Homework 1

1. For $A:=\left(\begin{array}{ccc}-8 & -10 & -1 \\ 7 & 9 & 1 \\ 3 & 2 & 0\end{array}\right)$, we have that $c_{A}(X)=(X-1)^{2}(X+1)$. Since $u_{1}:=$ $\left(\begin{array}{c}2 \\ -1 \\ -4\end{array}\right)$ is an eigenvector corresponding with -1 , we have that $U_{1}:=\left\langle u_{1}\right\rangle$ is an A submodule as

$$
\left(\sum_{j=0}^{r} \alpha_{j} T^{j}\right)\left(\beta u_{1}\right)=\left(\beta \sum_{j=0}^{r} \alpha_{j}(-1)^{j}\right) u_{1} \in U_{1} .
$$

Linear algebra gives that

$$
\mathcal{N}(A+1)^{2}=\left\langle\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle
$$

is the generalized eigenspace for the eigenvector 1 , with the first vector listed being an eigenvector for 1 . Now taking

$$
u_{3}:=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \text { and } u_{2}:=(A+1) u_{3}=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)
$$

we have that $U_{2}:=\left\langle u_{2}, u_{3}\right\rangle=\left\langle u_{3}\right\rangle$ is a A-submodule as $A u_{2}=u_{2} \in U_{2}$ and $A u_{3}=$ $u_{2}+u_{3} \in U_{2}$.
Also, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a basis for V_{1} so that $V_{1}=\left\langle u_{1}\right\rangle \oplus\left\langle u_{3}\right\rangle=U_{1} \oplus U_{2}$.
However, U_{2} is not irreducible as $\left\langle u_{2}\right\rangle$ is a proper A-submodule of U_{2}. Also U_{2} is not completely reducible as the only possible compliment of $\left\langle u_{2}\right\rangle$ would be $\left\langle u_{3}\right\rangle$, which is not a submodule as $A u_{3}=u_{2} \notin\left\langle u_{3}\right\rangle$. This also means that V_{1} is not completely reducible.

We compute the Jordan form for A for our amusment: define

$$
S_{A}=\left(u_{1}, u_{2}, u_{3}\right)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 1 & 0 \\
-4 & -1 & 1
\end{array}\right)
$$

and

$$
J_{A}=\left(A u_{1}, A u_{2}, A u_{3}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

so that $A=S J S^{-1}$.

Continuing, let $B:=\left(\begin{array}{ccc}-3 & 2 & -4 \\ 4 & -1 & 4 \\ 4 & -2 & 5\end{array}\right)$. Then $c_{B}(X)=c_{A}(X)=(X-1)^{2}(X+1)$ and the Jordan form for B is $J_{B}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ with conjugating matrix $S_{B}=$ $\left(\begin{array}{ccc}-1 & 1 & 0 \\ 1 & 2 & 2 \\ 1 & 0 & 1\end{array}\right)$. In particular, this means that B has 3 independent eigenvectors

$$
v_{1}:=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), v_{2}:=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \text { and } v_{3}:=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)
$$

so that $\left\langle v_{1}\right\rangle,\left\langle v_{2}\right\rangle$, and $\left\langle v_{3}\right\rangle$ are all submodules of V_{2} and $V_{2}=\left\langle v_{1}\right\rangle \oplus\left\langle v_{2}\right\rangle \oplus\left\langle v_{3}\right\rangle$ so that V_{2} is completely reducible. We have, however, that V_{1} is not completely reducible so that V_{2} is not isomorphic with V_{1}.
2. Let $V=\left\langle e_{1}, e_{2} \cdots e_{m}\right\rangle$. We have that

$$
e_{j_{1}} \otimes e_{j_{2}} \otimes \cdots \otimes e_{j_{n}}=e_{\sigma j_{1}} \otimes e_{\sigma j_{2}} \otimes \cdots \otimes e_{\sigma j_{n}}
$$

in $S^{n} V$ for any $\sigma \in S_{n}$ since if $\sigma=\tau_{1} \circ \tau_{2} \circ \cdots \circ \tau_{r}$ for transposition s τ_{j}, then

$$
\begin{gathered}
e_{j_{1}} \otimes e_{j_{2}} \otimes \cdots \otimes e_{j_{n}}=e_{\tau_{r} j_{1}} \otimes e_{\tau_{r} j_{2}} \otimes \cdots \otimes e_{\tau_{r} j_{n}}=e_{\tau_{r-1} \tau_{r} j_{1}} \otimes e_{\tau_{r-1} \tau_{r} j_{2}} \otimes \cdots \otimes e_{\tau_{r-1} \tau_{r} j_{n}}=\cdots= \\
e_{\tau_{1} \cdots \tau_{r-1} \tau_{r} j_{1}} \otimes e_{\tau_{1} \cdots \tau_{r-1} \tau_{r} j_{2}} \otimes \cdots \otimes e_{\tau_{1} \cdots \tau_{r-1} \tau_{r} j_{n}}=e_{\sigma j_{1}} \otimes e_{\sigma j_{2}} \otimes \cdots \otimes e_{\sigma j_{n}} .
\end{gathered}
$$

This shows that two tensors are equal in the symmetric product if their component vectors are permuted. We can then assume that any tensor can be expressed with its components in non-decreasing order as follows:

$$
\overbrace{n}^{e_{1} \otimes e_{1} \otimes \cdots \otimes e_{1}} \otimes \overbrace{e_{2} \otimes e_{2} \otimes \cdots \otimes e_{2}}^{r_{1}} \otimes \cdots \overbrace{e_{m} \otimes e_{m} \otimes \cdots \otimes e_{m}}^{r_{2}}
$$

with $r_{j} \geq 0$. Then two tensors will be equal if they have the same number of e_{1} 's, the same number of e_{2} 's, etc., so that the problem is reduced to selecting $r_{1}, r_{2} \ldots r_{m}$ with $r_{j} \geq 0$ and $r_{1}+r_{2}+\cdots r_{m}=n$.
Now we all know that there are $\binom{n+m-1}{r}$ ways to put n balls into m baskets, for, you see, the m baskets, when placed side by side, have $m-1$ interior walls, so that we only have to count the number of ways to select n of $n+m-1$ objects to be balls (and not walls), giving the formula above.
Now, returning to the symmetric product, we see that selecting $r_{j} \geq 0$ with $\sum_{j} r_{j}=n$ is equivalent to putting n balls into m baskets so that there will be $\binom{n+m-1}{r}$ ways to do so. Hence, $\operatorname{dim} S^{n} V=\binom{n+m-1}{r}$.
3.

$$
\begin{gathered}
\left(\bigwedge_{n}^{n} \rho\right)\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}\right)=\rho e_{1} \wedge \rho e_{2} \wedge \cdots \wedge \rho e_{n}= \\
\sum_{i} a_{i, 1} e_{i} \wedge \sum_{i} a_{i, 2} e_{i} \wedge \cdots \wedge \sum_{i} a_{i, n} e_{i}= \\
\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)\left(a_{\sigma(1), 1} a_{\sigma(2), 2} \cdots a_{\sigma(n), n}\right)\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}\right)=\operatorname{det} A\left(e_{1} \wedge e_{2} \wedge \cdots \wedge e_{n}\right) .
\end{gathered}
$$

4. If $g h=k$, then $h=g^{-1} k$ so that

$$
g\left(\sum_{h} \alpha_{h} e_{h}\right)=\sum_{h} \alpha_{h} e_{g h}=\sum_{k} \alpha_{g^{-1} k} e_{k} .
$$

We identify the vector $\sum_{h} \alpha_{h} e_{h}$ with the \mathbf{C}-valued function $\sum_{h} \alpha_{h} I_{h}$ and make the collection R_{1} of \mathbf{C}-valued function into a G-module by defining

$$
g \varphi(k):=\varphi\left(g^{-1} k\right)
$$

for $\varphi \in R_{1}$ and $g, k \in G$. Then

$$
g\left(\sum_{h} \alpha_{h} I_{h}\right)(k)=\left(\sum_{h} \alpha_{h} I_{h}\right)\left(g^{-1} k\right)=\alpha_{g^{-1} k}
$$

so that

$$
g\left(\sum_{h} \alpha_{h} I_{h}\right)=\sum_{k} \alpha_{g^{-1} k} I_{k} .
$$

Then under the identification above, $g\left(\sum_{h} \alpha_{h} e_{h}\right)$ corresponds with $g\left(\sum_{h} \alpha_{h} I_{h}\right)$ as required.
Let R_{2} be the space of functions on G made into a module by the action

$$
g \varphi(k):=\varphi(k g)
$$

for $\varphi \in R_{2}$ and $k, g \in G$.
Then

$$
g\left(\sum_{h} \alpha_{h} I_{h}\right)(k)=\left(\sum_{h} \alpha_{h} I_{h}\right)(k g)=\alpha_{k g}
$$

so that

$$
g\left(\sum_{h} \alpha_{h} I_{h}\right)=\sum_{k} \alpha_{k g} I_{k} .
$$

Define $\Phi: R_{1} \longrightarrow R_{2}$ by

$$
\Phi\left(\sum_{h} \alpha_{h} I_{h}\right):=\sum_{h} \alpha_{h^{-1}} I_{h} .
$$

Then Φ is clearly a \mathbf{C}-vector space isomorphism. To see that Φ is a G-module homomorphism,
$\Phi\left(g \sum_{h} \alpha_{h} I_{h}\right)=\Phi\left(\sum_{k} \alpha_{g^{-1} k} I_{k}\right)=\sum_{k} \alpha_{k^{-1} g} I_{k}=g \sum_{h} \alpha_{h^{-1}} I_{h}=g \Phi\left(\sum_{h} \alpha_{h} I_{h}\right)$.
Cheers!

Homework 10

Marcus

1. Let V be a vector space of dimension k over \mathbb{C}. Show that $V^{\otimes 3}$ is the direct sum of 4 irreducible $G L(V)=G L(k, \mathbb{C})$-modules of dimensions

$$
\frac{k(k+1)(k+2)}{6}, \frac{k(k-1)(k-2)}{6}, \frac{k\left(k^{2}-1\right)}{3}, \frac{k\left(k^{2}-1\right)}{3} .
$$

$\mathbb{S}_{\lambda} V$ is irreducible for all $\lambda \vdash 3$ with fewer than 4 parts. Assuming that $k \geq 3$, all the partitions of 3 have fewer than 4 parts. For $\lambda=1^{3}$, we compute

$$
\begin{aligned}
\operatorname{dim} \mathbb{S}_{\left(1^{3}\right)} V= & \prod_{1 \leq i<j \leq k} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \\
= & \left(\frac{1-1+2-1}{2-1}\right)\left(\frac{1-1+3-1}{3-1}\right)\left(\frac{1-0+4-1}{4-1}\right) \cdots\left(\frac{1-0+k-1}{k-1}\right) . \\
& \left(\frac{1-1+3-2}{3-2}\right)\left(\frac{1-0+4-2}{4-2}\right)\left(\frac{1-0+5-2}{5-2}\right) \cdots\left(\frac{1-0+k-2}{k-2}\right) . \\
& \left(\frac{1-0+4-3}{4-3}\right)\left(\frac{1-0+5-3}{5-3}\right)\left(\frac{1-0+6-3}{6-3}\right) \cdots\left(\frac{1-0+k-3}{k-3}\right) . \\
& \left(\frac{0-0+5-4}{5-4}\right)\left(\frac{0-0+6-4}{6-4}\right)\left(\frac{0-0+7-4}{7-4}\right) \cdots\left(\frac{0-0+k-4}{k-4}\right) . \\
& \cdots\left(\frac{0-0+k-(k-1)}{k-(k-1)}\right) \\
= & 1 \cdot 1 \cdot \frac{4}{3} \cdot \frac{5}{4} \cdots \frac{k}{k-1} \cdot \\
& 1 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdots \frac{k-1}{k-2} . \\
& \frac{2}{1} \cdot \frac{3}{2} \cdots \frac{k-2}{k-3} \cdot \\
& 1 \cdot 1 \cdots 1 \cdot \\
= & \frac{k}{3} \cdot \frac{k-1}{2} \cdot \frac{k-2}{1} \\
= & \frac{k(k-1)(k-2)}{6} .
\end{aligned}
$$

We similarly compute that

$$
\operatorname{dim} \mathbb{S}_{(2,1)} V=\frac{k\left(k^{2}-1\right)}{3} \text { and } \operatorname{dim} \mathbb{S}_{(3)} V=\frac{k(k-1)(k-2)}{6}
$$

and that

$$
V^{\otimes 3}=\mathbb{S}_{\left(1^{3}\right)} V \oplus\left(\mathbb{S}_{(2,1)} V\right)^{\otimes 2} \oplus \mathbb{S}_{(3)} V
$$

2. Let $k=3$ and $d=3$ as above. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis of V. Let $\lambda=2,1$.
(a) Verify that $\mathbb{S}_{\lambda} V$ has dimension 8 and that is has a basis as given in the Semistandard Basis Theorem.
We compute that the semi-standard tableux are

Now for | 1 | 1 |
| :--- | :--- |
| 2 | 2 | , we have

$$
\begin{aligned}
\left(e_{1} \otimes e_{2} \otimes e_{1}\right) c_{\lambda} & =\left(e_{1} \otimes e_{2} \otimes e_{1}\right)(1+(12)-(13)-(132)) \\
& =\left(e_{1} \otimes e_{2} \otimes e_{1}\right)+\left(e_{2} \otimes e_{1} \otimes e_{1}\right)-\left(e_{1} \otimes e_{2} \otimes e_{1}\right)-\left(e_{1} \otimes e_{1} \otimes e_{2}\right) \\
& =\left(e_{2} \otimes e_{1} \otimes e_{1}\right)-\left(e_{1} \otimes e_{1} \otimes e_{2}\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
\left(e_{1} \otimes e_{3} \otimes e_{1}\right) c_{\lambda} & =\left(e_{3} \otimes e_{1} \otimes e_{1}\right)-\left(e_{1} \otimes e_{1} \otimes e_{3}\right), \\
\left(e_{1} \otimes e_{2} \otimes e_{2}\right) c_{\lambda} & =\left(e_{1} \otimes e_{2} \otimes e_{2}\right)-\left(e_{2} \otimes e_{2} \otimes e_{1}\right), \\
\left(e_{1} \otimes e_{3} \otimes e_{2}\right) c_{\lambda} & =\left(e_{1} \otimes e_{3} \otimes e_{2}\right)+\left(e_{3} \otimes e_{1} \otimes e_{2}\right)-\left(e_{2} \otimes e_{3} \otimes e_{1}\right)-\left(e_{2} \otimes e_{1} \otimes e_{3}\right), \\
\left(e_{1} \otimes e_{2} \otimes e_{3}\right) c_{\lambda} & =\left(e_{1} \otimes e_{2} \otimes e_{3}\right)+\left(e_{2} \otimes e_{1} \otimes e_{3}\right)-\left(e_{3} \otimes e_{2} \otimes e_{1}\right)-\left(e_{3} \otimes e_{1} \otimes e_{2}\right), \\
\left(e_{1} \otimes e_{3} \otimes e_{3}\right) c_{\lambda} & =\left(e_{1} \otimes e_{3} \otimes e_{3}\right)-\left(e_{3} \otimes e_{3} \otimes e_{1}\right), \\
\left(e_{2} \otimes e_{3} \otimes e_{2}\right) c_{\lambda} & =\left(e_{3} \otimes e_{2} \otimes e_{2}\right)-\left(e_{2} \otimes e_{2} \otimes e_{3}\right), \\
\text { and } & \\
\left(e_{2} \otimes e_{3} \otimes e_{3}\right) c_{\lambda} & =\left(e_{2} \otimes e_{3} \otimes e_{3}\right)-\left(e_{3} \otimes e_{3} \otimes e_{2}\right)
\end{aligned}
$$

