω ω2

This produces 9 one-dimensional characters for Z3 × Z3
∼= G/G′ which we lift to

characters for G, keeping in mind the trivial coset G′, which corresponds under the
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isomorphism above with (0, 0), splits into three conjugacy classes, each with the same
values for each character. Writing χi,j for the character lifted from χi × χj, we have

1 1 1 3 3 3 3 3 3 3 3

G
0 0

0
0 1

0
0 2

0
1 ∗

0
2 ∗

0
0 ∗

1
1 ∗

1
2 ∗

1
0 ∗

2
1 ∗

2
2 ∗

2
χ0,0 1 1 1 1 1 1 1 1 1 1 1
χ1,0 1 1 1 ω ω2 1 ω ω2 1 ω ω2

χ2,0 1 1 1 ω2 ω 1 ω2 ω 1 ω2 ω
χ0,1 1 1 1 1 1 ω ω ω ω2 ω2 ω2

χ1,1 1 1 1 ω ω2 ω ω2 1 ω2 1 ω
χ2,1 1 1 1 ω2 ω ω 1 ω2 ω2 ω 1
χ0,2 1 1 1 1 1 ω2 ω2 ω2 ω ω ω
χ1,2 1 1 1 ω ω2 ω2 1 ω ω ω2 1
χ2,2 1 1 1 ω2 ω ω2 ω 1 ω 1 ω2

Now consider the subgroup

H :=

〈 1 1 0
0 1 0
0 0 1

〉 =


 1 1 0

0 1 0
0 0 1

 ,

 1 2 0
0 1 0
0 0 1

 ,

 1 0 0
0 1 0
0 0 1

 ≤ G

We compute the character IndG
H(ψ) of G where ψ is the character of H given by

H

 1 0 0
0 1 0
0 0 1

  1 1 0
0 1 0
0 0 1

  1 2 0
0 1 0
0 0 1


ψ 1 ω ω2

For example,

IndG
H(ψ)

 1 0 0
0 1 0
0 0 1

 =

∣∣∣∣∣∣CG

 1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
∑

j

ψ(gj)

|CHgj|

= 27
1

3
= 9

where C is the conjugacy class of G containing

 1 0 0
0 1 0
0 0 1

 and gj are representa-

tives of the conjugacy classes Dj of H with
⋃

j Dj = C ∩ H. In this case, C ∩ H = 1 0 0
0 1 0
0 0 1

 = g1. Similarly for the other elements. We then have that

G
0 0

0
0 1

0
0 2

0
1 ∗

0
2 ∗

0
0 ∗

1
1 ∗

1
2 ∗

1
0 ∗

2
1 ∗

2
2 ∗

2

IndG
Hψ 9 0 0 9ω 9ω2 0 0 0 0 0 0
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We compute that

9 = 〈IndG
Hψ, IndG

Hψ〉 =
∑

j

〈IndG
H , χj〉2

where χj are the irreducible characters of G. This is only possible if 〈IndG
H , χj〉 = 3

for some j or if IndG
H , χj〉 = 1 for 9 different j’s. In the latter case, we must have

〈IndG
H , χj〉 = 1 for the 9 characters χj already computed as the remaining two have

degree 3. We eliminate this possibility since IndG
Hψ 6=

∑9
j=1 χj. Hence, IndG

Hψ = 3χj

for some new character χj. The conjugate of this character is also an irreducible
character so that we have

1 1 1 3 3 3 3 3 3 3 3

G
0 0

0
0 1

0
0 2

0
1 ∗

0
2 ∗

0
0 ∗

1
1 ∗

1
2 ∗

1
0 ∗

2
1 ∗

2
2 ∗

2
χ0,0 1 1 1 1 1 1 1 1 1 1 1
χ1,0 1 1 1 ω ω2 1 ω ω2 1 ω ω2

χ2,0 1 1 1 ω2 ω 1 ω2 ω 1 ω2 ω
χ0,1 1 1 1 1 1 ω ω ω ω2 ω2 ω2

χ1,1 1 1 1 ω ω2 ω ω2 1 ω2 1 ω
χ2,1 1 1 1 ω2 ω ω 1 ω2 ω2 ω 1
χ0,2 1 1 1 1 1 ω2 ω2 ω2 ω ω ω
χ1,2 1 1 1 ω ω2 ω2 1 ω ω ω2 1
χ2,2 1 1 1 ω2 ω ω2 ω 1 ω 1 ω2

IndG
Hψ 3 0 0 3ω 3ω2 0 0 0 0 0 0

IndG
Hψ 3 0 0 3ω2 3ω 0 0 0 0 0 0
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The Mackey Problem

(a) Note that 〈
ψ

(12)
1 , ψ

(12)
1

〉
=

∑
g

ψ1

(
(12)g(12)

)
ψ1

(
(12)g(12)

)
=

∑
g

ψ1(g)ψ1(g)

= 〈ψ1, ψ1〉
= 1

so that ψ
(12)
1 is an irreducible character of H.

