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In this lecture I will give a survey of the model theory of differentially closed fields.
This is an interesting setting where one can use model theoretic methods, particularly
dimension theoretic ideas to obtain interesting algebraic information. I will conclude with
one example showing how this information can be used in diophantine applications. I
will not give proofs. Most of the material in sections 1-3 can be found in [M1], while
the material in section 4 can be found in [HS] or [P1]. [Ko] is the primary reference on
differential algebra, though the very readable [K| contains most of the basics needed here
as does the more recent [Mg]. [B] also contains an introduction to differential algebra and
its connections to diophantine geometry. We refer the reader to these sources for references
to the original literature.

§1 Differentially closed fields

For this lecture all fields will have characteristic zero. A differential field is a field K
equipped with a derivation 6 : K — K. The field of constantsis C = {z € K : §(z) = 0}.

We will study differential fields using the language £ = {+, —,-,4,0, 1}, the language
of rings augmented by a unary function symbol §. The theory of differential fields, DF, is
given by the axioms for fields of characteristic zero and the axioms

VaVy 0(z + y) = 0(z) + 0(y)

Vavy 6(zy) = zd(y) + yo(z)
which assert that § is a derivation.

If K is a differential field, we define K{ X7y, ..., X, }, the ring of differential polynomials
over K to be the polynomial ring in infinitely many variables

K[X1,.. o, X, 0(X0), o 6(Xn), oy 0™ (X1, ., 6™ (X)), - ]

We can extend § to a derivation on K{X1,..., X,,} by 6(6"(X;)) = "1 (X;).

We say that K is an existentially closed differential field, if whenever fi,..., fm €
K{X,,...,X,} and there is a differential field L extending K containg a solution to the
system of differential equations f; = ... = f,, = 0, then there is already a solution in K.
Robinson gave an axiomatization of the existentially closed differential fields. Blum gave
a simple axiomatization which refers only to differential polynomials in one variable.

If fe K{Xy,...,X,}\ K, the order of f is the largest m such that 6™ (X;) occurs in
f for some 4. If f is a constant, then we say f has order —1.
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Definition A differential field K is differentially closed if whenever f,g € K{X}, g is
nonzero and the order of f is greater than the order of g, then there is a € K such that

f(a) =0 and g(a) # 0.

In particular any differentially closed field is algebraically closed.
For each m and dyp and d; we can write down an L-sentence ¢y, q,,4, Which asserts
that if f is a differential polynomial of order m and degree at most dy and ¢ is a nonzero

differential polynomial of order less than m and degree at most dy, then there is a solution
to f(X) =0 and g(X) # 0. For example ¢ 11 is the formula

VaOVal‘dag‘v’angoVblVbz [(CL3 75 0A (b(] 7é oV b1 75 oV bz 7é 0) —

Az (a36(0(x)) + a20(z) + a1z + ag = 0 A bad(x) + byx + by # 0)].

The L-theory DCF is axiomatized by DF and the set of axioms {¢s, 4,,4,: for all m,dy
and dy}. The models of DCF are exactly the differentially closed fields.

It is not hard to show that if f,g € K{X} are as above, then there is L O K
containing a solution to the system f(X) =0 and Yg(X)— 1 = 0. Indeed we could take
L to be the fraction field of K{X}/P where P is a minimal differential prime ideal with
f € P. Iterating this construction shows that any differential field can be extended to a
differentially closed field. Thus any existentially closed field is differentially closed.

The next theorem of Blum shows that the converse holds (see [M1] for the proof).

Theorem 1.1 The theory DCF has quantifier elimination and hence is model complete.

Corollary 1.2 i) DCF is a complete theory.
ii) A differential field is existentially closed if and only if it is differentially closed.

Proof i) The rational numbers with the trivial derivation is a differential subfield of any
differentially closed field. If Ky and K; are models of DCF and ¢ is a quantifier free
sentence, then there is a quantifier free sentence 1 such that DCF = ¢ <» 1. But K; = ¢
if and only if Q = . Hence Ky = ¢ if and only if K; | ¢ and DCF is complete.

ii) We already remarked that every existentially closed field is differentially closed.
Suppose K is differentially closed. Suppose f1 = ... = f,, = 0 is a system of polynomial
differential equations solvable in an extension L of K. We can find K; an extension of L
which is differentially closed. By model completeness K is an elementary submodel of K.
Since there is a solution in K there is a solution in K.