We notice that no simple tensor $e_{i} \otimes e_{j} \otimes e_{k}$ appears more than once as a summand of any of the 8 vectors above so that if

$$
\begin{aligned}
0 & =\alpha_{1}\left(e_{2} \otimes e_{1} \otimes e_{1}-e_{1} \otimes e_{1} \otimes e_{2}\right)+\alpha_{2}\left(e_{3} \otimes e_{1} \otimes e_{1}-e_{1} \otimes e_{1} \otimes e_{3}\right)+\cdots \\
& =0 \cdot\left(e_{1} \otimes e_{1} \otimes e_{1}\right)-\alpha_{1}\left(e_{1} \otimes e_{1} \otimes e_{2}\right)+\cdots
\end{aligned}
$$

then by the independence of $\left\{e_{i} \otimes e_{j} \otimes e_{k} \mid 1 \leq i, j, k \leq 3\right\}$, we have that $\alpha_{j}=0$ for all $1 \leq j \leq 8$ so that the above vectors are independent. Thus these vectors form a basis for $\mathbb{S}_{\lambda} V$.
(b) Let $g=\left(\begin{array}{ccc}x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3}\end{array}\right)$. Verify the character formula given in Fulton and Harris in Theorem 6.3
We compute the character of \mathbb{S}_{V} at $g=\left(\begin{array}{ccc}x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3}\end{array}\right)$ directly by determining the images of the basis vectors computed in the previous problem under the action of g. We have that

$$
\begin{aligned}
\left(\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3}
\end{array}\right) \cdot\left(e_{2} \otimes e_{1} \otimes e_{1}-e_{1} \otimes e_{1} \otimes e_{2}\right) & =x_{2} e_{2} \otimes x_{1} e_{1} \otimes x_{1} e_{1}-x_{1} e_{1} \otimes x_{1} e_{1} \otimes x_{2} e_{2} \\
& =x_{1}^{2} x_{2}\left(e_{2} \otimes e_{1} \otimes e_{1}-e_{1} \otimes e_{1} \otimes e_{2}\right)
\end{aligned}
$$

and similarly for the other basis elements so that the matrix corresponding with this action is

$$
\left(\begin{array}{ccc}
x_{1}^{2} x_{2} & 0 & \cdots \\
0 & x_{1}^{2} x_{3} & \\
\vdots & & \ddots
\end{array}\right)
$$

and the trace of this matrix is

$$
x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{3}^{2} x_{2}+2 x_{1} x_{2} x_{3}+x_{1}^{2} x_{2}+x_{1} x_{3}^{2}+x_{1}^{2} x_{3}
$$

which corresponds with the Schur polynomial I computed with Maple.
We further corroborate the claim that the Schur polynomials S_{λ} are in fact the characters of \mathbb{S}_{λ} by computing the trace of $(g,(12))$ on $V^{\otimes 3}$ and verifying that this is $\sum_{\lambda \in \Lambda(3,3)} S_{\lambda}\left(x_{1}, x_{2}, x_{3}\right) \chi_{\lambda}(12)$, the trace of $\left(g,(12)\right.$ on $\bigoplus_{\lambda \in \Lambda(3,3)} \mathbb{S}_{\lambda} V \otimes V_{\lambda}$. To compute the trace on $V^{\otimes 3}$, we note that only the basis vectors $e_{j} \otimes e_{j} \otimes e_{k}$ will be fixed under the right action of (12) and that in this situation,

$$
\begin{align*}
\left(\left(\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3}
\end{array}\right),(12)\right) \cdot e_{j} \otimes e_{j} \otimes e_{k} & =\left(\left(\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3}
\end{array}\right) \cdot e_{j} \otimes e_{j} \otimes e_{k}\right) . \tag{12}\\
& =\left(x_{j} e_{j} \otimes x_{j} e_{j} \otimes x_{k} e_{k}\right) \cdot(12) \\
& =x_{j} e_{j} \otimes x_{j} e_{j} \otimes x_{k} e_{k} \\
& =x_{j}^{2} x_{k}\left(e_{j} \otimes e_{j} \otimes e_{k}\right)
\end{align*}
$$

where • generically represents all actions involved. Thus,
Trace of $\left(\left(\begin{array}{ccc}x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3}\end{array}\right),(12)\right)$ on $V^{\otimes 3}=\operatorname{Tr}\left(\begin{array}{ccccc}x_{1}^{3} & 0 & 0 & 0 & \cdots \\ 0 & x_{1}^{2} x_{2} & 0 & 0 & \cdots \\ 0 & 0 & x_{1}^{2} x_{3} & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & & & & \\ 0 & 0 & 0 & x_{1}^{2} x_{2} & \end{array}\right)$
$=\sum_{1 \leq j, k \leq 3} x_{j}^{2} x_{k}$
$=\left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)$

Maple gives that

$$
\begin{aligned}
S_{1^{3}}\left(x_{1}, x_{2}, x_{3}\right) & =x_{1} x_{2} x_{3} \\
S_{2,1}\left(x_{1}, x_{2}, x_{e}\right) & =x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{3}^{2} x_{2}+2 x_{1} x_{2} x_{3}+x_{1}^{2} x_{2}+x_{1} x_{3}^{2}+x_{1}^{2} x_{3} \\
S_{3}\left(x_{1}, x_{2}, x_{3}\right) & =x_{2}^{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{3}^{2} x_{2}+x_{1} x_{2} x_{3}+x_{1}^{2} x_{2}+x_{3}^{3}+x_{1} x_{3}^{2}+x_{1}^{2} x_{3}+x_{1}^{3} .
\end{aligned}
$$

Substituting these polynomials for $\chi_{\mathbb{S}_{13} V}\left(x_{1}, x_{2}, x_{3}\right), \chi_{\mathbb{S}_{2,1} V}\left(x_{1}, x_{2}, x_{3}\right)$, and $\chi_{\mathbb{S}_{3} V}\left(x_{1}, x_{2}, x_{3}\right)$, we have

Trace of $\left(\left(\begin{array}{ccc}x_{1} & 0 & 0 \\ 0 & x_{2} & 0 \\ 0 & 0 & x_{3}\end{array}\right),(12)\right)$

$$
\text { on } \begin{align*}
\bigoplus_{\lambda \in \Lambda(3,3)} \mathbb{S}_{\lambda} V \otimes V_{\lambda}= & \sum_{\lambda \in \Lambda(3,3)} \chi_{\mathbb{S}_{\lambda} V}\left(x_{1}, x_{2}, x_{3}\right) \chi_{\lambda}(12) \\
= & \chi_{\mathbb{S}_{1} V}\left(x_{1}, x_{2}, x_{3}\right) \chi_{1^{3}}(12)+\chi_{\mathbb{S}_{2,1} V}\left(x_{1}, x_{2}, x_{3}\right) \chi_{2,1}(12) \tag{12}\\
& +\chi_{\mathbb{S}_{3} V}\left(x_{1}, x_{2}, x_{3}\right) \chi_{3}(12) \\
= & \chi_{\mathbb{S}_{13} V}\left(x_{1}, x_{2}, x_{3}\right) \cdot(-1)+\chi_{\mathbb{S}_{2,1} V}\left(x_{1}, x_{2}, x_{3}\right) \chi_{2,1}(12) \cdot 0 \tag{12}\\
& +\chi_{\mathbb{S}_{3} V}\left(x_{1}, x_{2}, x_{3}\right) \chi_{3}(12) \cdot 1 \\
= & x_{2}^{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{3}^{2} x_{2} \\
& +x_{1}^{2} x_{2}+x_{3}^{3}+x_{1} x_{3}^{2}+x_{1}^{2} x_{3}+x_{1}^{3} \\
= & \left(x_{1}+x_{2}+x_{3}\right)\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
= & \text { Trace of }\left(\left(\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3}
\end{array}\right),(12)\right) \text { on } V^{\otimes 3}
\end{align*}
$$

2. Let W be some representation of $D_{4}=\left\langle r, s \mid r^{4}=s^{2}=1, s r s=r^{3}\right\rangle$. When we allow the abelian subgroup $\langle r\rangle \leq D_{4}$ to act on W, we have by Maschke that $W=\bigoplus_{j=1}^{m} V_{j}$ for irreducible $\langle r\rangle$-submodules V_{j}, but by Schur, $V_{j}=\left\langle v_{j}\right\rangle$ for eigenvectors v_{j} of r. Moreover, the eigenvalue for v_{j} is $i^{k_{j}}, k_{j}=0,1,2,3$.
3. Now suppose v_{j} is an eigenvector for r with eigenvalue i. Then

$$
r s v_{j}=s r^{3} v_{j}=s i^{3} v_{j}=-i s v_{j}
$$

so that $s v_{j}$ is also an eigenvector for r with eigenvalue $-i$. Then v_{j} and $s v_{j}$ are independent, having different eigenvalues, so that $W_{1}=\left\langle v_{j}, s v_{j}\right\rangle$ is a D_{4}-submodule of W.
Now W_{1} is irreducible since any proper subspace $\left\langle\alpha v_{j}+\beta s v_{j}\right\rangle \leq W_{1}$, is not D_{4}-stable as $s\left(\alpha v_{j}+\beta s v_{j}\right)=\beta v_{j}+\alpha s v_{j} \in\left\langle\alpha v_{j}+\beta s v_{j}\right\rangle$ so that $\alpha= \pm \beta$ and we can assume $\alpha=1$ and $\beta= \pm 1$, but $r\left(v_{j} \pm s v_{j}\right)=i v_{j} \mp i s v_{j} \notin\left\langle v_{j} \pm s v_{j}\right\rangle$.
Thus W_{1} is a irreducible two-dimensional D_{4}-module.
2. If v_{j} is an eigenvector for r with eigenvalue -1 , then by a similar argument, we have that $s v_{j}$ is also an eigenvector for r with eigenvalue -1 .
(a) If v_{j} and $s v_{j}$ are not independent, then $s v_{j}=c v_{j}$ for some constant $c \in \mathbf{C}$. Then applying s to both sides,

$$
v_{j}=c s v_{j}=c^{2} v_{j}
$$

so that $c= \pm 1$.
i. If $s v_{j}=v_{j}$, then let $W_{2}=\left\langle v_{j}\right\rangle . W_{2}$ is an irreducible D_{4}-module.
ii. If $s v_{j}=-v_{j}$, then let $W_{3}=\left\langle v_{j}\right\rangle . W_{3}$ is also an irreducible D_{4}-module.
(b) If v_{j} and $s v_{j}$ are independent, then $\left\langle v_{j}, s v_{j}\right\rangle$ is a D_{4}-submodule, but is not irreducible as $\left\langle v_{j}+s v_{j}\right\rangle$ and $\left\langle v_{j}-s v_{j}\right\rangle$ are proper D_{4}-submodules of $\left\langle v, s v_{j}\right\rangle$ with $\left\langle v_{j}+s v_{j}\right\rangle \oplus\left\langle v_{j}-s v_{j}\right\rangle=\left\langle v_{j}, s v_{j}\right\rangle$. These modules are isomorphic with W_{2} and W_{3} above.
3. If v_{j} is an eigenvector for r with eigenvalue 1 , then as above, $s v_{j}$ is also an eigenvector for r with eigenvalue 1 .
(a) If v_{j} and $s v_{j}$ are not independent, then as above, $s v_{j}= \pm v_{j}$
i. If $s v_{j}=v_{j}$, then $W_{4}=\left\langle v_{j}\right\rangle$ is an irreducible submodule and is isomorphic with the trivial module.
ii. If $s v_{j}=-v_{j}$, then $W_{5}=\left\langle v_{j}\right\rangle$ is a irreducible submodule.
(b) If v_{j} and $s v_{j}$ are independent, then $\left\langle v_{j}, s v_{j}\right\rangle$ is a D_{4}-submodule, but is not irreducible as $\left\langle v_{j}+s v_{j}\right\rangle$ and $\left\langle v_{j}-s v_{j}\right\rangle$ are proper D_{4}-submodules of $\left\langle v, s v_{j}\right\rangle$ with $\left\langle v_{j}+s v_{j}\right\rangle \oplus\left\langle v_{j}-s v_{j}\right\rangle=\left\langle v_{j}, s v_{j}\right\rangle$. These modules are isomorphic with W_{4} and W_{5} above.

We have thus computed that the only irreducible D_{4}-modules are W_{1}, which is two-dimensional, and W_{2}, W_{3}, W_{4}, and W_{5}, which are one-dimensional.
1.11 $S^{2} V$ has basis $\left\{\alpha^{2}, \alpha \beta, \beta^{2}\right\}$ with

$$
\tau \alpha^{2}=\tau \alpha \cdot \tau \alpha=\omega \alpha \cdot \omega \alpha=\omega^{2} \alpha^{2}
$$

We similarly compute

$$
\begin{array}{ll}
\tau \alpha^{2}=\omega^{2} \alpha^{2} & \sigma \alpha^{2}=\beta^{2} \\
\tau \alpha \beta=\alpha \beta & \sigma \alpha \beta=\alpha \beta \\
\tau \beta^{2}=\omega \beta^{2} & \sigma \beta^{2}=\alpha^{2} .
\end{array}
$$

We have, by arguments similar to those given in problem 2 above, that $\langle\alpha \beta\rangle$ and $\left\langle\alpha^{2}, \beta^{2}\right\rangle$ are irreducible submodules and

$$
S^{2} V=\langle\alpha \beta\rangle \oplus\left\langle\alpha^{2}, \beta^{2}\right\rangle \cong U \oplus V
$$

Similarly, $\left\{\alpha^{3}, \alpha^{2} \beta, \alpha \beta^{2}, \beta^{3}\right\}$ is a basis for $S^{3} V$. We compute

$$
\begin{array}{ll}
\tau \alpha^{3}=\alpha^{3} & \sigma \alpha^{3}=\beta^{3} \\
\tau \alpha^{2} \beta=\omega \alpha^{2} \beta & \sigma \alpha^{2} \beta=\alpha \beta^{2} \\
\tau \alpha \beta^{2}=\omega^{2} \alpha \beta^{2} & \sigma \alpha \beta^{2}=\alpha^{2} \beta \\
\tau \beta^{3}=\beta^{3} & \sigma \beta^{3}=\alpha^{3} .
\end{array}
$$

Then

$$
S^{3} V=\left\langle\alpha^{2} \beta, \alpha \beta^{2}\right\rangle \oplus\left\langle\alpha^{3}+\beta^{3}\right\rangle \oplus\left\langle\alpha^{3}-\beta^{3}\right\rangle .
$$

1.12 This approach is extremely direct. You will hate every word of it. We use matrices to compute the eigenvectors for τ.

Eigenvector for τ Eigenvalue

v_{1}	$1+\tau+\tau^{2}$	1
v_{2}	$\sigma+\sigma \tau+\sigma \tau^{2}$	1
v_{3}	$1+\omega^{2} \tau+\omega \tau^{2}$	ω
v_{4}	$\sigma+\omega \sigma \tau+\omega^{2} \sigma \tau^{2}$	ω
v_{5}	$1+\omega \tau+\omega^{2} \tau^{2}$	ω^{2}
v_{6}	$\sigma+\omega^{2} \sigma \tau+\omega \sigma \tau^{2}$	ω^{2}

and note that v_{3} and $\sigma v_{3}=v_{6}$ are independent, being eigenvectors for τ which correspond with different eigenvalues. Similarly, v_{4} and $\sigma v_{4}=v_{5}$ are independent. Moreover, $\left\langle v_{3}, v_{6}\right\rangle$ and $\left\langle v_{4}, v_{5}\right\rangle$ are irreducible as demonstrated in problem 2 above. Moreover,

$$
\left\langle v_{3}, v_{6}\right\rangle \cong\left\langle v_{4}, v_{5}\right\rangle \cong V
$$

where V is the standard module.
Finally, we can all see that v_{1} and $\sigma v_{1}=v_{2}$ are independent. However, $\left\langle v_{1}, v_{2}\right\rangle$ is not irreducible as $\left\langle v_{1}+v_{2}\right\rangle \oplus\left\langle v_{1}-v_{2}\right\rangle=\left\langle v_{1}, v_{2}\right\rangle$. Moreover,

$$
\left\langle v_{1}+v_{2}\right\rangle \cong U \text { and }\left\langle v_{1}-v_{2}\right\rangle \cong U^{\prime}
$$

where U is the trivial module and U^{\prime} is the alternating module.
Hence, we have that $R \cong U \oplus U^{\prime} \oplus V^{2}$.