We have that G = H1H ∪H(12)H so that D = {1, (12)} may be taken as a set
of double coset representatives. Then

〈Indψ1Indψ2〉 =
〈
ψ1

1

∣∣
1H1∩H

, ψ2

∣∣
1H1∩H

〉
+
〈
ψ

(12)
1

∣∣
(12)H(12)∩H

, ψ2

∣∣
(12)H(12)∩H

〉
= 〈ψ1, ψ2〉+

〈
ψ

(12)
1 , ψ2

〉

Suppose now that ψ1 = ψ
(12)
1 . Then

〈Indψ1Indψ2〉 = 〈ψ1, ψ2〉+ 〈ψ1, ψ2〉 =

{
2 if ψ1 = ψ2

0 if ψ1 6= ψ2

and if ψ1 6= ψ
(12)
1

〈Indψ1, Indψ2〉 =
〈
ψ

(12)
1 , ψ2

〉
+ 〈ψ1, ψ2〉 =

{
1 if ψ

(12)
1 = ψ2 or ψ1 = ψ2

0 if ψ
(12)
1 6= ψ2 and ψ1 6= ψ2

.

(b) Let χ be an irreducible character of G and consider Res χ. We have that no
irreducible character ψ of H can appear in Res U more than 2 times since if
〈Res χ, ψ〉 > 2, then by Frobenius, 〈χ, Ind ψ〉 > 2, that is, χ appears more
than 2 times in Ind ψ. This means that {number of constituents of Ind ψ} =
〈Ind ψ, Ind ψ〉 > 2, which contradicts part (a).

Now suppose that ψ is a constituent of Res χ. Then, of course, we have degψ ≤
deg Res χ = degχ. However, in this situation, we also have that χ is a constituent
of Ind ψ so that

degχ ≤ deg Ind ψ = [G : H] degψ = 2 degψ.

Compiling this information, we have

degψ ≤ degχ ≤ 2 degψ

and this inequality is only satisfied when degψ = degχ or when degψ = 1
2
degχ.

This shows that Res χ can have no more than two different consituents.
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(c) Restricting the characters of G and taking inner products, we have that the fol-
lowing characters are irreducible.

1 20 15 12 12
A5 1 (123) (12)(34) (12345) (21345)

Res U 1 1 1 1 1
Res V 4 1 0 −1 −1
Res W 5 −1 1 0 0

Also, Res U ′ = Res U , Res V ′ = Res V , and Res W ′ = Res W provide no new
information. We have, however, that the two remaining characters both have
degree 3 since

∑
j(χj(1))2 = 60.

Restricting
∧2 V ,

A5 1 (123) (12)(34) (12345) (21345)

Res
∧2 V 6 0 −2 1 1

we find that 〈Res
∧2 V,Res

∧2 V, 〉 = 2 so that by part (b), Res
∧2 V is the sum

of two irreducible characters Y and Z.

We observe that these two characters must be different since if Res
∧2 V = 2Y ,

then
A5 1 (123) (12)(34) (12345) (21345)
Y 3 0 −1 1

2
1
2

and 〈Y, Y 〉 = 1
2
, which contradicts the assumption that Y is irreducible.

We next observe that 〈Res
∧2 V,Res U〉 = 0, 〈Res

∧2 V,Res V 〉 = 0, and 〈Res
∧2 V,Res U〉 =

0. These lead to the system

20y1 + 15y2 + 12y3 + 12y4 = 3

20y1 − 12y3 − 12y4 = −12

−20y1 + 15y2 = −15

where yj are the remaining values of Y :

1 20 15 12 12
A5 1 (123) (12)(34) (12345) (21345)

Res U 1 1 1 1 1
Res V 4 1 0 −1 −1
Res W 5 −1 1 0 0
Y 3 y1 y2 y3 y4

This system reduces to

y1 = 0

y2 = −1

y3 + y4 = 1
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Thus, Y so far is the following.

1 20 15 12 12
A5 1 (123) (12)(34) (12345) (21345)
Y 3 0 −1 y3 1− y3

Now since 1 = 〈Y, Y 〉 = 1
60

(9 + 15 + 12y2
3 + 12(1− y3)

2), we have that 0 = y2
3 −

y3 − 1 = 0. The quadratic formula gives y3 =
1±

√
5

2
. We can take either value

for y3. Thus we have

1 20 15 12 12
A5 1 (123) (12)(34) (12345) (21345)

Res U 1 1 1 1 1
Res V 4 1 0 −1 −1
Res W 5 −1 1 0 0

Y 3 0 −1 1+
√

5
2

1−
√

5
2

Z 3 0 −1 1−
√

5
2

1+
√

5
2

The Prelim Problem.