Recently Pierce and Pillay [PP] have given a more geometric axiomatization of DCF.
Suppose K is a differential field and V' C K™ is an irreducible algebraic variety defined over
K. Let I(V) C K[Xy,...,X,] be the ideal of polynomials vanishing on V" and let fi, ..., fi,
generate I(V). If f = Y a;,. i Xt oo Xim et fO = S 6(as,..i, )Xt - Xim. The
tangent bundle T'(V') can be identified with the variety

n az
T(V) = {(z,y) € K*" :$€V/\Zyj3)];
J

j=1

(x)=0fori=1,...,m}
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We define the first prolongation of V' to be the algebraic variety

9 fi

IX, () + f(x) =0fori=1,...,m}.

VO = {(z,y) EK2”:;UEV/\Zyj

=1

If V is defined over the constant field C, then each f? = 0, and v g T (V). In general
for a € V, the vector space T,(V) = {b: (a,b) € T(V)} acts regularly on v = {b:
(a,b) € VDY making V() a torsor under T'/(V). Tt is easy to see that (z,d(z)) € V1) for
all z € V. Thus the derivation is a section of the first prolongation.

Theorem 1.3 Let K be a differential field K. The following are equivalent.

i) K is differentially closed.

ii) K is existentially closed.

iii) K is algebraically closed and for every irreducible algebraic variety V- C K™ if W
is an irreducible subvariety of V(1) such that the projection of W onto V is Zariski dense
in V and U is a Zariski open subset of V, then (z,6(x)) € U for some z € V.

Proof We know i) < ii)

iii)= i) Suppose f(X) € K{X} has order n and g(X) has lower order. Say f(X) =
p(X,8(X),...,0"(X)) and g = q(X,0(X),...0" (X)), where p and ¢ are polynomials.
Without loss of generality p is irreducible. Let V = K. Let W = {(z,y) € K*" : y; =
T2, Yo = T3y oy Yn—1 = Tn, P(T1,...,Tn,Yn) = 0} It is easy to see that W is irreducible
and W projects generically onto K™. Let U = {(z,y) € W : q(z) # 0}. By iii) there is
x € K™ such that (x,d(z)) € U. Then f(x1) =0 and g(z1) # 0.

i)= iii) Let V, W and U be as in iii). Let (z,y) be a generic point of U over K. One
can show that there is a differential field L extending K (z,y) with §(z) = y (indeed we
can extend 0 to K(x,y)). We may assume L is differentially closed. Then (z,0(z)) € U
and by model completeness we can find a a solution in K.

§2 The Kolchin topology

We say that an ideal I in K{X1,...,X,} is a d-ideal if 6(f) € I whenever f € I. If
I C K{Xy,...,Xn}, let Vs(I) = {x € K™ : f(x) =0 for all f € I}. We can topologize
K™ by taking the Vj(I) as basic closed sets. This topology is refered to as the Kolchin
topology or the d-topology.

There are infinite ascending sequences of d-ideals For example
(X?) C (X2, (8(X))%) € .. (X2, (8(X))%, ., (™(X)?) C ..o

where (f1,..., fn) is the d-ideal generated by fi,..., f,. But radical J-ideals are well
behaved (for a proof see [K] or [M1]).



Ritt-Raudenbush Basis Theorem 2.1 i) There are no infinite ascending chains of
radical differential ideals in K{Xj,..., X,,}. For any radical differential ideal I there are
fir-o o fm such that T = \/(f1,..., fm).

ii) If I ¢ K{X4,...,X,} is a radical d-ideal, then there are distinct prime d-ideals
Py,...,P, suchthat I =P N...N P, and P,..., P, are unique up to permutation.

Thus the d-topology is Noetherian and any d-closed set is a finite union of irreducible
0-closed sets.

Differential Nullstellensatz 2.2 (Seidenberg) Let K be a differentially closed field.
I — V5(I) is a one to one correspondence between radical J-ideals and d-closed sets.