Homework 3

1. (a) Let $V_{j}:=\left\langle e_{1}, e_{2} \ldots e_{j}\right\rangle$ where $e_{j}=(0,0 \ldots 1 \ldots 0)$ with the 1 in the j th position. Then V_{j} is a B-submodule. Now as $V_{j} / V_{j-1}=\left\langle e_{j}\right\rangle+V_{j-1} \cong\left\langle e_{j}\right\rangle$, we have that V_{j} / V_{j-1} is irreducible and that

$$
V \geq V_{n-1} \geq V_{n-1} \geq \cdots \geq V_{2} \geq V_{1} \geq 0
$$

Write ρ_{j} for the representation of B induced by V_{j} / V_{j-1}. Then for $M \in B$ we have

$$
M\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{j-1} \\
v_{j} \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
\boldsymbol{\phi} \\
\boldsymbol{\phi} \\
\vdots \\
\boldsymbol{\phi} \\
m_{j, j} v_{j} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

so that $\rho_{j}(M): v_{j} e_{j}+V_{j-1} \mapsto m_{j, j} v_{j} e_{j}+V_{j-1}$. Thus, M acts as multiplication by $m_{j, j}$.
(b) Write $E_{i, j}$ for the matrix with 1 in the (i, j) position and 0 's elsewhere. Define $B_{j}=\left\langle E_{1, j}, E_{2, j} \ldots E_{j, j}\right\rangle$. Then B_{j} is a B-submodule with $B=\bigoplus_{j=1}^{n} B_{j}$.
Write ρ_{k} for the representation of B induced by B_{k}. To describe ρ_{k}, it suffices to describe the transformations $\rho_{k}\left(E_{i, j}\right)$ for $E_{i, j}, i \leq j$, the generators of B. Now in general, left multiplication by $E_{i, j}$ replaces the the j th row with the i th row and clobbers everything else. Then for $M \in B_{k}$, where only the k th column is non-zero, we have $E_{i, j} M=m_{j, k} E_{i, k}$, that is, $\rho_{k}\left(E_{i, j}\right)$ is the transformation which extracts the (j, k) entry and moves it to position (i, k), and clobbers everything else.
2. (a) Let $\rho_{g}: h \mapsto g h$ for all $h \in G$. Then $\rho_{a}: a^{j} \mapsto a^{j+1}$ and this transformation has matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \\
0 & & & 1 & 0
\end{array}\right)
$$

with respect to the basis G of $K G$.
(b) Computation gives that the characteristic polynomial for A is $c_{A}(X)=(X-1)^{p}$. To find the Jordan form of A, we locate a basis for \mathbb{C}^{n} consisting of $(A-1)$-strings. There are at least two good ways to do this.
First, we know by the theorem in Professor Radford's book about the number o ($A-1$)-strings that there are

$$
\operatorname{Rank}(A-1)^{p+1}+\operatorname{Rank}(A-1)^{p-1}-2 \operatorname{Rank}(A-1)^{p}=\operatorname{Rank}(A-1)^{p-1}
$$

($A-1$)-strings of length p in any basis of $(A-1)$-strings. But the range of $(A-1)^{p-1}$ is the nullspace of $A-1$ as $(A-1)\left[(A-1)^{p-1} \mathbf{v}\right]=(A-1)^{p} \mathbf{v}=0$ by Caley-Hamilton. Thus, the nullity of $A-1$ is 1 as

$$
\mathcal{N}(A-1)=\mathcal{N}\left(\begin{array}{ccccc}
-1 & 0 & \cdots & 0 & 1 \\
1 & -1 & & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \\
0 & & & 1 & -1
\end{array}\right)=\left\langle\left(\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right)\right\rangle
$$

so that there exits an $(A-1)$-string of length p.
Alternately, if we know that $(A-1)^{p-1} \neq 0$ for some other reason, then we can produce an $(A-1)$-string of length p by defining $v_{n}:=e_{j}$, where e_{j} is a standard basis element of \mathbb{C}^{p} and j is the column of $(A-1)^{p-1}$ which has a non-zero element. Define also $v_{k}:=(A-1) v_{k-1}$. Then $\left\{v_{k}\right\}$ forms an $(A-1)$-string of length p.
Now, to show that $(A-1)^{p-1}$ is not 0 , we note that if

$$
0=(A-1)^{p-1}=\sum_{j=0}^{p-1}\binom{p-1}{j} A^{j} I^{p-1-j}=\sum_{j=0}^{p-1}\binom{p-1}{j} A^{j},
$$

then applying this transformation to the group-algebra element 1, we have

$$
0=\sum_{j=0}^{p-1}\binom{p-1}{j} a^{j},
$$

but since $\left\{a_{j}\right\}$ forms a basis for $\mathbb{C} G$, we have that $\binom{p-1}{j}=0$ for all j, a contradiction.
Incidently, taking $v_{n}:=e_{1}$ and $v_{k}=(A-1)^{k-1} e_{1}$, we can easily compute v_{k} for all $1 \leq k \leq p$, since v_{k} is the first column of

$$
(A-1)^{k-1}=\sum_{j=0}^{k-1}\binom{k-1}{j} A^{j}
$$

and we can easily compute powers of A. For example, the first column of $(A-1)^{2}=A^{2}-2 A+I$ is

$$
\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{r}
0 \\
-2 \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
1 \\
\vdots \\
0
\end{array}\right) .
$$

Note also that $v_{p}=(A-1)^{p-1}=\sum_{j=0}^{p-1}\binom{p-1}{j} A^{j} \neq 0$ as the first columns of $I, A, A^{2}, \ldots A^{p-1}$ have entries in different positions and the $\binom{p-1}{j}$ are not all zero in \mathbb{F}_{p}.

This basis of \mathbb{C}^{p} yields the basis $\left\{1,1-2 a+a^{2},-1+3 a-3 a^{2}+a^{4} \ldots\right\}$ of $\mathbb{C} G$. Now taking one of the $(A-1)$-strings generated above as a basis, we have that

$$
A \sim\left(\begin{array}{ccccc}
1 & 1 & 0 & \cdots & 0 \\
0 & 1 & 1 & & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & \ddots & \\
0 & & & & 1 \\
0 & & & & 1
\end{array}\right)
$$

so that defining $V_{j}=\left\langle e_{1}, e_{2} \cdots e_{j}\right\rangle$ as in the previous problem, we have that V_{j} are submodules and that

$$
V \geq V_{p-1} \geq V_{p-1} \geq \cdots \geq V_{2} \geq V_{1} \geq 0
$$

with $V_{j} / V_{j-1} \cong\left\langle e_{j}\right\rangle$ irreducible.
3. (a) Let $V=\left\langle v_{1}, v_{2}\right\rangle$ be the two-dimensional irreducible $\mathbb{C} G$-module with $s v_{1}=v_{2}$, $s v_{2}=v_{1}, r v_{1}=i v_{1}$, and $r v_{2}=-i v_{2}$. Then V induces a representation ρ of $\mathbb{C} G$ on V defined by

$$
\rho\left(\sum_{j} \alpha_{j} g_{j}\right)(v)=\left(\sum_{j} \alpha_{j} g_{j}\right) \cdot v
$$

where • represents the action of group ring on the module described above. In particular, this means that

$$
\rho: r \mapsto\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \text { and } \rho: s \mapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

with respect to the basis $\left\{v_{1}, v_{2}\right\}$ of V. Using this information, we compute

$$
\begin{aligned}
\rho\left(-\frac{1}{2} i r-\frac{1}{2} r^{2}\right) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \\
\rho\left(\frac{1}{2} i s r+\frac{1}{2} s\right) & =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),
\end{aligned}
$$

and similarly for the other two generators of $M_{2}(\mathbb{C})$, so that ρ is surjective.
(b) The procedure employed in this computation is justified by the following:

Lemma. Let $N \triangleleft G$. If $\sum_{g N \in G / N} \alpha_{g N} g N$ is idempotent in $\mathbb{C}(G / N)$, then $\frac{1}{|N|} \sum_{g \in G} \alpha_{\pi(g)} g$ is idempotent in $\mathbb{C} G$ where $\pi(g)=g N$ is the cannonical projection of G onto G / N.

Proof.

Since

$$
\sum_{g N \in G / N} \alpha_{g N} g N=\left(\sum_{g N \in G / N} \alpha_{g N} g N\right)^{2}=\sum_{g N \in G / N}\left(\sum_{h_{1} N h_{2} N=g N} \alpha_{h_{1} N} \alpha_{h_{2} N}\right) g N,
$$

we have that for each $g N$,

$$
\alpha_{g N}=\sum_{h_{1} N h_{2} N=g N} \alpha_{h_{1} N} \alpha_{h_{2} N} .
$$

But for each fixed pair $h_{1} N, h_{2} N$ with $h_{1} h_{2} N=g N$, we have that

$$
h_{1, j} N h_{2, k} N=g N
$$

for all $|N|$ of the elements $h_{1, j} \in h_{1} N$ and for all $|N|$ of the elements $h_{2, j} \in h_{2} N$. But of the $|N|^{2}$ pairs $h_{1, j}, h_{2, k}$, exactly $|N|$ of them satisfy $h_{1, j} h_{2, k}=g$ and the product $\alpha_{\pi\left(h_{1, j}\right)} \alpha_{\pi\left(h_{2, k}\right)}=\alpha_{h_{1} N} \alpha_{h_{2} N}$ remains fixed for each such pair. Thus

$$
\sum_{h_{1} h_{2}=g} \alpha_{\pi\left(h_{1}\right)} \alpha_{\pi\left(h_{h}\right)}=|N| \sum_{h_{1} N h_{2} N=g N} \alpha_{h_{1} N} \alpha_{h_{2} N}=|N| \alpha_{g N}
$$

so that

$$
\left(\frac{1}{|N|} \sum_{g \in G} \alpha_{\pi g} g\right)^{2}=\frac{1}{|N|^{2}} \sum_{g \in G}\left(\sum_{h_{1} h_{2}=g} \alpha_{\pi\left(h_{1}\right)} \alpha_{\pi\left(h_{h}\right)}\right) g=\frac{1}{|N|} \sum_{g \in G} \alpha_{\pi g} g .
$$

Now getting down to buisness, we take the normal subgroup $\langle r\rangle$ of D_{8}. Then $D_{8} /\langle r\rangle \cong \mathbb{Z}_{2}$ and the idempotents for the quotient are

$$
\widetilde{e}_{1}=\frac{1}{2}(\langle r\rangle+s\langle r\rangle) \text { and } \widetilde{e}_{2}=\frac{1}{2}(\langle r\rangle-s\langle r\rangle)
$$

Lifting as in the lemma above, we have

$$
e_{1}:=\frac{1}{8}\left(1+r+r^{2}+r^{3}+s+s r+s r^{2}+s r^{3}\right)
$$

and

$$
e_{2}:=\frac{1}{8}\left(1+r+r^{2}+r^{3}-s-s r-s r^{2}-s r^{3}\right) .
$$

Repeating the above procedure for the subgroups $\left\langle s, r^{2}\right\rangle$ and $\left\langle s r, r^{2}\right\rangle$, we generate

$$
e_{3}:=\frac{1}{8}\left(1-r+r^{2}-r^{3}+s-s r+s r^{2}-s r^{3}\right)
$$

and

$$
e_{4}:=\frac{1}{8}\left(1-r+r^{2}-r^{3}-s+s r-s r^{2}+s r^{3}\right) .
$$

Finally, to construct the fifth idempotent f, note that since $\sum_{j=1}^{5} e_{j}=1$ by the definition of the e_{j}, we have

$$
1-\sum_{j=1}^{4} e_{j}=\frac{1}{2}\left(1-r^{2}\right)
$$

(a) Subject to further consideration.
(b) i. Take v to be an eigenvector for a with eigenvalue i. Then as in the proceeding homework, the computation

$$
a(b v)=b a^{3} v=-i(b v)
$$

shows both that $b v$ is an eigenvector for a with eigenvalue $-i$ and that v and $b v$ are independent. This together with the observation that

$$
b(b v)=a^{2} v=-v
$$

proves that $W:=\langle v, b v\rangle$ is a $\mathbb{C} G$ submodule. W is irreducible since if $\langle\alpha v+$ $\beta b v\rangle$ is any proper subspace, then

$$
a(\alpha v+\beta b v)=i \alpha v-i \beta b v \notin\langle\alpha v+\beta b v\rangle
$$

so that $\langle\alpha v+\beta b v\rangle$ is not G-stable. Now if ρ is the representation induced by this module, then by the above computations,

$$
\rho(a)=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \text { and } \rho(b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

ii. If ρ is a one-dimensional representation, then $\rho\left(a^{4}\right)=\rho(1)=(1)$ which we will write as 1 , so that $\rho(a)=i^{j}, j=0,1,2$, or 3 .
If $\rho(a)=i$, then since

$$
\rho(b)^{-1} i \rho(b)=\rho\left(b^{-1}\right) \rho(a) \rho(b)=\rho\left(b^{-1} a b\right)=\rho\left(a^{-1}\right)=\rho(a)^{-1}=-i,
$$

we have that

$$
i \rho(b)=\rho(b)(-i)=-i \rho(b)
$$

which is impossible, so we conclude that $\rho(a) \neq i$. Similarly, $\rho(a) \neq-i$. This means that $\rho(a)= \pm 1$ and in both cases, $\rho(b)$ is easily seen to be ± 1.
iii. Knowing that

$$
\frac{1}{2}(\langle a\rangle+b\langle a\rangle) \text { and } \frac{1}{2}(\langle a\rangle-b\langle a\rangle),
$$

are idempotent in $\mathbb{C}\left(Q_{8} /\langle a\rangle\right)$, we have that

$$
e_{1}:=\frac{1}{8}\left(1+a+a^{2}+a^{3}+b+b a+b a^{2}+b a^{3}\right)
$$

and

$$
e_{2}:=\frac{1}{8}\left(1+a+a^{2}+a^{3}-b-b a-b a^{2}-b a^{3}\right)
$$

are idempotent in $\mathbb{C} Q_{8}$. By replacing $\langle a\rangle$ in the above argument with $\langle b\rangle$ and $\langle b a\rangle$, we similarly generate

$$
e_{3}:=\frac{1}{8}\left(1-a+a^{2}-a^{3}+b-b a+b a^{2}-b a^{3}\right)
$$

and

$$
e_{4}:=\frac{1}{8}\left(1-a+a^{2}-a^{3}-b+b a-b a^{2}+b a^{3}\right)
$$

Finally, as $\sum_{j=1}^{5} e_{j}=1$, we have that

$$
e_{5}=\frac{1}{2}\left(1-a^{2}\right) .
$$

Multiplication (not shown here for sanity) confirms that $e_{j}^{2}=e_{j}$ for all j and that $e_{j} e_{k}=0$ for $e_{j} \neq e_{k}$ so that the e_{j} are mutually orthogonal.
iv. Assume that ρ is a representation of G over \mathbb{R} and assume also (why?) that

$$
\rho(a)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Now if

$$
\rho(b)=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)
$$

for $x, y, z, w \in \mathbb{R}$, we compute

$$
\rho(a b)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{cc}
-z & -w \\
x & y
\end{array}\right)
$$

and

$$
\rho\left(b a^{-1}\right)=\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
-y & x \\
-w & z
\end{array}\right) .
$$