Let P be a non-abelian group of order p3. Forevermore I will write gj for the represen-
tatives of the non-central conjugacy classes of whatever group is under discussion.

We determine the size of Z(P ). |Z(P )| 6= p3 since P is non-abelian.

The class equation gives

p3 = |Z(P )|+
∑

j

p3

|CG(gj)|
.

Now CG(gj) contains at least gj and the identity element, and these are different, so
|CG(g)| ≥ p. But as gj is non-central, we have |CG(gj)| 6= p3 so that |CG(gj)| = p

or p2. This means that p divides
∑

j
p3

|CG(gj)| . We then have that p divides |Z(P )| =

p3 −
∑

j
p3

|CG(gj)| . This eliminates the possibility that |Z(P )| = 1. (The same argument

shows that we have |Z(G)| 6= 1 for any group G of order pn. We use this observation
later.)

Now if |Z(P )| = p2, then CG(gj) contains at least gj and all p2 central elements so that
|CG(gj)| = p3, a contradiction since gj 6∈ Z(P ).

We conclude then that |Z(P )| = p. Moreover, |CG(gj)| includes at least gj and the p
central elements, so |CG(gj)| > p, but as gj 6∈ Z(P ), we have |CG(gj)| 6= p3 so that
|CG(gj)| = p2. Thus, each non-central conjugacy class contains exactly p elements.
From the class equation, we have

p3 = |Z(P )|+
∑

j

p3

CG(gj)
= p+ rp
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yielding r = p2 − 1 non-central conjugacy classes.

Next, we deduce that any group G of order p2 is abelian. If |Z(G)| = p then |CG(gj)| =
p2, since it contains at least gj and all p central elements. This contradicts gj 6∈ Z(G).
As noted above, |Z(G)| 6= 1. Hence Z(G) = G and G is abelian.

This means that P/Z(P ) is abelian as |P/Z(P )| = p2. We then have that P ′ ≤ Z(P ).
But as P ′ 6= 1 since P is non-abelian, we have that P ′ = Z(P ).

The Dummit and Foote Problem

(a) i. By the prelim discussion above, we have that the commutator subgroup of P
has order p so that by the last homework, P has [P : P ′] = p2 characters of
degree 1.

ii. The degrees of the characters of P divide p3. G can have no irreducible
character χj0 of degree p2 as then

p3 =
∑

j

(χj(1))
2 > (χj0(1))

2 = p4,

where χj are the irreducible characters of P , and this is a contradiction.
Similarly, P can have no irreducible character of degree p3. Hence, all the
characters of P have degree 1 or p. Let r be the number of characters of
degree p. Then

p3 =
∑

j

(χj(1))
2 = p2 · 12 + r · p2 = p2(1 + r)

so that P has r = p− 1 characters of degree p.

iii. The conjugacy classes were determined above. Now suppose that g1 6= 1 and
that g1 = hg2h

−1. Then g1g
−1
2 = hg2h

−1g−1
2 ∈ Z(P ). This means that

g1 = (g1g
−1
2 )g2 = g2(g1g

−1
2 ) ∈ g2Z(P ).

This shows that whenever g1 and g2 are non-central, conjugate elements, they
are in the same coset of Z(P ).
Conversely, if g1 and g2 are in the same coset. . .

iv. Let ρ be an irreducible representation of degree p and consider ker ρ. Of
course, | ker ρ| 6= p3 else ρ = pρU is not irreducible. If | ker ρ| = p or p2, then
|G/ ker ρ| = p2 or p, so that G/ ker ρ is abelian. Now

ρ̃ : G/ ker ρ −→ GL(V ) defined ρ̃(g ker ρ) = ρ(g)

is a representation of degree p on G/ ker ρ. Now,

1 = 〈ρ, ρ〉 =
1

|G|
∑
g∈G

ρ(g)ρ(g) =
1

|G|
∑

g ker ρ∈G/ ker ρ

| ker ρ|ρ(g)ρ(g)
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=
1

|G/ ker ρ|
∑

g ker ρ∈G/ ker ρ

ρ̃(g ker ρ)ρ̃(g ker ρ) = 〈ρ̃, ρ̃〉

so that ρ̃ is irreducible. However, since G/ ker ρ is abelian, it can have no
irreducible representations of degree p, a contradiction. This shows that
| ker ρ| = 1 so that ρ is faithful.