Proof It is easy to see that I5(Y) is a radical d-ideal for all Y C K™. Suppose I and J are
radical d-ideals and g € J\ I. By 2.1 there is a prime d-ideal P D I with g ¢ P. It suffices
to show there is x € V5(P) with g(x) # 0. Let P = \/{f1,..., fm). Let L be a differentially
closed field containing K{X;,..., X, }/P. Let + = (X;/P,..., X, /P). Clearly f(z) =0
for f € P and g(x) # 0. In particular

LE3Juy...3v, fi(vi,...,0n) = oo = fn(v1, ... 0n) = 0Ag(v1,...,0,) # 0.

By model completeness the same sentence is true in K. Thus there is x € K™ such that
z € Vs(P)\ Vs(J).

By the basis theorem every d-closed set is definable. We say that a subset of K™ is
d-constructible if it is a finite boolean combination of d-closed sets. The d-constructible
sets are exactly those defined by quantifier free £-formulas. Quantifier elimination implies
that the d-constructible sets are exactly the definable sets. Thus the projection of a ¢-
constructible set is d-constructible.

63 w-stability and dimension

Let K be a differentially closed fields and let F' be a differential subfield of K. If
p € Sp(F), let Is(p) = {f :€ F{X1,...,Xn} : “f(x1,...,2,) = 0" € p}. The arguments
for types in algebraically closed fields in [M2] work here to show that p — I, is a bijection
from S,,(F') onto the space of prime d-ideals.

Corollary 3.1 DCF is w-stable.

Proof Let K and F be as above. We must show that |S,, (F')| = |F|. But for all p, we can

find fi,..., fm such that Is(p) = +/{(f1,..., fm). Thus the number of complete n-types is
equal to |F{Xy,...,X,}| = |F]|.

There is an important algebraic application of w-stability. If F'is a differential field, we
say that a differentially closed K D F' is a differential closure of F' if for any differentially
closed L D F, there is a differential embedding of K into L fixing F'.
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This is related to a general model theoretic notion mentioned in [H|. A prime model
of T over A is a model M =T with A C M, such that if N =T and A C N, then there
is an elementary embedding j : M — A such that j|A is the identity. For DCF, prime
model extensions are exactly differential closures (recall that, by model completeness, all
embeddings are elementary).

Theorem 3.2 Let T be an w-stable theory, M | T and A C M. There is N a prime
model of T over A. If Ny and N; are prime models of T over A, then Ny and N7 are
isomorphic over A.

The existence of prime models was proved by Morley and uniqueness (under less
restrictive assumptions) is due to Shelah. The following corollary was later given a slightly
more algebraic proof by Kolchin.

Corollary 3.3 Every differential field F' has a differential closure and any two differential
closures of F' are unique up to isomorphism over F.

Differential closures need not be minimal. Let F' be the differential closure of Q. In-
dependent results of Kolchin, Rosenlicht and Shelah show there is a non-trivial differential
embedding j : F' — F with j(F') a proper subfield of F.

Since DCF is w-stable, we can assign Morley rank to types and definable sets. This
gives us a potentially useful notion of dimension. It is interesting to see how this corre-
sponds to more algebraic notions of dimension.

There are two natural cardinal dimensions. Suppose V' C K™ is an irreducible d-closed
set. Let K[V] be the differential coordinate ring K{X,..., X, }/I5(V). Let td(V) be
the transcendence degree of K[V] over K. Often td(V) is infinite. We say that elements of
a differential ring are differentially dependent over K if they satisfy a differential polynomial
over K. Let tds(V) be the size of a maximal differentially independent subset of K[V]
over V. Note that td(V) is finite if and only if tds(V) = 0. If V' is an algebraic variety of
dimension d, then tds(V) = d. Suppose W and V are proper irreducible d-closed subsets
of K with W C V. Then tds(V) = tds(W) = 0 and td(W) < td(V).

There is a natural ordinal dimension that arises from the Noetherian topology. This is
the analog of Krull dimension in Noetherian rings. If V' is a non-empty irreducible §-closed
set, we define dimgs(V') as follows. If V' is a point, then dimgs(V') = 0. Otherwise

dims (V) = sup{dims(W) + 1 : W C V is irreducible, § — closed and nonempty }.

Since V5(X) C V5(0(X)) C ... C Vs(6"(X)) C ... K, dims(K) > w. The above
remarks imply that if V' C K is d-closed, then dims(V') < td(V). Hence dims(K) = w.