Then, as $\rho(a b)=\rho\left(b a^{-1}\right)$, we must have $x=-w$ and $y=z$. Then write

$$
\rho(b)=\left(\begin{array}{ll}
x & y \\
y & x
\end{array}\right)
$$

and note that since

$$
\left(\begin{array}{cc}
x^{2}+y^{2} & 2 x y \\
2 x y & x^{2}+y^{2}
\end{array}\right)=\rho\left(b^{2}\right)=\rho\left(a^{2}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right),
$$

we have that $x^{2}+y^{2}=-1$ which contradicts $x, y \in \mathbb{R}$.
(c) i. Since

$$
\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{n}\right)=x^{n}-E_{1} x^{n-1}+E_{2} x^{n-2}+\cdots+(-1)^{n} E_{n}
$$

we have all of the following:

$$
\begin{aligned}
0= & \left(x_{1}-x_{1}\right)\left(x_{1}-x_{2}\right) \cdots\left(x_{1}-x_{n}\right)=x_{1}^{n}-E_{1} x_{1}^{n-1}+E_{2} x_{1}^{n-2}+\cdots+(-1)^{n} E_{n} \\
0= & \left(x_{2}-x_{1}\right)\left(x_{2}-x_{2}\right) \cdots\left(x_{2}-x_{n}\right)=x_{2}^{n}-E_{1} x_{2}^{n-1}+E_{2} x_{2}^{n-2}+\cdots+(-1)^{n} E_{n} \\
& \vdots \\
0 & =\left(x_{n}-x_{1}\right)\left(x_{n}-x_{2}\right) \cdots\left(x_{n}-x_{n}\right)=x_{n}^{n}-E_{1} x_{n}^{n-1}+E_{2} x_{n}^{n-2}+\cdots+(-1)^{n} E_{n}
\end{aligned}
$$

so that adding we have

$$
0=p_{n}-p_{n-1} E_{1}+p_{n-2} E_{2}+\cdots+(-1)^{n} n E_{n}
$$

which is the nth equation.
Now for the $(n-1)$ st equation, factor out the x_{j} :

$$
\begin{aligned}
0= & x_{1}\left(x_{1}^{n-1}-E_{1} x_{1}^{n-2}+E_{2} x_{1}^{n-3}+\cdots+(-1)^{n-1} E_{n-1}+\frac{1}{x_{1}}(-1)^{n} E_{n}\right) \\
0= & x_{2}\left(x_{2}^{n-1}-E_{1} x_{2}^{n-2}+E_{2} x_{2}^{n-3}+\cdots+(-1)^{n-1} E_{n-1}+\frac{1}{x_{2}}(-1)^{n} E_{n}\right) \\
& \vdots \\
0= & x_{n}\left(x_{n}^{n-1}-E_{1} x_{n}^{n-2}+E_{2} x_{n}^{n-3}+\cdots+(-1)^{n-1} E_{n-1}+\frac{1}{x_{n}}(-1)^{n} E_{n}\right)
\end{aligned}
$$

but as $x_{j} \neq 0$, begin indeterminants, we have

$$
\begin{aligned}
0 & =x_{1}^{n-1}-E_{1} x_{1}^{n-2}+E_{2} x_{1}^{n-3}+\cdots+(-1)^{n-1} E_{n-1}+\frac{1}{x_{1}}(-1)^{n} E_{n} \\
0 & =x_{2}^{n-1}-E_{1} x_{2}^{n-2}+E_{2} x_{2}^{n-3}+\cdots+(-1)^{n-1} E_{n-1}+\frac{1}{x_{2}}(-1)^{n} E_{n} \\
& \vdots \\
0 & =x_{n}^{n-1}-E_{1} x_{n}^{n-2}+E_{2} x_{n}^{n-3}+\cdots+(-1)^{n-1} E_{n-1}+\frac{1}{x_{n}}(-1)^{n} E_{n} .
\end{aligned}
$$

Note that the sum of the last terms of each equation is

$$
\begin{gathered}
(-1)^{n} E_{n}\left(\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}\right)=(-1)^{n} E_{n} \frac{x_{2} x_{3} \cdots x_{n}+x_{1} x_{3} \cdots x_{n}+\cdots x_{1} x_{2} \cdots x_{n-1}}{x_{1} x_{2} \cdots x_{n}} \\
=(-1)^{n} E_{n} \frac{E_{n-1}}{E_{n}}=(-1)^{n} E_{n-1} .
\end{gathered}
$$

Now, adding the equations,

$$
\begin{aligned}
0 & =p_{n-1}-p_{n-2} E_{1}+p_{n-2} E_{2}+\cdots+(-1)^{n-1} n E_{n-1}+(-1)^{n} E_{n-1} \\
& =p_{n-1}-p_{n-2} E_{1}+p_{n-2} E_{2}+\cdots+(-1)^{n-1} E_{n-1}(n-1),
\end{aligned}
$$

which is the $(n-1)$ st equation. Similarly for the others.
ii. Suppose that we are given some character χ of G of dimension n and let g be some fixed element of G. Write $x_{1}, x_{2} \ldots x_{n}$ for the eigenvalues of g. Then $p_{1}=\chi(g), p_{2}=\chi\left(g^{2}\right)$, etc, since, for example

$$
\chi(g)=\operatorname{tr}(\rho(g))=\operatorname{tr}\left(S \rho(g) S^{-1}\right)=\operatorname{tr}(J)=\sum_{j=1}^{n} x_{j}=p_{1}
$$

where J is the Jordan form for $\rho(g)$. Thus, the p_{j} are known for $j=1,2, \ldots n$. We can then inductively determine the E_{j}. For example, $E_{1}=p_{1}, E_{2}=$ $\frac{1}{2}\left(E_{1} p_{1}-p_{2}\right)$, etcetera. Then, the characteristic polynomial for g is given by $c_{g}(X)=\left(X-x_{1}\right)\left(X-x_{2}\right) \cdots\left(X-x_{n}\right)=X^{n}-E_{1} X^{n-1}+E_{2} X^{n-2}+\cdots+(-1)^{n} E_{n}$ so that the eigenvalues x_{j} are determined provided we can find the roots of this polynomial, and that's not my problem.

Homework 5

$0 . \quad$ We begin with the trivial and alternating characters

	1	(12)	$(12)(34)$	(123)	$(123)(45)$	(1234)	(12345)
χ_{U}	1	1	1	1	1	1	1
$\chi_{U^{\prime}}$	1	-1	1	1	-1	-1	1

We directly compute the character for

$$
V=\left\{\sum_{j} \alpha_{j} v_{j} \mid \sum_{j} \alpha_{j}=0\right\}=\left\langle v_{1}-v_{2}, v_{2}-v_{3}, v_{3}-v_{4}, v_{4}-v_{5}\right\rangle
$$

where v_{j} are a basis for the permutation module. For example, to compute $\chi_{V}(12)$, we compute that

$$
\begin{gathered}
(12)\left(v_{1}-v_{2}\right)=-\left(v_{1}-v_{2}\right) \\
(12)\left(v_{2}-v_{3}\right)=v_{1}-v_{3}=\left(v_{1}-v_{2}\right)+\left(v_{2}-v_{3}\right) \\
(12)\left(v_{3}-v_{4}\right)=v_{3}-v_{4} \\
(12)\left(v_{4}-v_{5}\right)=v_{4}-v_{5}
\end{gathered}
$$

so that

$$
\rho_{V}(12)=\left(\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and so $\chi_{V}(12)=2$. Similarly for the other elements. The character for $V^{\prime}:=U^{\prime} \otimes V$ is given by multiplication.
Next, we compute the character for $\Lambda^{2} V$ directly. A basis for $\Lambda^{2} V$ is

$$
\begin{aligned}
& v_{1}-v_{2} \wedge v_{2}-v_{3}=v_{1} \wedge v_{2}-v_{1} \wedge v_{3}+v_{2} \wedge v_{3} \\
& v_{1}-v_{2} \wedge v_{3}-v_{4}=v_{1} \wedge v_{3}-v_{2} \wedge v_{3}-v_{1} \wedge v_{4}+v_{2} \wedge v_{4} \\
& v_{1}-v_{2} \wedge v_{4}-v_{5}=v_{1} \wedge v_{4}-v_{2} \wedge v_{4}-v_{1} \wedge v_{5}+v_{2} \wedge v_{5} \\
& v_{2}-v_{3} \wedge v_{3}-v_{4}=v_{2} \wedge v_{3}-v_{2} \wedge v_{4}+v_{3} \wedge v_{4} \\
& v_{2}-v_{3} \wedge v_{4}-v_{5}=v_{2} \wedge v_{4}-v_{3} \wedge v_{4}-v_{2} \wedge v_{5}+v_{3} \wedge v_{5} \\
& v_{3}-v_{4} \wedge v_{4}-v_{5}=v_{3} \wedge v_{4}-v_{3} \wedge v_{5}+v_{4} \wedge v_{5}
\end{aligned}
$$

Now to compute the value of the character at (12), we compute

$$
\begin{aligned}
(12)\left(v_{1} \wedge v_{2}-v_{1} \wedge v_{3}+v_{2} \wedge v_{3}\right)= & -\left(v_{1} \wedge v_{2}-v_{1} \wedge v_{3}+v_{2} \wedge v_{3}\right) \\
(12)\left(v_{1} \wedge v_{3}-v_{2} \wedge v_{3}-v_{1} \wedge v_{4}+v_{2} \wedge v_{4}\right)= & -\left(v_{1} \wedge v_{3}-v_{2} \wedge v_{3}-v_{1} \wedge v_{4}+v_{2} \wedge v_{4}\right) \\
(12)\left(v_{1} \wedge v_{4}-v_{2} \wedge v_{4}-v_{1} \wedge v_{5}+v_{2} \wedge v_{5}\right)= & -\left(v_{1} \wedge v_{4}-v_{2} \wedge v_{4}-v_{1} \wedge v_{5}+v_{2} \wedge v_{5}\right) \\
(12)\left(v_{2} \wedge v_{3}-v_{2} \wedge v_{4}+v_{3} \wedge v_{4}\right)= & v_{2} \wedge v_{3}-v_{2} \wedge v_{4}+v_{3} \wedge v_{4}+ \\
& v_{1} \wedge v_{3}-v_{2} \wedge v_{3}-v_{1} \wedge v_{4}+v_{2} \wedge v_{4} \\
(12)\left(v_{2} \wedge v_{4}-v_{3} \wedge v_{4}-v_{2} \wedge v_{5}+v_{3} \wedge v_{5}\right)= & v_{2} \wedge v_{4}-v_{3} \wedge v_{4}-v_{2} \wedge v_{5}+v_{3} \wedge v_{5}+ \\
& v_{1} \wedge v_{4}-v_{2} \wedge v_{4}-v_{1} \wedge v_{5}+v_{2} \wedge v_{5} \\
(12)\left(v_{3} \wedge v_{4}-v_{3} \wedge v_{5}+v_{4} \wedge v_{5}\right)= & v_{3} \wedge v_{4}-v_{3} \wedge v_{5}+v_{4} \wedge v_{5}
\end{aligned}
$$

so that

$$
\rho_{\wedge^{2} V}(12)=\left(\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and so $\chi_{\wedge^{2} V}(12)=0$. Similarly for the other elements. Compiling this information, we have

S_{5}	1	(12)	$(12)(34)$	(123)	$(123)(45)$	(1234)	(12345)
χ_{U}	1	1	1	1	1	1	1
$\chi_{U^{\prime}}$	1	-1	1	1	-1	-1	1
χ_{V}	4	2	0	1	-1	0	-1
$\chi_{V^{\prime}}$	4	-2	0	1	1	0	-1
$\chi_{\wedge^{2}{ }^{2}}$	6	0	-2	0	0	0	1

We also verify that $\chi_{\Lambda^{2} V}$ is irreducible as

$$
\left\langle\chi_{\Lambda^{2} V}, \chi_{\Lambda^{2} V}\right\rangle=1 .
$$

We recall a portion of the character table for S_{4} :

S_{4}	1	(12)	$(12)(34)$	(123)	(1234)
χ_{U}	1	1	1	1	1
χ_{V}	3	1	-1	0	-1

Let $g_{1}=1, g_{2}=(15), g_{3}=(25), g_{4}=(35)$, and $g_{5}=(45)$ be representatives of the cosets of S_{4} in S_{5}. Then the character of S_{5} induced by the character χ_{V} of S_{4} evaluated at (12) is

$$
\begin{aligned}
\operatorname{Ind}_{S_{4}}^{S_{5}} \chi_{V}(12) & =\sum_{j} \chi_{V}\left(g_{j}^{-1} g g_{j}\right) \\
& =\chi_{V}(1(12) 1)+\chi_{V}(15)(12)(15)+\chi_{V}(25)(12)(25)+\chi_{V}(35)(12)(35)+\chi_{V}(45)(12) \\
& =\chi_{V}(12)+\chi_{V}(25)+\chi_{V}(15)+\chi_{V}(12)+\chi_{V}(12) \\
& =1+0+0+1+1 \\
& =3 .
\end{aligned}
$$

Similarly for the other elements. Then the induced character together with the character for $\bigwedge^{2} V$ are

$$
\begin{array}{c|ccccccc}
& 1 & 10 & 15 & 20 & 20 & 30 & 24 \\
S_{5} & 1 & (12) & (12)(34) & (123) & (123)(45) & (1234) & (12345) \\
\hline \chi_{\Lambda^{2} V} & 6 & 0 & -2 & 0 & 0 & 0 & 1 \\
\chi_{\text {Ind }_{S_{4}} \chi_{V}}^{S_{5} \chi_{V}} & 15 & 3 & -1 & 0 & 0 & -1 & 0 .
\end{array}
$$

Then

$$
\left\langle\chi_{\wedge^{2} V}, \chi_{\operatorname{Ind}_{S_{4}}^{S_{5}} \chi_{V}}\right\rangle=\frac{1}{120} \sum_{j} \chi_{\wedge^{2} V}\left(g_{j}\right) \overline{\chi_{\operatorname{Ind}_{S_{4}}^{S_{5}} \chi_{V}}\left(g_{j}\right)}=1
$$

where here the g_{j} are the elements S_{5}. Similarly,

$$
\begin{aligned}
\left\langle\chi_{U}, \chi_{\operatorname{Ind}_{S_{4}}^{S_{5}} \chi_{V}}\right\rangle & =0 \\
\left\langle\chi_{U^{\prime}}, \chi_{\operatorname{Ind}_{S_{4}}^{S_{5}} \chi_{V}}\right\rangle & =0 \\
\left\langle\chi_{V}, \chi_{\operatorname{Ind}_{S_{4}}^{S_{5}} \chi_{V}}\right\rangle & =1 \\
\left\langle\chi_{V^{\prime}}, \chi_{\operatorname{Ind}_{S_{4}} \chi_{V}}\right\rangle & =0
\end{aligned}
$$

Now let m and n be the degrees of the two remaining representations. Then

$$
120=\sum_{j}\left(\chi_{j}(1)\right)^{2}=70+m^{2}+n^{2}
$$

and since m and n both divide 120, trial and error gives that $m=n=5$. Hence, from the inner product argument above, we have

$$
\chi_{\operatorname{Ind}_{S_{4}}^{S_{5}}}=\chi_{V}+\chi_{\wedge^{2} V}+\chi_{W}
$$

where W is one of the remaining modules of degree 5 . Then subtraction gives

$$
\begin{array}{c|ccccccc}
S_{5} & 1 & (12) & (12)(34) & (123) & (123)(45) & (1234) & (12345) \\
\hline \chi_{V} & 4 & 2 & 0 & 1 & -1 & 0 & -1 \\
\chi_{\Lambda^{2} V} & 6 & 0 & -2 & 0 & 0 & 0 & 1 \\
\chi_{\mathrm{Ind}_{4} S_{5} \chi_{V}} & 15 & 3 & -1 & 0 & 0 & -1 & 0 \\
\chi_{W} & 5 & 1 & 1 & -1 & 1 & -1 & 0
\end{array}
$$

so that the second orthogonality relation gives

	1	10	15	20	20	30	24
S_{5}	1	(12)	$(12)(34)$	(123)	$(123)(45)$	(1234)	(12345)
χ_{U}	1	1	1	1	1	1	1
$\chi_{U^{\prime}}$	1	-1	1	1	-1	-1	1
χ_{V}	4	2	0	1	-1	0	-1
$\chi_{V^{\prime}}$	4	-2	0	1	1	0	-1
$\chi_{\wedge^{2} V^{2}}$	6	0	-2	0	0	0	1
χ_{W}	5	1	1	-1	1	-1	0
$\chi_{W^{\prime}}$	5	-1	1	-1	-1	1	0

2. We first note that if V is one-dimensional vector space over \mathbb{C} and $\rho: G \longrightarrow \mathrm{GL}(V) \cong$ \mathbb{C}^{*} is a representation of G over V, then since $G / \operatorname{ker} \rho \cong \operatorname{im} \rho \leq \mathbb{C}$ is abelian, we must have that $G^{\prime} \leq \operatorname{ker} \rho$. We'll keep in mind during the following discussion that this means that ρ maps all the elements of each coset of G^{\prime} to the same number.
Now since G / G^{\prime} is abelian, all of the representations of G / G^{\prime} are one-dimensional and there are exactly $\left[G: G^{\prime}\right]$ of them since there are $\left[G: G^{\prime}\right]$ elements in G / G^{\prime}, all of which are singleton conjugacy classes. They all lift to different one-dimensional characters of G so that G has at least $\left[G: G^{\prime}\right]$ one-dimensional characters.
Now if ρ is a one-dimensional character of G, then as we observed above, ρ is constant on the cosets of G^{\prime} so that $\widetilde{\rho}: g G^{\prime} \mapsto \rho(g)$ well-defined homomorphism $\widetilde{\rho}: G / G^{\prime} \longrightarrow \mathbb{C}^{*}$ and hence is a one-dimensional representation of G / G^{\prime}. Hence, there can be no more than $\left[G: G^{\prime}\right]$ one-dimensional representations of G. This shows that there are exactly [$G: G^{\prime}$] one-dimensional representations of G.