v. Let z ∈ Z(P ) and let V be an irreducible CP module of degree p. Then the
map ϕz : V −→ V defined ϕz(v) = z · v is a CP homomorphism. Let λ be
such that det (ϕz − λI) = 0. Then ϕz − λI is also a CP homomorphism and
ker (ϕ− λI) 6= 0. But as V is irreducible, we have that ker (ϕ− λI) = V so
that z · v = λv for all v ∈ V . Moreover, since zp = 1, we have v = zp · v = λpv
so that λ is a pth root of unity. Also, it follows that χV (z) = pλ. Note also
that if z ∈ Z(P ) but z 6= 1, then z generates Z(P ) and we have zj · v = λjv
so that χV (zj) = pλj, and so XV is determined for all the elements of Z(P ).
Now if g ∈ P\Z(P ), we have that the conjugacy class containing g is{

g, gz, gz2, · · · , gzp−1
}

by the observation above that the non-identity cosets of Z(P ) are conjugacy
classes of P . In particular, this means that χV (gzj) = χV (g) for all j since
χV is constant on conjugacy classes. However, since zj acts as scalar multi-
plication by λj, we have that χV (gzj) = λjχV (g) for all j. Thus,

0 =

(∑
j

λj

)
χV (g) =

∑
j

χV (gzj) = pχV (g)

so that χV (g) = 0. This determines the character for V

vi. Let ρ1 and ρ2 be irreducible representations of P of degree p. As indicated
above, if ρ1(z) = ρ2(z) for any z ∈ Z(P ) other than 1, then ρ1 and ρ2 agree
on all of Z(P ), and since ρj vanishes outside of Z(P ), we have that ρ1 and ρ2

agree on all of P . Hence, if ρ1 6= ρ2, then ρ1(z) 6= ρ2(z) for all z ∈ Z(P )\{1}.
Hence, the p − 1 representations of degree p can be produced by assigning
one of the pth roots of unity other than 1 to some z ∈ Z(P ) other than 1.
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The Group of order 42.

(a) The character table for G is the following.

1 6 7 7 7 7 7
G 1 a b c d e f
χ1 1 1 1 1 1 1 1

χ2 1 1 1 ζ ζ ζ ζ

χ3 1 1 1 ζ ζ ζ ζ

χ4 1 1 −1 −ζ −ζ ζ ζ

χ5 1 1 −1 −ζ −ζ ζ ζ
χ6 1 −1 −1 −1 1 1 1
χ7 6 −1 0 0 0 0 0

We see from the table that ker ρ1∩ker ρ2∩ker ρ3 = O1∪Oa∪Ob. Since ker ρj is a
normal subgroup of G and the intersection of three normal subgroups is normal,
we have that N := O1 ∪ Oa ∪ Ob is a normal subgroup of order 14.

Moreover, since |G/N | = 3, we have that G/N ∼= Z3 and that the cosets of N are
exactly Oc ∪ Oe and Od ∪ Of as only this combination causes χ1, χ2, and χ3 to
agree with the characters of Z3.

(?) N is not Z14, so we must have N ∼= D14.

(b) We briefly compute the conjugacy classes of D14 = 〈r, s|r7 = s2 = 1, rs = sr6〉.
Since rj, j = 1 . . . 6, commutes only with rk, k = 0 . . . 6, we have |CD14(r

j)| = 7,
j = 1 . . . 6 so that |Orj | = 2. We explicitly compute that Or = {r, r6}, Or2 =
{r2, r5}, and Or3 = {r3, r4}. By order considerations, we must have that the G
orbit of a is the union of these three N orbits.

Similarly, srj, j = 0 . . . 6 commutes only with itself and with 1 so that |CD14(sr
j)| =

2 and |Osrj | = 7. We must have then that Os = {srj}6
j=0 and of course O1 = {1}.

The distinct restrictions then are the following.

1 2 2 2 7
N 1 r r2 r3 s

Resχ1 1 1 1 1 1
Resχ4 1 1 1 1 −1
Resχ7 6 −1 −1 −1 0

We compute 〈Res χ1,Res χ1〉 = 〈Res χ4,Res χ4〉 = 1 so that Res χ1 and Res χ4

are irreducible.

Unfortunately, Res χ1 and Res χ4 are not constituents of Res χ7 as 〈Res χ1,Res χ7〉 =
0 and 〈Res χ4,Res χ7〉 = 0. However, the remaining three characters of N must
each have degree 2 since

∑
χj(1)

2 = 14. Now since 〈Res χ7,Res χ7〉 = 3 and
this number is the sum of the squares of the multiplicities of the constituents, we
must have that these multiplicities are all 1 so that Res χ7 is the sum of the three
remaining characters.
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(c) n7 = 7j + 1 and divides 6. This forces n7 = 1. n3 = 3j + 1 and divides 14. Then
n3 = 1 or 7. Write G/N = {N, g1N, g2N} for some g1, g2. Now (g1N)3 = g3

1N =
N so that g1 ∈ N . Now since |N | = 14, we have that (g3

1)
14 = (g14

1 )3 = 1. Also, we
have that g14

1 6= 1 else (g1N)14 = g14
1 N = N = (g1N)3 which forces g1N = N since

3 and 14 are relatively prime, a contradiction. Incidentally, I stole this argument
from Herstein’s proof of the Cauchy theorem, which I enjoyed immensely. This
shows that |g14

1 | = 3. Similarly, |g14
2 | = 3 and g14

1 6= g14
2 since g1 6= g2, being

representatives of different cosets. Thus there are at least 2 elements of order 3
so that n3 6= 1. This forces n3 = 7.