There are two model theoretic notions of dimension, Morley rank and U-rank. We
refer to [H] for the definition of Morley rank but will describe U-rank in this context. If A,
B and C' are subsets of a differentially closed field, we say that B and C are independent
over A if the differential field generated by B U A and the differential field generated by
C' U A are linearly disjoint over the algebraic closure of the differential field generated by
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A. It BD A, pe Sp(A), g € S,(B) and p C g, we say that ¢ is a forking extension of p, if
for any a realizing ¢, a and B are dependent over A.

We define the U-rank of a type p € S,,(A) inductively by

i) U(p) > 0;

ii) if @ is a limit ordinal, then U(p) > « if and only if U(p) > g for all § < a.

iii) U(p) > a+ 1 if and only if there is B D A and ¢q € S, (B), ¢q a forking extension
of p and U(q) > a.

We write U(b/A) for U(tp(b/A)). If X is definable over A, we let U(X) be the maximum
U(b/A) for b e X.

In algebraically closed fields we also have four notions of dimension (transcendence
degree, Krull dimension, Morley rank and U-rank), all of which agree. In DCF the situation
is different.

Theorem 3.4
U(V) < RM(V) < dims(V) < w - td5(V)

and if tds(V) = 0, then dimg (V) < td(V).

Theorem 3.4 a combination of results of Poizat, Johnson and Pong (see [Po] for details).
There are examples due to Kolchin, Poizat, and Hrushovski and Scanlon showing that any
of these inequalities may be strict. While these notions may disagree it is easy to see that
U-rank is finite iff transcendence degree is finite. Thus the notion of “finite dimensional”
does not depend on which notion of dimension we choose. It is also easy to see that
U(K™) = wn so the notions of dimension agree on K™ (and on all algebraic varieties).

The following result of Pong [Po] shows the usefulness of U-rank. It is part of his
proof that any finite rank d-closed set is affine.

Proposition 3.5 Suppose V' C P™ is d-closed and U(V) < w. If H C P™ is a generic
hyperplane, then H NV = .

Proof Let H be the set of all hyperplanes in P™. Since # is isomorphic to P™, U(H) = wn.
Similarly for any point z, the set of hyperplanes through = has U-rank w(n — 1) over z.
Let I ={(v,H): H € H,veVNH}. Suppose (v,H) € I and U((v, H)) is maximal. The
Lascar inequality (valid in any superstable theory) asserts that

U(v,H) < U(H/v) ® U(v)

(where @ is the symmetric sum of ordinals). In this case H is in the set of hyperplanes
through v, so U(H/v) < w(n — 1). Since U(V) is finite, U(v) < w. Thus U(v, H) < wn.
But if H were a generic hyperplane U (v, H) >U(H) = wn, a contradiction.

We conclude this section by summarizing some important results about interpretabil-
ity in DCF.

Theorem 3.6 (Poizat) DCF has elimination of imaginaries. In particular the quotient of
a d-constructible set by a d-constructible equivalence relation is d-constructible.
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Theorem 3.7 i) (Pillay) Any group interpretable in a differentially closed field K is
definably isomorphic to the K-rational points of a differential algebraic group defined over
K.

ii) (Sokolovic) Any infinite field of finite rank interpretable in a differentially closed
field is definably isomorphic to the field of constants.

iii) (Pillay) Any field of infinite rank interpretable in K = DCF is definably isomorphic
to K.

§4 Strongly minimal sets in differentially closed fields

Let K be a Ng-saturated differentially closed field. Let X C K™ be definable. By
adding parameters to the language we assume X is defined over (). Recall that X is
strongly minimal if whenever Y C X is definable then either Y or X \ Y is finite. For
A C K let acl’(A) be the algebraic closure of the differential field generated by A. In DCF
this is exactly the model theoretic notion of algebraic closure. If X is strongly minimal
let acl% (A) = acl’(A) N X. For A C X, let dim(A) be the maximum cardinality of an
acl’-independent subset of acl®(X).

We say that a strongly minimal set X is trivial if

act (4) = | acl ({a})

a€A

for all A C X. Examples of trivial strongly minimal sets are a set with no structure or the
natural numbers with the sucessor function.