Now since G^{\prime} is normal, we have

$$
G^{\prime}=\bigcap\left\{\operatorname{ker} \rho_{j} \mid G^{\prime} \leq \operatorname{ker} \rho_{j}\right\}
$$

so that G^{\prime} can be determined from the character table by taking those elements which have character 1 for all one-dimensional characters. Of course, the other elements in those conjugacy classes are also in G^{\prime} as G^{\prime} is normal.
3. We compute that

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 & -a & a c-b \\
0 & 1 & -c \\
0 & 0 & 1
\end{array}\right)
$$

and that

$$
\left(\begin{array}{ccc}
1 & -x & x z-y \\
0 & 1 & -z \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x & y \\
0 & 1 & z \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & a & b-a z-x c \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

so that conjugation changes only the $(1,3)$ entry. Moreover, whenever $a \neq 0$ or $c \neq 0$, we see that the conjugacy class of $\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$ contains three elements since we can select the conjugating matrix $\left(\begin{array}{lll}1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1\end{array}\right)$ with x and z such that $b-a z-x c=$ 0,1 , or 2 . This gives the following conjugacy classes and sizes, where ${ }^{a}{ }_{c}^{*}$ represents the conjugacy class containing $\left(\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$.

The conjugacy classes of G happen to be the same sets as the cosets of G^{\prime} in G with the exception that the three central elements comprise the trivial coset G^{\prime} but are in singleton conjugacy classes.
We next show that $G / G^{\prime} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. Define $\varphi: \mathbb{Z}_{3} \times \mathbb{Z}_{3} \longrightarrow G / G^{\prime}$ by

$$
\varphi(x, y)=\left(\begin{array}{ccc}
1 & x & * \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right) G^{\prime} .
$$

Then φ is easily seen to be a well-defined, surjective homomorphism so that $G / G^{\prime} \cong$ $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.
The computation of the character table for $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ is based on the following procedure. If ρ_{1}, ρ_{2} are representations of G on V, then $\rho_{1} \times \rho_{2}$ defined

$$
\left(\rho_{1} \times \rho_{2}\right)\left(g_{1}, g_{2}\right): v_{1} \otimes v_{2} \mapsto\left(\rho_{1} g_{1}\right) v_{1} \otimes\left(\rho_{2} g_{2}\right) v_{2}
$$

is a representation of $G \times G$ on $V \otimes V$, where v_{j} is a basis for V. Then $\left(\rho_{1} \times \rho_{2}\right)\left(g_{1}, g_{2}\right)$ has matrix

$$
\left(\begin{array}{ccc}
a_{1,1} B & a_{1,2} B & \ldots \\
a_{2,1} B & a_{2,2} B & \cdots \\
\vdots & &
\end{array}\right)
$$

with respect to v_{j} where A is the matrix for $\rho_{1} g_{1}$ and B is the matrix for $\rho_{2} g_{2}$. Thus, the character for $\rho_{1} \times \rho_{2}$ at $\left(g_{1}, g_{2}\right)$ is $\chi_{1} g_{1} \chi_{2} g_{2}$. The details of all the above assertions are available upon request.
We recall the character table for \mathbb{Z}_{3} :

\mathbb{Z}_{3}	0	1	2
χ_{0}	1	1	1
χ_{1}	1	ω	ω^{2}
χ_{2}	1	ω^{2}	ω

Using these characters, we construct the characters for $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$. For example, the character for $\chi_{1} \times \chi_{0}$ at $(1,0)$ is $\chi_{1}(1) \chi_{0}(0)=\omega \cdot 1=\omega$ and similarly,

$$
\begin{array}{c|ccccccccc}
\mathbb{Z}_{3} \times \mathbb{Z}_{3} & (0,0) & (1,0) & (2,0) & (0,1) & (1,1) & (2,1) & (0,2) & (1,2) & (2,2) \\
\hline \chi_{1} \times \chi_{0} & 1 & \omega & \omega^{2} & 1 & \omega & \omega^{2} & 1 & \omega & \omega^{2}
\end{array}
$$

This produces 9 one-dimensional characters for $\mathbb{Z}_{3} \times \mathbb{Z}_{3} \cong G / G^{\prime}$ which we lift to characters for G, keeping in mind the trivial coset G^{\prime}, which corresponds under the
isomorphism above with $(0,0)$, splits into three conjugacy classes, each with the same values for each character. Writing $\chi_{i, j}$ for the character lifted from $\chi_{i} \times \chi_{j}$, we have

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& 1 \& 1 \& 1 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3 \& 3

\hline G \& $$
\begin{array}{ll}
0 & 0 \\
& 0 \\
& 0
\end{array}
$$ \& $$
\begin{array}{ll}
0 & 1 \\
& 0
\end{array}
$$ \& $$
\begin{array}{ll}
\hline 0 & 2 \\
& 0
\end{array}
$$ \& $$
\begin{array}{ll}
1 & * \\
& 0
\end{array}
$$ \& $$
\begin{array}{rr}
2 & * \\
0
\end{array}
$$ \& $$
\begin{array}{ll}
\hline 0 & * \\
& 1
\end{array}
$$ \& $\begin{array}{rr}1 & * \\ & 1\end{array}$ \& $$
\begin{array}{rr}
2 & * \\
1
\end{array}
$$ \& $\begin{array}{rr}0 & * \\ & 2\end{array}$ \& $\begin{array}{rr}1 & * \\ & 2\end{array}$ \& 2

2

\hline $\chi_{0,0}$ \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1 \& 1

\hline $\chi_{1,0}$ \& 1 \& 1 \& 1 \& ω \& ω^{2} \& 1 \& ω \& ω^{2} \& 1 \& ω \& ω^{2}

\hline $\chi_{2,0}$ \& 1 \& 1 \& 1 \& ω^{2} \& ω \& 1 \& ω^{2} \& ω \& 1 \& ω^{2} \& ω

\hline $\chi_{0,1}$ \& 1 \& 1 \& 1 \& 1 \& 1 \& ω \& ω \& ω \& ω^{2} \& ω^{2} \& ω^{2}

\hline $\chi_{1,1}$ \& 1 \& 1 \& 1 \& ω \& ω^{2} \& ω \& ω^{2} \& 1 \& ω^{2} \& 1 \& ω

\hline $\chi_{2,1}$ \& 1 \& 1 \& 1 \& ω^{2} \& ω \& ω \& 1 \& ω^{2} \& ω^{2} \& ω \& 1

\hline $\chi_{0,2}$ \& 1 \& 1 \& 1 \& 1 \& 1 \& ω^{2} \& ω^{2} \& ω^{2} \& ω \& ω \& ω

\hline $\chi_{1,2}$ \& 1 \& 1 \& 1 \& ω \& ω^{2} \& ω^{2} \& 1 \& ω \& ω \& ω^{2} \& 1

\hline $\chi_{2,2}$ \& 1 \& 1 \& 1 \& ω^{2} \& ω \& ω^{2} \& ω \& 1 \& ω \& 1 \& ω^{2}

\hline
\end{tabular}

Now consider the subgroup

$$
H:=\left\langle\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\rangle=\left\{\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\} \leq G
$$

We compute the character $\operatorname{Ind}_{H}^{G}(\psi)$ of G where ψ is the character of H given by

For example,

$$
\begin{aligned}
\operatorname{Ind}_{H}^{G}(\psi)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & =\left|C_{G}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right| \sum_{j} \frac{\psi\left(g_{j}\right)}{\left|C_{H} g_{j}\right|} \\
& =27 \frac{1}{3} \\
& =9
\end{aligned}
$$

where \mathcal{C} is the conjugacy class of G containing $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and g_{j} are representatives of the conjugacy classes \mathcal{D}_{j} of H with $\bigcup_{j} \mathcal{D}_{j}=\mathcal{C} \cap H$. In this case, $\mathcal{C} \cap H=$ $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)=g_{1}$. Similarly for the other elements. We then have that

We compute that

$$
9=\left\langle\operatorname{Ind}_{H}^{G} \psi, \operatorname{Ind}_{H}^{G} \psi\right\rangle=\sum_{j}\left\langle\operatorname{Ind}_{H}^{G}, \chi_{j}\right\rangle^{2}
$$

where χ_{j} are the irreducible characters of G. This is only possible if $\left\langle\operatorname{Ind}_{H}^{G}, \chi_{j}\right\rangle=3$ for some j or if $\left.\operatorname{Ind}_{H}^{G}, \chi_{j}\right\rangle=1$ for 9 different j 's. In the latter case, we must have $\left\langle\operatorname{Ind}_{H}^{G}, \chi_{j}\right\rangle=1$ for the 9 characters χ_{j} already computed as the remaining two have degree 3 . We eliminate this possibility since $\operatorname{Ind}_{H}^{G} \psi \neq \sum_{j=1}^{9} \chi_{j}$. Hence, $\operatorname{Ind}_{H}^{G} \psi=3 \chi_{j}$ for some new character χ_{j}. The conjugate of this character is also an irreducible character so that we have

	1	1	1	3	3	3	3	3	3	3	3
G	$\begin{array}{ll}0 & 0 \\ & 0\end{array}$	$\begin{array}{ll}0 & 1 \\ & \\ & 0\end{array}$	$\begin{array}{ll}0 & 2 \\ & 0\end{array}$	$\begin{array}{rr}1 & * \\ & 0\end{array}$	$\begin{array}{rr}2 & * \\ & 0\end{array}$	$\begin{array}{ll}0 & * \\ & 1\end{array}$	$\begin{array}{rr}1 & * \\ & 1\end{array}$	$\begin{array}{rr}2 & \\ \\ 1\end{array}$	$\begin{array}{rr}0 & * \\ & 2\end{array}$	$\begin{array}{rr}1 & * \\ & 2\end{array}$	2 *
$\chi_{0,0}$	1	1	1	1	1	1	1	1	1	1	1
$\chi_{1,0}$	1	1	1	ω	ω^{2}	1	ω	ω^{2}	1	ω	ω^{2}
$\chi_{2,0}$	1	1	1	ω^{2}	ω	1	ω^{2}	ω	1	ω^{2}	ω
$\chi_{0,1}$	1	1	1	1	1	ω	ω	ω	ω^{2}	ω^{2}	ω^{2}
$\chi_{1,1}$	1	1	1	ω	ω^{2}	ω	ω^{2}	1	ω^{2}	1	ω
$\chi_{2,1}$	1	1	1	ω^{2}	ω	ω	1	ω^{2}	ω^{2}	ω	1
$\chi_{0,2}$	1	1	1	1	1	ω^{2}	ω^{2}	ω^{2}	ω	ω	ω
$\chi_{1,2}$	1	1	1	ω	ω^{2}	ω^{2}	1	ω	ω	ω^{2}	1
$\chi_{2,2}$	1	1	1	ω^{2}	ω	ω^{2}	ω	1	ω	1	ω^{2}
$\operatorname{Ind}_{H}^{G} \psi$	3	0	0	3ω	$3 \omega^{2}$	0	0	0	0	0	0
$\operatorname{Ind}_{H}^{G} \psi$	3	0	0	$3 \omega^{2}$	3ω	0	0	0	0	0	0

The Mackey Problem

(a) Note that

$$
\begin{aligned}
\left\langle\psi_{1}^{(12)}, \psi_{1}^{(12)}\right\rangle & =\sum_{g} \psi_{1}((12) g(12)) \overline{\psi_{1}((12) g(12))} \\
& =\sum_{g} \psi_{1}(g) \overline{\psi_{1}(g)} \\
& =\left\langle\psi_{1}, \psi_{1}\right\rangle \\
& =1
\end{aligned}
$$

so that $\psi_{1}^{(12)}$ is an irreducible character of H.
We have that $G=H 1 H \cup H(12) H$ so that $D=\{1,(12)\}$ may be taken as a set of double coset representatives. Then

$$
\begin{aligned}
\left\langle\operatorname{Ind} \psi_{1} \operatorname{Ind} \psi_{2}\right\rangle & =\left\langle\left.\psi_{1}^{1}\right|_{1 H 1 \cap H},\left.\psi_{2}\right|_{1 H 1 \cap H}\right\rangle+\left\langle\left.\psi_{1}^{(12)}\right|_{(12) H(12) \cap H},\left.\psi_{2}\right|_{(12) H(12) \cap H}\right\rangle \\
& =\left\langle\psi_{1}, \psi_{2}\right\rangle+\left\langle\psi_{1}^{(12)}, \psi_{2}\right\rangle
\end{aligned}
$$

Suppose now that $\psi_{1}=\psi_{1}^{(12)}$. Then

$$
\left\langle\operatorname{Ind} \psi_{1} \operatorname{Ind} \psi_{2}\right\rangle=\left\langle\psi_{1}, \psi_{2}\right\rangle+\left\langle\psi_{1}, \psi_{2}\right\rangle= \begin{cases}2 & \text { if } \psi_{1}=\psi_{2} \\ 0 & \text { if } \psi_{1} \neq \psi_{2}\end{cases}
$$

and if $\psi_{1} \neq \psi_{1}^{(12)}$

$$
\left\langle\operatorname{Ind} \psi_{1}, \operatorname{Ind} \psi_{2}\right\rangle=\left\langle\psi_{1}^{(12)}, \psi_{2}\right\rangle+\left\langle\psi_{1}, \psi_{2}\right\rangle=\left\{\begin{array}{ll}
1 & \text { if } \psi_{1}^{(12)}=\psi_{2} \text { or } \psi_{1}=\psi_{2} \\
0 & \text { if } \psi_{1}^{(12)} \neq \psi_{2} \text { and } \psi_{1} \neq \psi_{2}
\end{array} .\right.
$$

(b) Let χ be an irreducible character of G and consider Res χ. We have that no irreducible character ψ of H can appear in Res U more than 2 times since if $\langle\operatorname{Res} \chi, \psi\rangle>2$, then by Frobenius, $\langle\chi$, Ind $\psi\rangle>2$, that is, χ appears more than 2 times in Ind ψ. This means that $\{$ number of constituents of $\operatorname{Ind} \psi\}=$ \langle Ind ψ, Ind $\psi\rangle>2$, which contradicts part (a).
Now suppose that ψ is a constituent of Res χ. Then, of course, we have $\operatorname{deg} \psi \leq$ $\operatorname{deg} \operatorname{Res} \chi=\operatorname{deg} \chi$. However, in this situation, we also have that χ is a constituent of Ind ψ so that

$$
\operatorname{deg} \chi \leq \operatorname{deg} \operatorname{Ind} \psi=[G: H] \operatorname{deg} \psi=2 \operatorname{deg} \psi .
$$

Compiling this information, we have

$$
\operatorname{deg} \psi \leq \operatorname{deg} \chi \leq 2 \operatorname{deg} \psi
$$

and this inequality is only satisfied when $\operatorname{deg} \psi=\operatorname{deg} \chi$ or when $\operatorname{deg} \psi=\frac{1}{2} \operatorname{deg} \chi$. This shows that Res χ can have no more than two different consituents.
(c) Restricting the characters of G and taking inner products, we have that the following characters are irreducible.