Finally, we have n2 = 2j + 1 and divides 21. Now since N itself has 7 elements of
order 2, namely srj for j = 0 . . . 6, we have thatG has at least 7 such elements, and
these are the elements in Ob as adduced above. There can be no other elements
of order 2 since χ2 is ζ or ζ on elements of Oc, Od, Oe, and Of and this is not
possible if any of these elements has order 2.

(d) As indicated above, a and b have orders 7 and 2 respectively. χ2(c) = χ3(d) = ζ
so that 3 divides the orders of these elements. However, χ6(c) = χ6(d) = −1,
a second root of unity, so 2 divides the orders of c and d also. Obviously, these
elements don’t have order 42, so we are left with 6 as the only possible order for
c and d.

By elimination, e and f must have order 3 to account for the 14 elements of order
3 in the 7 Sylow 3-subgroups.

Next, let P be a Sylow 7 subgroup and Qj, j = 1 . . . 7 the Sylow 3 subgroups. Then
since P E G, we have that PQj ≤ G with |PQj| = 21. PQj has index 2 and so
is normal in G. We have that Qj ≤ PQj, but we also have that since the Qj are
conjugate,

Qk = gQjg
−1 ≤ gPQjg

−1 = PQj

so that all theQk lie in PQj. Also, the 14 elements of order 3 in the 7 Sylow 3-subgroups
together with the 6 elements of order 7 from the 7-subgroup and the identity constitute
all the elements of PQj.

(a) Define ϕ(aaλbλ) = aaλbλaλ. Then ϕ : Aaλbλ −→ Abλaλ as aaλ ∈ A. Moreover, ϕ
is a A-module homomorphism as

ϕ(a1aλbλ + a2aλbλ) = ϕ((a1 + a2)aλbλ)

= (a1 + a2)aλbλaλ

= a1aλbλaλ + a2aλbλaλ

= ϕ(a1aλbλ) + ϕ(a2aλbλ)

and
ϕ(a1a2aλbλ) = a1a2aλbλaλ = a1ϕ(a2aλbλ).

Similarly, the map ψ : Abλaλ −→ Aaλbλ defined ψ(abλaλ) = abλaλbλ is an A-
module homomorphism. Moreover, ϕ and ψ are almost two sided inverses as

ψ ◦ ϕ(aaλbλ) = aaλbλaλbλ = ac2λ = adcλ = daaλbλ
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and
ϕ ◦ ψ(abλaλ) = abλaλbλaλ = ac2λ = adcλ = dabλaλ

where d ∈ C is such that c2λ = dcλ. Incidentally, the same d works for bλaλ as

aλbλaλbλaλ = (aλbλaλbλ)aλ = (daλbλ)aλ = aλ(dbλaλ)

so that by by right cancelation, bλaλbλaλ = dbλaλ.

We then have that ϕ is surjective since for any a ∈ A we have ϕ(d−1ψ(a)) = a
and ϕ is injective since whenever ϕ(a1) = ϕ(a2) we have ψ(ϕ(a1)) = ψ(ϕ(a2)) so
that a1 = a2. Thus, ϕ is an isomorphism and Aaλbλ ∼= Abλaλ

(b) The map ϕ : Aaλ −→ Aaλbλ given by ϕ(aaλ) = aaλbλ is clearly surjective. Hence,
Aλ is the image of Aaλ under ϕ.

(c) We have

Abλ′ ∼= IndG
Qλ′
Ũ ′

= IndG
Pλ
Ũ ′

= IndG
Pλ

(
Ũ ′ ⊗ U

)
= IndG

Pλ

(
ResG

Pλ
U ′ ⊗ U

)
= U ′ ⊗ IndG

Pλ
U

∼= U ′ ⊗ Aaλ.

where Ũ ′ is the alternating module for Qλ′ = Pλ, U
′ is the alternating module

for G, and U is the trivial module for Pλ. By a parallel argument, we have that
Aaλ′

∼= U ′ ⊗ Abλ.

Now by part 2, we have that the image of Aaλ′ under right multiplication by bλ′
is Vλ′ . We want to apply this same map to Abλ ⊗ U ′, but first we note that

(u⊗ abλ)bλ′ = (u⊗ abλ)
∑

j

(sgn pj)pj

=
∑

j

(u⊗ abλ)(sgn pj)pj

=
∑

j

u(sgn pj)pj ⊗ abλ(sgn pj)pj

=
∑

j

upj ⊗ abλpj

=
∑

j

(u⊗ abλ)pj

= (u⊗ abλ)
∑

j

pj

= (u⊗ abλ)aλ
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so that in U ′ ⊗ Abλ, right mulfftiplication by bλ′ is the same as right multiplica-
tion by aλ. Again, by part 2, we have that the image of U ′ ⊗ Abλ under right
multiplication by aλ is U ′ ⊗ Vλ. Now since U ′ ⊗Abλ and Aaλ′ are isomorphic, we
have that their images under right multiplication by bλ′ are isomorphic. Hence,
we have that V λ′ ∼= Vλ ⊗ U ′.

Homework 8
Prove that Q(ϕ) is a finite extension15.

Let B be a fixed basis of some vector space V of dimension m over F . Now Q(ϕ) =
Q(ag1

1,1, a
g1

1,2 . . .) where the agk
i,j are the i, j entries of the matrix ϕ(gk) with respect to B.

Then (ϕ)/Q is a finite extension of since there are no more than m2|G| different agk
i,j,

each of them algebraic over Q, being in F .

Prove that ϕσ is a representation and that the character of ϕσ is ψσ := σ(ψ(g)) where16.
ψ is the character of ϕ.

Let A = (ai,j) and B = (bi,j) be the matricies ϕ(g) and ϕ(h) with respect to some fixed
basis. Then ϕσ(g) = (σ(ai,j)) and ϕσ(h) = (σ(bi,j)). Now

i, j entry of ϕσ(g)ϕσ(h) =
∑

k

σ(ai,k)σ(bk,j)

= σ

(∑
k

ai,kbk,j

)

= σ

(
i, j entry of ϕ(g)ϕ(h)

)
= σ

(
i, j entry of ϕ(gh)

)
= i, j entry of ϕσ(gh).

This shows that ϕσ is a homomorphism. Next, we compute the character of ϕσ.

tr(ϕσ(g)) =
∑

j

σ(aj,j)

= σ

(∑
k

(aj,j)

)
= σ (tr(ϕ(g)))

= σ (ψ(g))

Show that ϕ is irreducible if and only if ϕσ is irreducible.17.
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We note that

σ(ϕ(g)) = σ(a+ bi)

= σ(a) + σ(b)i

= σ(a)− σ(b)i

= σ(a− bi)

= σ(a+ bi)

= σ(ϕ(g))

where · denotes complex conjugation. Then

〈ϕσ, ϕσ〉 =
1

|G|
∑

g

ϕσ(g)ϕσ(g)

=
1

|G|
∑

g

σ(ϕ(g))σ(ϕ(g))

=
1

|G|
∑

g

σ(ϕ(g))σ(ϕ(g))

= σ

(
1

|G|
∑

g

ϕ(g)ϕ(g)

)
= σ (〈ϕ, ϕ〉)

and we have that 〈ϕσ, ϕσ〉 = 1 if and only if 〈ϕ, ϕ〉 = 1 since automorphisms map the
element 1 to itself.

Prove that Q(ψ) ⊂ Q(ε) where Q(ψ) is the extension of Q generated by ψ(g), g ∈ G,18.
and ε is an nth root of unity where n = |G|. Deduce that Q(ψ) is a Galois extension
of Q with abelian Galois group.

ψ(g) is a sum of eigenvalues of ϕ(g), which are all nth root of unity. This means that

ψ(g) ∈ Q(ε)

for all g so that
Q(ψ) = Q(ψ(g1), ψ(g2), . . . ψ(gn)) ⊆ Q(ε).

Since the Galois group for Q(ε)/Q is (Z/nZ)×, we see by the Galois correspondence
that Q(ϕ), being a subfield of Q(ε) containing Q, corresponds with some subgroup H
of (Z/nZ)×. Now H is normal since (Z/nZ)× is abelian so that Q(ψ)/Q is Galois.

Let σa ∈ Gal(Q(ε)/Q) be defined σa(ε) = εa and show that ψσa(g) = ψ(ga) for all19.
g ∈ G.
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Let ϕ be a representation of G on some vector space V of dimension m. Let ϕ have
character ψ and let B be a fixed basis of V with respect to which ϕ(g) = (bi,j) with
bi,j = 0 for i 6= j and bj,j a kth root of unity where k = |g|. Write bj,j = εc. Then

σa(bj,j) = σa(ε
c) = (σa(ε))

c = (εa)c = εca = (bj,j)
a.