	1	20	15	12	12
A_{5}	1	(123)	$(12)(34)$	(12345)	(21345)
Res U	1	1	1	1	1
$\operatorname{Res} V$	4	1	0	-1	-1
$\operatorname{Res} W$	5	-1	1	0	0

Also, Res $U^{\prime}=\operatorname{Res} U$, Res $V^{\prime}=\operatorname{Res} V$, and Res $W^{\prime}=\operatorname{Res} W$ provide no new information. We have, however, that the two remaining characters both have degree 3 since $\sum_{j}\left(\chi_{j}(1)\right)^{2}=60$.
Restricting $\wedge^{2} V$,

$$
\begin{array}{c|ccccc}
A_{5} & 1 & (123) & (12)(34) & (12345) & (21345) \\
\hline \operatorname{Res} \bigwedge^{2} V & 6 & 0 & -2 & 1 & 1
\end{array}
$$

we find that $\left\langle\operatorname{Res} \bigwedge^{2} V\right.$, $\left.\operatorname{Res} \bigwedge^{2} V,\right\rangle=2$ so that by part (b), Res $\bigwedge^{2} V$ is the sum of two irreducible characters Y and Z.
We observe that these two characters must be different since if Res $\bigwedge^{2} V=2 Y$, then

$$
\begin{array}{c|ccccc}
A_{5} & 1 & (123) & (12)(34) & (12345) & (21345) \\
\hline Y & 3 & 0 & -1 & \frac{1}{2} & \frac{1}{2}
\end{array}
$$

and $\langle Y, Y\rangle=\frac{1}{2}$, which contradicts the assumption that Y is irreducible.
We next observe that $\left\langle\operatorname{Res} \bigwedge^{2} V\right.$, Res $\left.U\right\rangle=0,\left\langle\operatorname{Res} \bigwedge^{2} V\right.$, Res $\left.V\right\rangle=0$, and $\left\langle\operatorname{Res} \bigwedge^{2} V\right.$, Res $\left.U\right\rangle$ 0 . These lead to the system

$$
\begin{aligned}
& 20 y_{1}+15 y_{2}+12 y_{3}+12 y_{4}=3 \\
& 20 y_{1}-12 y_{3}-12 y_{4}=-12 \\
&-20 y_{1}+15 y_{2}=-15
\end{aligned}
$$

where y_{j} are the remaining values of Y :

	1	20	15	12	12
A_{5}	1	(123)	$(12)(34)$	(12345)	(21345)
$\operatorname{Res} U$	1	1	1	1	1
$\operatorname{Res} V$	4	1	0	-1	-1
$\operatorname{Res} W$	5	-1	1	0	0
Y	3	y_{1}	y_{2}	y_{3}	y_{4}

This system reduces to

$$
\begin{aligned}
y_{1} & =0 \\
y_{2} & =-1 \\
y_{3}+y_{4} & =1
\end{aligned}
$$

Thus, Y so far is the following.

$$
\begin{array}{c|ccccc}
& 1 & 20 & 15 & 12 & 12 \\
A_{5} & 1 & (123) & (12)(34) & (12345) & (21345) \\
\hline Y & 3 & 0 & -1 & y_{3} & 1-y_{3}
\end{array}
$$

Now since $1=\langle Y, Y\rangle=\frac{1}{60}\left(9+15+12 y_{3}^{2}+12\left(1-y_{3}\right)^{2}\right)$, we have that $0=y_{3}^{2}-$ $y_{3}-1=0$. The quadratic formula gives $y_{3}=\frac{1 \pm \sqrt{5}}{2}$. We can take either value for y_{3}. Thus we have

	1	20	15	12	12
A_{5}	1	(123)	$(12)(34)$	(12345)	(21345)
$\operatorname{Res} U$	1	1	1	1	1
$\operatorname{Res} V$	4	1	0	-1	-1
$\operatorname{Res} W$	5	-1	1	0	0
Y	3	0	-1	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
Z	3	0	-1	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$

The Prelim Problem.

Let P be a non-abelian group of order p^{3}. Forevermore I will write g_{j} for the representatives of the non-central conjugacy classes of whatever group is under discussion.

We determine the size of $Z(P) .|Z(P)| \neq p^{3}$ since P is non-abelian.
The class equation gives

$$
p^{3}=|Z(P)|+\sum_{j} \frac{p^{3}}{\left|C_{G}\left(g_{j}\right)\right|} .
$$

Now $C_{G}\left(g_{j}\right)$ contains at least g_{j} and the identity element, and these are different, so $\left|C_{G}(g)\right| \geq p$. But as g_{j} is non-central, we have $\left|C_{G}\left(g_{j}\right)\right| \neq p^{3}$ so that $\left|C_{G}\left(g_{j}\right)\right|=p$ or p^{2}. This means that p divides $\sum_{j} \frac{p^{3}}{\left|C_{G}\left(g_{j}\right)\right|}$. We then have that p divides $|Z(P)|=$ $p^{3}-\sum_{j} \frac{p^{3}}{\left|C_{G}\left(g_{j}\right)\right|}$. This eliminates the possibility that $|Z(P)|=1$. (The same argument shows that we have $|Z(G)| \neq 1$ for any group G of order p^{n}. We use this observation later.)

Now if $|Z(P)|=p^{2}$, then $C_{G}\left(g_{j}\right)$ contains at least g_{j} and all p^{2} central elements so that $\left|C_{G}\left(g_{j}\right)\right|=p^{3}$, a contradiction since $g_{j} \notin Z(P)$.
We conclude then that $|Z(P)|=p$. Moreover, $\left|C_{G}\left(g_{j}\right)\right|$ includes at least g_{j} and the p central elements, so $\left|C_{G}\left(g_{j}\right)\right|>p$, but as $g_{j} \notin Z(P)$, we have $\left|C_{G}\left(g_{j}\right)\right| \neq p^{3}$ so that $\left|C_{G}\left(g_{j}\right)\right|=p^{2}$. Thus, each non-central conjugacy class contains exactly p elements. From the class equation, we have

$$
p^{3}=|Z(P)|+\sum_{j} \frac{p^{3}}{C_{G}\left(g_{j}\right)}=p+r p
$$

yielding $r=p^{2}-1$ non-central conjugacy classes.
Next, we deduce that any group G of order p^{2} is abelian. If $|Z(G)|=p$ then $\left|C_{G}\left(g_{j}\right)\right|=$ p^{2}, since it contains at least g_{j} and all p central elements. This contradicts $g_{j} \notin Z(G)$. As noted above, $|Z(G)| \neq 1$. Hence $Z(G)=G$ and G is abelian.
This means that $P / Z(P)$ is abelian as $|P / Z(P)|=p^{2}$. We then have that $P^{\prime} \leq Z(P)$. But as $P^{\prime} \neq 1$ since P is non-abelian, we have that $P^{\prime}=Z(P)$.

The Dummit and Foote Problem

(a) i. By the prelim discussion above, we have that the commutator subgroup of P has order p so that by the last homework, P has $\left[P: P^{\prime}\right]=p^{2}$ characters of degree 1.
ii. The degrees of the characters of P divide p^{3}. G can have no irreducible character $\chi_{j_{0}}$ of degree p^{2} as then

$$
p^{3}=\sum_{j}\left(\chi_{j}(1)\right)^{2}>\left(\chi_{j_{0}}(1)\right)^{2}=p^{4},
$$

where χ_{j} are the irreducible characters of P, and this is a contradiction. Similarly, P can have no irreducible character of degree p^{3}. Hence, all the characters of P have degree 1 or p. Let r be the number of characters of degree p. Then

$$
p^{3}=\sum_{j}\left(\chi_{j}(1)\right)^{2}=p^{2} \cdot 1^{2}+r \cdot p^{2}=p^{2}(1+r)
$$

so that P has $r=p-1$ characters of degree p.
iii. The conjugacy classes were determined above. Now suppose that $g_{1} \neq 1$ and that $g_{1}=h g_{2} h^{-1}$. Then $g_{1} g_{2}^{-1}=h g_{2} h^{-1} g_{2}^{-1} \in Z(P)$. This means that

$$
g_{1}=\left(g_{1} g_{2}^{-1}\right) g_{2}=g_{2}\left(g_{1} g_{2}^{-1}\right) \in g_{2} Z(P)
$$

This shows that whenever g_{1} and g_{2} are non-central, conjugate elements, they are in the same coset of $Z(P)$.
Conversely, if g_{1} and g_{2} are in the same coset. . .
iv. Let ρ be an irreducible representation of degree p and consider ker ρ. Of course, $|\operatorname{ker} \rho| \neq p^{3}$ else $\rho=p \rho_{U}$ is not irreducible. If $|\operatorname{ker} \rho|=p$ or p^{2}, then $|G / \operatorname{ker} \rho|=p^{2}$ or p, so that $G / \operatorname{ker} \rho$ is abelian. Now

$$
\widetilde{\rho}: G / \operatorname{ker} \rho \longrightarrow G L(V) \text { defined } \widetilde{\rho}(g \operatorname{ker} \rho)=\rho(g)
$$

is a representation of degree p on $G / \operatorname{ker} \rho$. Now,

$$
1=\langle\rho, \rho\rangle=\frac{1}{|G|} \sum_{g \in G} \rho(g) \overline{\rho(g)}=\frac{1}{|G|} \sum_{g \operatorname{ker} \rho \in G / \operatorname{ker} \rho}|\operatorname{ker} \rho| \rho(g) \overline{\rho(g)}
$$

$$
=\frac{1}{|G / \operatorname{ker} \rho|} \sum_{g \operatorname{ker} \rho \in G / \operatorname{ker} \rho} \widetilde{\rho}(g \operatorname{ker} \rho) \overline{\widetilde{\rho}(g \operatorname{ker} \rho)}=\langle\widetilde{\rho}, \widetilde{\rho}\rangle
$$

so that $\widetilde{\rho}$ is irreducible. However, since $G / \operatorname{ker} \rho$ is abelian, it can have no irreducible representations of degree p, a contradiction. This shows that $|\operatorname{ker} \rho|=1$ so that ρ is faithful.
v. Let $z \in Z(P)$ and let V be an irreducible $\mathbb{C} P$ module of degree p. Then the map $\varphi_{z}: V \longrightarrow V$ defined $\varphi_{z}(v)=z \cdot v$ is a $\mathbb{C} P$ homomorphism. Let λ be such that $\operatorname{det}\left(\varphi_{z}-\lambda I\right)=0$. Then $\varphi_{z}-\lambda I$ is also a $\mathbb{C} P$ homomorphism and $\operatorname{ker}(\varphi-\lambda I) \neq 0$. But as V is irreducible, we have that $\operatorname{ker}(\varphi-\lambda I)=V$ so that $z \cdot v=\lambda v$ for all $v \in V$. Moreover, since $z^{p}=1$, we have $v=z^{p} \cdot v=\lambda^{p} v$ so that λ is a p th root of unity. Also, it follows that $\chi_{V}(z)=p \lambda$. Note also that if $z \in Z(P)$ but $z \neq 1$, then z generates $Z(P)$ and we have $z^{j} \cdot v=\lambda^{j} v$ so that $\chi_{V}\left(z^{j}\right)=p \lambda^{j}$, and so X_{V} is determined for all the elements of $Z(P)$. Now if $g \in P \backslash Z(P)$, we have that the conjugacy class containing g is

$$
\left\{g, g z, g z^{2}, \cdots, g z^{p-1}\right\}
$$

by the observation above that the non-identity cosets of $Z(P)$ are conjugacy classes of P. In particular, this means that $\chi_{V}\left(g z^{j}\right)=\chi_{V}(g)$ for all j since χ_{V} is constant on conjugacy classes. However, since z^{j} acts as scalar multiplication by λ^{j}, we have that $\chi_{V}\left(g z^{j}\right)=\lambda^{j} \chi_{V}(g)$ for all j. Thus,

$$
0=\left(\sum_{j} \lambda^{j}\right) \chi_{V}(g)=\sum_{j} \chi_{V}\left(g z^{j}\right)=p \chi_{V}(g)
$$

so that $\chi_{V}(g)=0$. This determines the character for V
vi. Let ρ_{1} and ρ_{2} be irreducible representations of P of degree p. As indicated above, if $\rho_{1}(z)=\rho_{2}(z)$ for any $z \in Z(P)$ other than 1 , then ρ_{1} and ρ_{2} agree on all of $Z(P)$, and since ρ_{j} vanishes outside of $Z(P)$, we have that ρ_{1} and ρ_{2} agree on all of P. Hence, if $\rho_{1} \neq \rho_{2}$, then $\rho_{1}(z) \neq \rho_{2}(z)$ for all $z \in Z(P) \backslash\{1\}$. Hence, the $p-1$ representations of degree p can be produced by assigning one of the p th roots of unity other than 1 to some $z \in Z(P)$ other than 1 .

The Group of order 42.

(a) The character table for G is the following.

	1	6	7	7	7	7	7
G	1	a	b	c	d	e	f
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	1	1	ζ	$\bar{\zeta}$	ζ	$\bar{\zeta}$
χ_{3}	1	1	1	$\bar{\zeta}$	ζ	$\bar{\zeta}$	ζ
χ_{4}	1	1	-1	$-\zeta$	$-\bar{\zeta}$	ζ	$\bar{\zeta}$
χ_{5}	1	1	-1	$-\bar{\zeta}$	$-\zeta$	$\bar{\zeta}$	ζ
χ_{6}	1	-1	-1	-1	1	1	1
χ_{7}	6	-1	0	0	0	0	0

We see from the table that ker $\rho_{1} \cap \operatorname{ker} \rho_{2} \cap \operatorname{ker} \rho_{3}=\mathcal{O}_{1} \cup \mathcal{O}_{a} \cup \mathcal{O}_{b}$. Since ker ρ_{j} is a normal subgroup of G and the intersection of three normal subgroups is normal, we have that $N:=\mathcal{O}_{1} \cup \mathcal{O}_{a} \cup \mathcal{O}_{b}$ is a normal subgroup of order 14 .
Moreover, since $|G / N|=3$, we have that $G / N \cong \mathbb{Z}_{3}$ and that the cosets of N are exactly $\mathcal{O}_{c} \cup \mathcal{O}_{e}$ and $\mathcal{O}_{d} \cup \mathcal{O}_{f}$ as only this combination causes χ_{1}, χ_{2}, and χ_{3} to agree with the characters of \mathbb{Z}_{3}.
(?) N is not \mathbb{Z}_{14}, so we must have $N \cong D_{14}$.
(b) We briefly compute the conjugacy classes of $D_{14}=\left\langle r, s \mid r^{7}=s^{2}=1, r s=s r^{6}\right\rangle$. Since $r^{j}, j=1 \ldots 6$, commutes only with $r^{k}, k=0 \ldots 6$, we have $\left|C_{D_{14}}\left(r^{j}\right)\right|=7$, $j=1 \ldots 6$ so that $\left|\mathcal{O}_{r^{j}}\right|=2$. We explicitly compute that $\mathcal{O}_{r}=\left\{r, r^{6}\right\}, \mathcal{O}_{r^{2}}=$ $\left\{r^{2}, r^{5}\right\}$, and $\mathcal{O}_{r^{3}}=\left\{r^{3}, r^{4}\right\}$. By order considerations, we must have that the G orbit of a is the union of these three N orbits.
Similarly, $s r^{j}, j=0 \ldots 6$ commutes only with itself and with 1 so that $\left|C_{D_{14}}\left(s r^{j}\right)\right|=$ 2 and $\left|\mathcal{O}_{s r j}\right|=7$. We must have then that $\mathcal{O}_{s}=\left\{s r^{j}\right\}_{j=0}^{6}$ and of course $\mathcal{O}_{1}=\{1\}$. The distinct restrictions then are the following.