Also note that with respect to B, we have that ϕ(ga) = (bai,j) since ϕ is diagonal. Then

ψσa(g) =
m∑

j=1

σa(bj,j) =
m∑

j=1

(baj,j) = ψ(ga)

If g ∈ G is conjugate with ga for all a with (a, n) = 1, then ψ(g) ∈ Q for all characters20.
ψ of G.

We have

ψ(g) = ψ(ga) = ψσa(g) =
m∑

j=1

σa(bj,j) = σa

(
m∑

j=1

bj,j

)
= σa(ψ(g))

for all characters ψ and all σa ∈ Gal(Q(ε)/Q) =
{
σa

∣∣(a, n) = 1
}
. By definition of

the Galois group, since ψ(g) ∈ Q(ε) is fixed by all σa ∈ Gal(Q(ε)/Q), we have that
ψ(g) ∈ Q for all ψ.

For g ∈ G fixed, g is conjugate with ga for all (a, |G|) = 1 iff g is conjugate with ga for21.
all (a, |g|) = 1.

Suppose g is conjugate with ga for all (a, |g|) = 1 and let a be such that (a, |G|) = 1.
Then we certainly have that (a, |g|) = 1 so that g is conjugate with ga by assumption.

Conversely, suppose g is conjugate with ga for all (a, |G|) = 1 and let a be such that
(a,m) = 1 where m = |g|. Let l be such that n = lm and let k be such that l = dk
where d = (l,m). We then have that n = dkm and (m, k) = 1. Write 1 = rm+ sk for
some r, s ∈ Z and define x = ask + rm. Then

x ≡m ask + rm ≡m ask ≡m a

since sk ≡m rm+ sk ≡m 1.

This equivalence implies that m divides x − a so that my = x − a for some y ∈ Z.
Then

gxg−a = gx−a = gmy = 1

so that ga = gx. We similarly have that

x ≡k ask + rm ≡k rm ≡k 1

since rm ≡k rm+ sk ≡k 1.
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This equivalence imples that k|x − 1. Now if some prime p divides k, then p divides
x− 1 so that p cannot divide x. This shows that (k, x) = 1.

Finally, we want to show that (x, n) = 1. Indeed, if some prime p were a common
factor of both x and n = dkm, then by the preceeding paragraph, p would not be
a factor of k. Now since x ≡m a, we have that m divides x − a. If p were a factor
of m, then since p is a factor of x, we would have that p would be a factor of a, a
contradiction since (a,m) = 1. Finally, p cannot be a factor of d = (l,m) as then it
would have to be a factor of m. Hence, n and x can have no common factors, that is,
(n, x) = 1. By assumption, we then have that g is congruent with gx = ga.

Every character of Sn is rational valued.22.

Let g ∈ Sn and let g = τ1τ2 · · · τm where τj are disjoint nj-cycles. Then |g| = lcm nj

and if a is such that (a, lcm nj) = 1, then we must have that (a, nj) = 1 for all j, for
if (a, nj0) 6= 1 for some j0, then we have

(a, nj0)
∣∣ nj0

∣∣ lcm nj,

but we have also that (a, nj0)
∣∣ a so that (a, nj0) is a common divisor of both lcm nj and

a. This means that (a, lcm nj) > 1, a contradiction. We must have that (a, nj) = 1 for
all j. Then the ath power of each nj-cycle is also an nj-cycle so that ga has the same
cycle type as g. Thus, ga is conjugate with g. Thus, we’ve shown that g is conjugate
with ga for all (a, |g|) = 1 and for all g ∈ G. Thus, by 21, we have that ga is conjugate
with g for all (a, |G|) = 1. Thus, by 20, we have that ψ(g) ∈ Q for all g ∈ G and all
characters ψ of G.

Homework 9
(a) Show that |G| = q(q − 1)(q2 − 1)).

We count the number of bases

{(
a
b

)
,

(
c
d

)}
of F2

q since these are in bijection

with the elements of GL(2,Fq).

Now there are q choices for a and q choices for b except that

(
a
b

)
should not be(

0
0

)
so that we have q2 − 1 ways to select

(
a
b

)
.

(
c
d

)
can be anything not in

the span of

(
a
b

)
. The span of

(
a
b

)
contains q different vectors, including the

forbidden

(
0
0

)
so we have q2 − q choices for

(
c
d

)
. This gives a grand total of

(q2 − 1)(q2 − q) different bases for F2
q.

(b) Let B =

(
F F
0 F

)
≤ G, T =

(
F 0
0 F

)
≤ G, and U =

(
1 F
0 1

)
≤ G.

Show that B is the semidirect product B = T n U .
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We have that B = TU since(
a b
0 c

)
=

(
a 0
0 c

)(
1 ba−1

0 1

)
∈ TU.