	1	2	2	2	7
N	1	r	r^{2}	r^{3}	s
$\operatorname{Res} \chi_{1}$	1	1	1	1	1
$\operatorname{Res} \chi_{4}$	1	1	1	1	-1
$\operatorname{Res} \chi_{7}$	6	-1	-1	-1	0

We compute $\left\langle\operatorname{Res} \chi_{1}\right.$, $\left.\operatorname{Res} \chi_{1}\right\rangle=\left\langle\operatorname{Res} \chi_{4}\right.$, $\left.\operatorname{Res} \chi_{4}\right\rangle=1$ so that $\operatorname{Res} \chi_{1}$ and $\operatorname{Res} \chi_{4}$ are irreducible.
Unfortunately, $\operatorname{Res} \chi_{1}$ and $\operatorname{Res} \chi_{4}$ are not constituents of $\operatorname{Res} \chi_{7}$ as $\left\langle\operatorname{Res} \chi_{1}\right.$, $\left.\operatorname{Res} \chi_{7}\right\rangle=$ 0 and $\left\langle\operatorname{Res} \chi_{4}\right.$, Res $\left.\chi_{7}\right\rangle=0$. However, the remaining three characters of N must each have degree 2 since $\sum \chi_{j}(1)^{2}=14$. Now since $\left\langle\operatorname{Res} \chi_{7}, \operatorname{Res} \chi_{7}\right\rangle=3$ and this number is the sum of the squares of the multiplicities of the constituents, we must have that these multiplicities are all 1 so that Res χ_{7} is the sum of the three remaining characters.
(c) $n_{7}=7 j+1$ and divides 6 . This forces $n_{7}=1 . n_{3}=3 j+1$ and divides 14 . Then $n_{3}=1$ or 7 . Write $G / N=\left\{N, g_{1} N, g_{2} N\right\}$ for some g_{1}, g_{2}. Now $\left(g_{1} N\right)^{3}=g_{1}^{3} N=$ N so that $g_{1} \in N$. Now since $|N|=14$, we have that $\left(g_{1}^{3}\right)^{14}=\left(g_{1}^{14}\right)^{3}=1$. Also, we have that $g_{1}^{14} \neq 1$ else $\left(g_{1} N\right)^{14}=g_{1}^{14} N=N=\left(g_{1} N\right)^{3}$ which forces $g_{1} N=N$ since 3 and 14 are relatively prime, a contradiction. Incidentally, I stole this argument from Herstein's proof of the Cauchy theorem, which I enjoyed immensely. This shows that $\left|g_{1}^{14}\right|=3$. Similarly, $\left|g_{2}^{14}\right|=3$ and $g_{1}^{14} \neq g_{2}^{14}$ since $g_{1} \neq g_{2}$, being representatives of different cosets. Thus there are at least 2 elements of order 3 so that $n_{3} \neq 1$. This forces $n_{3}=7$.
Finally, we have $n_{2}=2 j+1$ and divides 21 . Now since N itself has 7 elements of order 2 , namely $s r^{j}$ for $j=0 \ldots 6$, we have that G has at least 7 such elements, and these are the elements in \mathcal{O}_{b} as adduced above. There can be no other elements of order 2 since χ_{2} is ζ or $\bar{\zeta}$ on elements of $\mathcal{O}_{c}, \mathcal{O}_{d}, \mathcal{O}_{e}$, and \mathcal{O}_{f} and this is not possible if any of these elements has order 2 .
(d) As indicated above, a and b have orders 7 and 2 respectively. $\chi_{2}(c)=\chi_{3}(d)=\zeta$ so that 3 divides the orders of these elements. However, $\chi_{6}(c)=\chi_{6}(d)=-1$, a second root of unity, so 2 divides the orders of c and d also. Obviously, these elements don't have order 42 , so we are left with 6 as the only possible order for c and d.
By elimination, e and f must have order 3 to account for the 14 elements of order 3 in the 7 Sylow 3 -subgroups.

Next, let P be a Sylow 7 subgroup and $Q_{j}, j=1 \ldots 7$ the Sylow 3 subgroups. Then since $P \unlhd G$, we have that $P Q_{j} \leq G$ with $\left|P Q_{j}\right|=21 . P Q_{j}$ has index 2 and so is normal in G. We have that $Q_{j} \leq P Q_{j}$, but we also have that since the Q_{j} are conjugate,

$$
Q_{k}=g Q_{j} g^{-1} \leq g P Q_{j} g^{-1}=P Q_{j}
$$

so that all the Q_{k} lie in $P Q_{j}$. Also, the 14 elements of order 3 in the 7 Sylow 3-subgroups together with the 6 elements of order 7 from the 7 -subgroup and the identity constitute all the elements of $P Q_{j}$.
(a) Define $\varphi\left(a a_{\lambda} b_{\lambda}\right)=a a_{\lambda} b_{\lambda} a_{\lambda}$. Then $\varphi: A a_{\lambda} b_{\lambda} \longrightarrow A b_{\lambda} a_{\lambda}$ as $a a_{\lambda} \in A$. Moreover, φ is a A-module homomorphism as

$$
\begin{aligned}
\varphi\left(a_{1} a_{\lambda} b_{\lambda}+a_{2} a_{\lambda} b_{\lambda}\right) & =\varphi\left(\left(a_{1}+a_{2}\right) a_{\lambda} b_{\lambda}\right) \\
& =\left(a_{1}+a_{2}\right) a_{\lambda} \lambda_{\lambda} a_{\lambda} \\
& =a_{1} a_{\lambda} b_{\lambda} a_{\lambda}+a_{2} a_{\lambda} b_{\lambda} a_{\lambda} \\
& =\varphi\left(a_{1} a_{\lambda} b_{\lambda}\right)+\varphi\left(a_{2} a_{\lambda} b_{\lambda}\right)
\end{aligned}
$$

and

$$
\varphi\left(a_{1} a_{2} a_{\lambda} b_{\lambda}\right)=a_{1} a_{2} a_{\lambda} b_{\lambda} a_{\lambda}=a_{1} \varphi\left(a_{2} a_{\lambda} b_{\lambda}\right) .
$$

Similarly, the map $\psi: A b_{\lambda} a_{\lambda} \longrightarrow A a_{\lambda} b_{\lambda}$ defined $\psi\left(a b_{\lambda} a_{\lambda}\right)=a b_{\lambda} a_{\lambda} b_{\lambda}$ is an A module homomorphism. Moreover, φ and ψ are almost two sided inverses as

$$
\psi \circ \varphi\left(a a_{\lambda} b_{\lambda}\right)=a a_{\lambda} b_{\lambda} a_{\lambda} b_{\lambda}=a c_{\lambda}^{2}=a d c_{\lambda}=d a a_{\lambda} b_{\lambda}
$$

and

$$
\varphi \circ \psi\left(a b_{\lambda} a_{\lambda}\right)=a b_{\lambda} a_{\lambda} b_{\lambda} a_{\lambda}=a c_{\lambda}^{2}=a d c_{\lambda}=d a b_{\lambda} a_{\lambda}
$$

where $d \in \mathbb{C}$ is such that $c_{\lambda}^{2}=d c_{\lambda}$. Incidentally, the same d works for $b_{\lambda} a_{\lambda}$ as

$$
a_{\lambda} b_{\lambda} a_{\lambda} b_{\lambda} a_{\lambda}=\left(a_{\lambda} b_{\lambda} a_{\lambda} b_{\lambda}\right) a_{\lambda}=\left(d a_{\lambda} b_{\lambda}\right) a_{\lambda}=a_{\lambda}\left(d b_{\lambda} a_{\lambda}\right)
$$

so that by by right cancelation, $b_{\lambda} a_{\lambda} b_{\lambda} a_{\lambda}=d b_{\lambda} a_{\lambda}$.
We then have that φ is surjective since for any $a \in A$ we have $\varphi\left(d^{-1} \psi(a)\right)=a$ and φ is injective since whenever $\varphi\left(a_{1}\right)=\varphi\left(a_{2}\right)$ we have $\psi\left(\varphi\left(a_{1}\right)\right)=\psi\left(\varphi\left(a_{2}\right)\right)$ so that $a_{1}=a_{2}$. Thus, φ is an isomorphism and $A a_{\lambda} b_{\lambda} \cong A b_{\lambda} a_{\lambda}$
(b) The $\operatorname{map} \varphi: A a_{\lambda} \longrightarrow A a_{\lambda} b_{\lambda}$ given by $\varphi\left(a a_{\lambda}\right)=a a_{\lambda} b_{\lambda}$ is clearly surjective. Hence, A_{λ} is the image of $A a_{\lambda}$ under φ.
(c) We have

$$
\begin{aligned}
A b_{\lambda^{\prime}} & \cong \operatorname{Ind}_{Q_{\lambda^{\prime}}^{G}}^{G} \widetilde{U}^{\prime} \\
& =\operatorname{Ind}_{P_{\lambda}}^{G} \widetilde{U}^{\prime} \\
& =\operatorname{Ind}_{P_{\lambda}}^{G}\left(\widetilde{U}^{\prime} \otimes U\right) \\
& =\operatorname{Ind}_{P_{\lambda}}^{G}\left(\operatorname{Res}_{P_{\lambda}}^{G} U^{\prime} \otimes U\right) \\
& =U^{\prime} \otimes \operatorname{Ind}_{P_{\lambda}}^{G} U \\
& \cong U^{\prime} \otimes A a_{\lambda} .
\end{aligned}
$$

where \widetilde{U}^{\prime} is the alternating module for $Q_{\lambda^{\prime}}=P_{\lambda}, U^{\prime}$ is the alternating module for G, and U is the trivial module for P_{λ}. By a parallel argument, we have that $A a_{\lambda^{\prime}} \cong U^{\prime} \otimes A b_{\lambda}$.
Now by part 2 , we have that the image of $A a_{\lambda^{\prime}}$ under right multiplication by $b_{\lambda^{\prime}}$ is $V_{\lambda^{\prime}}$. We want to apply this same map to $A b_{\lambda} \otimes U^{\prime}$, but first we note that

$$
\begin{aligned}
\left(u \otimes a b_{\lambda}\right) b_{\lambda^{\prime}} & =\left(u \otimes a b_{\lambda}\right) \sum_{j}\left(\operatorname{sgn} p_{j}\right) p_{j} \\
& =\sum_{j}\left(u \otimes a b_{\lambda}\right)\left(\operatorname{sgn} p_{j}\right) p_{j} \\
& =\sum_{j} u\left(\operatorname{sgn} p_{j}\right) p_{j} \otimes a b_{\lambda}\left(\operatorname{sgn} p_{j}\right) p_{j} \\
& =\sum_{j} u p_{j} \otimes a b_{\lambda} p_{j} \\
& =\sum_{j}\left(u \otimes a b_{\lambda}\right) p_{j} \\
& =\left(u \otimes a b_{\lambda}\right) \sum_{j} p_{j} \\
& =\left(u \otimes a b_{\lambda}\right) a_{\lambda}
\end{aligned}
$$

so that in $U^{\prime} \otimes A b_{\lambda}$, right mulfftiplication by $b_{\lambda^{\prime}}$ is the same as right multiplication by a_{λ}. Again, by part 2 , we have that the image of $U^{\prime} \otimes A b_{\lambda}$ under right multiplication by a_{λ} is $U^{\prime} \otimes V_{\lambda}$. Now since $U^{\prime} \otimes A b_{\lambda}$ and $A a_{\lambda^{\prime}}$ are isomorphic, we have that their images under right multiplication by $b_{\lambda^{\prime}}$ are isomorphic. Hence, we have that $V \lambda^{\prime} \cong V_{\lambda} \otimes U^{\prime}$.

Homework 8

15. Prove that $\mathbb{Q}(\varphi)$ is a finite extension

Let \mathcal{B} be a fixed basis of some vector space V of dimension m over F. Now $\mathbb{Q}(\varphi)=$ $\mathbb{Q}\left(a_{1,1}^{g_{1}}, a_{1,2}^{g_{1}} \ldots\right)$ where the $a_{i, j}^{g_{k}}$ are the i, j entries of the matrix $\varphi\left(g_{k}\right)$ with respect to \mathcal{B}. Then $(\varphi) / \mathbb{Q}$ is a finite extension of since there are no more than $m^{2}|G|$ different $a_{i, j}^{g_{k}}$, each of them algebraic over \mathbb{Q}, being in F.
16. Prove that φ^{σ} is a representation and that the character of φ^{σ} is $\psi^{\sigma}:=\sigma(\psi(g))$ where ψ is the character of φ.
Let $A=\left(a_{i, j}\right)$ and $B=\left(b_{i, j}\right)$ be the matricies $\varphi(g)$ and $\varphi(h)$ with respect to some fixed basis. Then $\varphi^{\sigma}(g)=\left(\sigma\left(a_{i, j}\right)\right)$ and $\varphi^{\sigma}(h)=\left(\sigma\left(b_{i, j}\right)\right)$. Now

$$
\begin{aligned}
i, j \text { entry of } \varphi^{\sigma}(g) \varphi^{\sigma}(h) & =\sum_{k} \sigma\left(a_{i, k}\right) \sigma\left(b_{k, j}\right) \\
& =\sigma\left(\sum_{k} a_{i, k} b_{k, j}\right) \\
& =\sigma(i, j \text { entry of } \varphi(g) \varphi(h)) \\
& =\sigma(i, j \text { entry of } \varphi(g h)) \\
& =i, j \text { entry of } \varphi^{\sigma}(g h) .
\end{aligned}
$$

This shows that φ^{σ} is a homomorphism. Next, we compute the character of φ^{σ}.

$$
\begin{aligned}
\operatorname{tr}\left(\varphi^{\sigma}(g)\right) & =\sum_{j} \sigma\left(a_{j, j}\right) \\
& =\sigma\left(\sum_{k}\left(a_{j, j}\right)\right) \\
& =\sigma(\operatorname{tr}(\varphi(g))) \\
& =\sigma(\psi(g))
\end{aligned}
$$

17. Show that φ is irreducible if and only if φ^{σ} is irreducible.

We note that

$$
\begin{aligned}
\overline{\sigma(\varphi(g))} & =\overline{\sigma(a+b i)} \\
& =\overline{\sigma(a)+\sigma(b) i} \\
& =\sigma(a)-\sigma(b) i \\
& =\sigma(a-b i) \\
& =\sigma(\overline{a+b i}) \\
& =\sigma(\overline{\varphi(g)})
\end{aligned}
$$

where ${ }^{-}$denotes complex conjugation. Then

$$
\begin{aligned}
\left\langle\varphi^{\sigma}, \varphi^{\sigma}\right\rangle & =\frac{1}{|G|} \sum_{g} \varphi^{\sigma}(g) \overline{\varphi^{\sigma}(g)} \\
& =\frac{1}{|G|} \sum_{g} \sigma(\varphi(g)) \overline{\sigma(\varphi(g))} \\
& =\frac{1}{|G|} \sum_{g} \sigma(\varphi(g)) \sigma(\overline{\varphi(g)}) \\
& =\sigma\left(\frac{1}{|G|} \sum_{g} \varphi(g) \overline{\varphi(g)}\right) \\
& =\sigma(\langle\varphi, \varphi\rangle)
\end{aligned}
$$

and we have that $\left\langle\varphi^{\sigma}, \varphi^{\sigma}\right\rangle=1$ if and only if $\langle\varphi, \varphi\rangle=1$ since automorphisms map the element 1 to itself.
18. Prove that $\mathbb{Q}(\psi) \subset \mathbb{Q}(\epsilon)$ where $\mathbb{Q}(\psi)$ is the extension of \mathbb{Q} generated by $\psi(g), g \in G$, and ϵ is an nth root of unity where $n=|G|$. Deduce that $\mathbb{Q}(\psi)$ is a Galois extension of \mathbb{Q} with abelian Galois group.
$\psi(g)$ is a sum of eigenvalues of $\varphi(g)$, which are all nth root of unity. This means that

$$
\psi(g) \in \mathbb{Q}(\epsilon)
$$

for all g so that

$$
\mathbb{Q}(\psi)=\mathbb{Q}\left(\psi\left(g_{1}\right), \psi\left(g_{2}\right), \ldots \psi\left(g_{n}\right)\right) \subseteq \mathbb{Q}(\epsilon) .
$$

Since the Galois group for $\mathbb{Q}(\epsilon) / \mathbb{Q}$ is $(\mathbb{Z} / n \mathbb{Z})^{\times}$, we see by the Galois correspondence that $\mathbb{Q}(\varphi)$, being a subfield of $\mathbb{Q}(\epsilon)$ containing \mathbb{Q}, corresponds with some subgroup H of $(\mathbb{Z} / n \mathbb{Z})^{\times}$. Now H is normal since $(\mathbb{Z} / n \mathbb{Z})^{\times}$is abelian so that $\mathbb{Q}(\psi) / \mathbb{Q}$ is Galois.
19. Let $\sigma_{a} \in \operatorname{Gal}(\mathbb{Q}(\epsilon) / \mathbb{Q})$ be defined $\sigma_{a}(\epsilon)=\epsilon^{a}$ and show that $\psi^{\sigma_{a}}(g)=\psi\left(g^{a}\right)$ for all $g \in G$.

Let φ be a representation of G on some vector space V of dimension m. Let φ have character ψ and let \mathcal{B} be a fixed basis of V with respect to which $\varphi(g)=\left(b_{i, j}\right)$ with $b_{i, j}=0$ for $i \neq j$ and $b_{j, j}$ a k th root of unity where $k=|g|$. Write $b_{j, j}=\epsilon^{c}$. Then

$$
\sigma_{a}\left(b_{j, j}\right)=\sigma_{a}\left(\epsilon^{c}\right)=\left(\sigma_{a}(\epsilon)\right)^{c}=\left(\epsilon^{a}\right)^{c}=\epsilon^{c a}=\left(b_{j, j}\right)^{a}
$$

Also note that with respect to \mathcal{B}, we have that $\varphi\left(g^{a}\right)=\left(b_{i, j}^{a}\right)$ since φ is diagonal. Then

$$
\psi^{\sigma_{a}}(g)=\sum_{j=1}^{m} \sigma_{a}\left(b_{j, j}\right)=\sum_{j=1}^{m}\left(b_{j, j}^{a}\right)=\psi\left(g^{a}\right)
$$

20. If $g \in G$ is conjugate with g^{a} for all a with $(a, n)=1$, then $\psi(g) \in \mathbb{Q}$ for all characters ψ of G.
We have

$$
\psi(g)=\psi\left(g^{a}\right)=\psi^{\sigma_{a}}(g)=\sum_{j=1}^{m} \sigma_{a}\left(b_{j, j}\right)=\sigma_{a}\left(\sum_{j=1}^{m} b_{j, j}\right)=\sigma_{a}(\psi(g))
$$

for all characters ψ and all $\sigma_{a} \in \operatorname{Gal}(\mathbb{Q}(\epsilon) / \mathbb{Q})=\left\{\sigma_{a} \mid(a, n)=1\right\}$. By definition of the Galois group, since $\psi(g) \in \mathbb{Q}(\epsilon)$ is fixed by all $\sigma_{a} \in \operatorname{Gal}(\mathbb{Q}(\epsilon) / \mathbb{Q})$, we have that $\psi(g) \in \mathbb{Q}$ for all ψ.
21. For $g \in G$ fixed, g is conjugate with g^{a} for all $(a,|G|)=1$ iff g is conjugate with g^{a} for all $(a,|g|)=1$.
Suppose g is conjugate with g^{a} for all $(a,|g|)=1$ and let a be such that $(a,|G|)=1$. Then we certainly have that $(a,|g|)=1$ so that g is conjugate with g^{a} by assumption.
Conversely, suppose g is conjugate with g^{a} for all $(a,|G|)=1$ and let a be such that $(a, m)=1$ where $m=|g|$. Let l be such that $n=l m$ and let k be such that $l=d k$ where $d=(l, m)$. We then have that $n=d k m$ and $(m, k)=1$. Write $1=r m+s k$ for some $r, s \in \mathbb{Z}$ and define $x=a s k+r m$. Then

$$
x \equiv_{m} a s k+r m \equiv_{m} a s k \equiv_{m} a
$$

since $s k \equiv_{m} r m+s k \equiv_{m} 1$.
This equivalence implies that m divides $x-a$ so that $m y=x-a$ for some $y \in \mathbb{Z}$. Then

$$
g^{x} g^{-a}=g^{x-a}=g^{m y}=1
$$

so that $g^{a}=g^{x}$. We similarly have that

$$
x \equiv_{k} a s k+r m \equiv_{k} r m \equiv_{k} 1
$$

since $r m \equiv_{k} r m+s k \equiv_{k} 1$.

This equivalence imples that $k \mid x-1$. Now if some prime p divides k, then p divides $x-1$ so that p cannot divide x. This shows that $(k, x)=1$.
Finally, we want to show that $(x, n)=1$. Indeed, if some prime p were a common factor of both x and $n=d k m$, then by the preceeding paragraph, p would not be a factor of k. Now since $x \equiv_{m} a$, we have that m divides $x-a$. If p were a factor of m, then since p is a factor of x, we would have that p would be a factor of a, a contradiction since $(a, m)=1$. Finally, p cannot be a factor of $d=(l, m)$ as then it would have to be a factor of m. Hence, n and x can have no common factors, that is, $(n, x)=1$. By assumption, we then have that g is congruent with $g^{x}=g^{a}$.
22. Every character of S_{n} is rational valued.

Let $g \in S_{n}$ and let $g=\tau_{1} \tau_{2} \cdots \tau_{m}$ where τ_{j} are disjoint n_{j}-cycles. Then $|g|=l c m n_{j}$ and if a is such that $\left(a, l c m n_{j}\right)=1$, then we must have that $\left(a, n_{j}\right)=1$ for all j, for if $\left(a, n_{j_{0}}\right) \neq 1$ for some j_{0}, then we have

$$
\left(a, n_{j_{0}}\right)\left|n_{j_{0}}\right| l c m n_{j},
$$

but we have also that $\left(a, n_{j_{0}}\right) \mid a$ so that $\left(a, n_{j_{0}}\right)$ is a common divisor of both $l c m n_{j}$ and a. This means that $\left(a, l c m n_{j}\right)>1$, a contradiction. We must have that $\left(a, n_{j}\right)=1$ for all j. Then the a th power of each n_{j}-cycle is also an n_{j}-cycle so that g^{a} has the same cycle type as g. Thus, g^{a} is conjugate with g. Thus, we've shown that g is conjugate with g^{a} for all $(a,|g|)=1$ and for all $g \in G$. Thus, by 21, we have that g^{a} is conjugate with g for all $(a,|G|)=1$. Thus, by 20 , we have that $\psi(g) \in \mathbb{Q}$ for all $g \in G$ and all characters ψ of G.

Homework 9

(a) Show that $\left.|G|=q(q-1)\left(q^{2}-1\right)\right)$.

We count the number of bases $\left\{\binom{a}{b},\binom{c}{d}\right\}$ of \mathbb{F}_{q}^{2} since these are in bijection with the elements of $G L\left(2, \mathbb{F}_{q}\right)$.
Now there are q choices for a and q choices for b except that $\binom{a}{b}$ should not be $\binom{0}{0}$ so that we have $q^{2}-1$ ways to select $\binom{a}{b} \cdot\binom{c}{d}$ can be anything not in the span of $\binom{a}{b}$. The span of $\binom{a}{b}$ contains q different vectors, including the forbidden $\binom{0}{0}$ so we have $q^{2}-q$ choices for $\binom{c}{d}$. This gives a grand total of $\left(q^{2}-1\right)\left(q^{2}-q\right)$ different bases for \mathbb{F}_{q}^{2}.
(b) Let $B=\left(\begin{array}{cc}\star & \star \\ 0 & \star\end{array}\right) \leq G, T=\left(\begin{array}{cc}\star & 0 \\ 0 & \star\end{array}\right) \leq G$, and $U=\left(\begin{array}{cc}1 & \star \\ 0 & 1\end{array}\right) \leq G$. Show that B is the semidirect product $B=T \ltimes U$.

We have that $B=T U$ since

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right)\left(\begin{array}{cc}
1 & b a^{-1} \\
0 & 1
\end{array}\right) \in T U .
$$

Next, we see that $T \leq N_{B}(U)$ since

$$
\left(\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
1 & c \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
a^{-1} & 0 \\
0 & b^{-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & a b c \\
0 & 0
\end{array}\right) \in U .
$$

Of course, we have that $U \leq N_{B}(U)$ so that $B=T U \leq N_{B}(U)$ so that $U \unlhd B$. We also have that $T \cap U=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ so that $B=T U=T \ltimes U$.
Now $B / U=T U / U \cong T /(T \cap U) \cong T /\{1\} \cong T$ by the isomorphism theorems. T is abelian so that T has $|T|=(q-1)^{2}$ characters, all of which are of degree 1. These all lift to distinct characters of of B so that B has at least $(q-1)^{2}$ characters of degree one.
To show that B has exactly $(q-1)^{2}$ characters of degree one, we will show that $U=B^{\prime}$, the commutator subgroup of B, so that we will have exactly $\left[B: B^{\prime}\right]=$ $[B: U]=(q-1)^{2}$ characters of degree one.
Indeed, we have $B^{\prime} \leq U$ since $B / U \cong T$ is abelian. Imagine now that B^{\prime} is strictly contained in U so that B / B^{\prime} is isomorphic with a subgroup \widetilde{T} of B containing T which has order strictly larger than $|T|$. Let

$$
a:=\left(\begin{array}{ll}
x & y \\
0 & z
\end{array}\right) \in \widetilde{T} \backslash T .
$$

Then x and z are non-zero else a is not invertible, and y is non-zero else $a \in T$. Then

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
z y^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
x & y \\
0 & z
\end{array}\right)\left(\begin{array}{cc}
x^{-1} y z^{-1} & 0 \\
0 & z^{-1}
\end{array}\right) \in\left\langle\left(\begin{array}{cc}
\star & 0 \\
0 & \star
\end{array}\right),\left(\begin{array}{cc}
x & y \\
0 & z
\end{array}\right)\right\rangle,
$$

the subgroup of B generated by a and the elements of T, but this means that

$$
U=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right\rangle \leq\left\langle\left(\begin{array}{cc}
\star & 0 \\
0 & \star
\end{array}\right),\left(\begin{array}{cc}
x & y \\
0 & z
\end{array}\right)\right\rangle
$$

so that

$$
B=T U \leq\left\langle\left(\begin{array}{cc}
\star & 0 \\
0 & \star
\end{array}\right),\left(\begin{array}{cc}
x & y \\
0 & z
\end{array}\right)\right\rangle \leq \widetilde{T}
$$

so that $\widetilde{T}=B$. But this is impossible since B is non-abelian. Thus, we must have that $T=\widetilde{T}$ and $U=B^{\prime}$.
Now to compute the characters of T, we note that $T \cong \mathbb{F}_{q}^{\times} \times \mathbb{F}_{q}^{\times} \cong \mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}$. The characters of \mathbb{Z}_{q-1} correspond to the assignment of a $(q-1)$ st root of unity to a generator of \mathbb{Z}_{q-1}, and the characters of $\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}$ correspond with the
product of two characters of \mathbb{Z}_{q-1}. Then we can index the characters of T as follows

$$
\psi_{i, j}=\left\{\begin{array}{rll}
(a, 1) & \mapsto & \zeta^{i} \\
(1, b) & \mapsto & \zeta^{j}
\end{array}\right.
$$

where 0 is the identity element of \mathbb{Z}_{q-1}, a and b are generators of \mathbb{Z}_{q-1}, and ζ is a primative $(q-1)$ st root of unity. Or more compactly, taking $a=b=1$ we have

$$
\psi_{i, j}(x, y)=\zeta^{x i+y j}
$$

(c) Show that $B \backslash G / B$ has representatives B and $B w B$ where $w=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Let $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$. If $c=0$, then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in B$. If $c \neq 0$, then

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\underbrace{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{cc}
1 & c^{-1} d \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)}_{\in B}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \underbrace{\left(\begin{array}{cc}
1 & -c^{-1} d \\
0 & 1
\end{array}\right)}_{\in B} \in B w B .
$$

(d) Let ψ be a character of B of degree 1 constructed as in (2). Analyze $\left\langle\operatorname{Ind}_{B}^{G}(\psi), \operatorname{Ind}_{B}^{G}(\psi)\right\rangle$ by Mackey's Theorem and describe when $\operatorname{Ind}_{B}^{G}(\psi)$ is irreducible. How many irreducible characters of G do you get in this way?
We have that $w^{-1} B w=w B w$ is the subgroup of lower-triangular matricies since the w on the left swaps the rows and the w on the right swaps the columns. Thus, $x^{-1} B w \cap B$ is exactly T, the subgroup of diagonal matricies. Also, we have $\psi^{w}(b)=\psi^{w}\left(w^{-1} w b w^{-1} w\right)=\psi\left(w b w^{-1}\right)$. Then by Mackey,

$$
\begin{aligned}
\left\langle\operatorname{Ind}_{B}^{G}(\psi), \operatorname{Ind}_{B}^{G}(\psi)\right\rangle & =\sum_{x \in 1, w}\left\langle\left.\psi^{x}\right|_{x^{-1} B x \cap B},\left.\psi\right|_{x^{-1} B x \cap B}\right\rangle_{x^{-1} B x \cap B} \\
& =\langle\psi, \psi\rangle_{B}+\left\langle\left.\psi^{w}\right|_{T},\left.\psi\right|_{T}\right\rangle_{T}
\end{aligned}
$$

Now $\left\langle\left.\psi^{w}\right|_{T},\left.\psi\right|_{T}\right\rangle_{T}=\left\langle\psi^{w}, \psi\right\rangle_{B}$ since ψ is lifted from some character of T. We see then that $\langle\psi, \psi\rangle_{B}+\left\langle\psi^{w}, \psi\right\rangle_{B}=1$ when $\left\langle\psi^{w}, \psi\right\rangle_{B}=0$, that is, when ψ and ψ^{w} are different characters of T. Using the notation of (2), we have that $\psi_{i, j}=\psi_{i, j}^{w}=\psi_{j, i}$ when $i=j$. Hence, we can produce $(q-1)^{2}-(q-1)$ different characters of G in this manner.