Next, we see that T ≤ NB(U) since(
a 0
0 b

)(
1 c
0 1

)(
a−1 0
0 b−1

)
=

(
1 abc
0 0

)
∈ U.

Of course, we have that U ≤ NB(U) so that B = TU ≤ NB(U) so that U E B.

We also have that T ∩ U =

(
1 0
0 1

)
so that B = TU = T n U .

Now B/U = TU/U ∼= T/(T ∩ U) ∼= T/{1} ∼= T by the isomorphism theorems.
T is abelian so that T has |T | = (q − 1)2 characters, all of which are of degree
1. These all lift to distinct characters of of B so that B has at least (q − 1)2

characters of degree one.

To show that B has exactly (q − 1)2 characters of degree one, we will show that
U = B′, the commutator subgroup of B, so that we will have exactly [B : B′] =
[B : U ] = (q − 1)2 characters of degree one.

Indeed, we have B′ ≤ U since B/U ∼= T is abelian. Imagine now that B′ is strictly

contained in U so that B/B′ is isomorphic with a subgroup T̃ of B containing T
which has order strictly larger than |T |. Let

a :=

(
x y
0 z

)
∈ T̃\T.

Then x and z are non-zero else a is not invertible, and y is non-zero else a ∈ T .
Then(

1 1
0 1

)
=

(
zy−1 0

0 1

)(
x y
0 z

)(
x−1yz−1 0

0 z−1

)
∈
〈(

F 0
0 F

)
,

(
x y
0 z

)〉
,

the subgroup of B generated by a and the elements of T , but this means that

U =

〈(
1 1
0 1

)〉
≤
〈(

F 0
0 F

)
,

(
x y
0 z

)〉
,

so that

B = TU ≤
〈(

F 0
0 F

)
,

(
x y
0 z

)〉
≤ T̃

so that T̃ = B. But this is impossible since B is non-abelian. Thus, we must have
that T = T̃ and U = B′.

Now to compute the characters of T , we note that T ∼= F×
q × F×

q
∼= Zq−1 × Zq−1.

The characters of Zq−1 correspond to the assignment of a (q − 1)st root of unity
to a generator of Zq−1, and the characters of Zq−1 × Zq−1 correspond with the
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product of two characters of Zq−1. Then we can index the characters of T as
follows

ψi,j =

{
(a, 1) 7→ ζ i

(1, b) 7→ ζj

where 0 is the identity element of Zq−1, a and b are generators of Zq−1, and ζ is a
primative (q − 1)st root of unity. Or more compactly, taking a = b = 1 we have

ψi,j(x, y) = ζxi+yj

(c) Show that B\G/B has representatives B and BwB where w =

(
0 1
1 0

)
.

Let

(
a b
c d

)
∈ G. If c = 0, then

(
a b
c d

)
∈ B. If c 6= 0, then

(
a b
c d

)
=

(
a b
c d

)(
1 c−1d
0 1

)(
0 1
1 0

)
︸ ︷︷ ︸

∈B

(
0 1
1 0

)(
1 −c−1d
0 1

)
︸ ︷︷ ︸

∈B

∈ BwB.

(d) Let ψ be a character of B of degree 1 constructed as in (2). Analyze 〈IndG
B(ψ), IndG

B(ψ)〉
by Mackey’s Theorem and describe when IndG

B(ψ) is irreducible. How many irre-
ducible characters of G do you get in this way?

We have that w−1Bw = wBw is the subgroup of lower-triangular matricies since
the w on the left swaps the rows and the w on the right swaps the columns.
Thus, x−1Bw∩B is exactly T , the subgroup of diagonal matricies. Also, we have
ψw(b) = ψw(w−1wbw−1w) = ψ(wbw−1). Then by Mackey,

〈
IndG

B(ψ), IndG
B(ψ)

〉
=

∑
x∈1,w

〈
ψx

∣∣∣∣
x−1Bx∩B

, ψ

∣∣∣∣
x−1Bx∩B

〉
x−1Bx∩B

= 〈ψ, ψ〉B +

〈
ψw

∣∣∣∣
T

, ψ

∣∣∣∣
T

〉
T

Now
〈
ψw
∣∣
T
, ψ
∣∣
T

〉
T

= 〈ψw, ψ〉B since ψ is lifted from some character of T . We see
then that 〈ψ, ψ〉B + 〈ψw, ψ〉B = 1 when 〈ψw, ψ〉B = 0, that is, when ψ and ψw are
different characters of T . Using the notation of (2), we have that ψi,j = ψw

i,j = ψj,i

when i = j. Hence, we can produce (q− 1)2 − (q− 1) different characters of G in
this manner.
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