We say that a strongly minimal set X is locally modular if
dim(AU B) = dim(A) + dim(B) — dim(A N B)

whenever A and B are finite dimensional acl%-closed subsets of X and AN B # (. Vector
spaces are good examples of locally modular strongly minimal sets. Indeed general results
of Hrushovski show that any non-trivial locally modular strongly minimal set is essentially
a vector space.

To fully understand the model theory of any w-stable theory it is essential to under-
stand the strongly minimal sets. In differentially closed fields this is particularly fascinat-
ing because there are trivial, non-trivial locally modular and non-locally modular strongly
minimal sets.

Trivial strongly minimal sets first arose in the proofs that differential closures need
X

X+1
and §(X) = X3 — X? are (after throwing out 0 and, in the second case, 1) sets of total
indiscernibles (ie. sets with no additional structure).

There is one obvious non-locally modular strongly minimal set, C' the field of constants.
Hrushovski and Sokolovic proved that this is essentially the only one.

not be minimal. For example the solution sets to the differential equations §(X)
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Theorem 4.1 If X C K" is strongly minimal and non-locally modular, then X is non-
orthogonal to the constants.

The proof of 4.1 proceeds by first showing that strongly minimal sets in differentially
closed field are Zariski geometries (in the sense of [HZ]). The main theorem on Zariski ge-
ometries says that non-locally modular Zariski geometries are non-orthogonal to definable
fields, but the only finite rank definable field is, by 3.7, the constants.

Hrushovski and Sokolovic also showed that non-trivial locally modular strongly min-
imal sets arise naturally in studying abelian varieties as differential algebraic groups. In
his proof of the Mordell conjecture for function fields, Manin proved the following result.

Theorem 4.2 If A is an abelian variety, then there is a non-trivial differential algebraic
group homomorphism p: A — K™,

For example if A is the elliptic curve y?> = z(z — 1)(x — A) where §(\) = 0 then
5
plx,y) = @ If 6(A\) # 0, then p is a second order differential operator. Let A% be
)
the d-closure of the torsion points of A.We can choose p so that A# is the kernel of .
Building on 4.2 and further work of Buium, Hrushovski and Sokolovic showed:

Theorem 4.3 Suppose A is a simple abelian variety defined over K. Either

i) A is isomorphic to an abelian variety B defined over the constants, or

ii) A# is locally modular and strongly minimal.

Moreover, any non-trivial locally modular strongly minimal set is non-orthogonal to
A# for some such A, and A# and B# are non-orthogonal if and only if A and B are
isogenous.

Thus Hrushovski and Sokolovic have completely characterized the non- trivial strongly
minimal sets. Understanding the trivial ones is still a difficult open problem. We say that a
strongly minimal set X is Ry-categorical if in any model the dimension of the elements of the
model in X is infinite. One open question is: in DCF is every trivial strongly minimal set
Ny-categorical? Hrushovski has proved this for transcendence degree one strongly minimal
sets.

65 Diophantine Applications

Hrushovski used 4.3 in his proof of the Mordell-Lang conjecture for function fields in
characteristic zero.

Theorem 5.1 Suppose K D k are algebraically closed fields of characteristic zero, A is an
abelian variety defined over K such that no infinite subabelian variety of A is isomorphic
to an abelian variety defined over k, I' is a finite rank subgroup of A, and X is a subvariety
of A such that X NT is Zariski dense in X. Then X is a finite union of cosets of abelian
subvarieties of A.



I will sketch the ideas for proving 5.1 (for full details see [Hr], [Bo] or [P2]). First we
will give the full proof in one easy case.

Theorem 5.2 Suppose K D k are algebraically closed fields of characteristic zero, A is a
simple abelian variety defined over K which is not isomorphic to an abelian variety defined
over k, I' is the torsion points of A, and X is a proper subvariety of A. Then X NI is
finite.

Proof

The main idea is to move to a differential field setting where we may apply model the-
oretic tools. In doing so we will replace the group I' by A%, a small (ie. finite dimensional)
differential algebraic group.

The first step is to define a derivation § : K — K such that k = {x € K : §(z) = 0}.
One can show that if K is the differential closure of K then the field of constants of K
is still k. Thus without loss of generality we may assume that K is a differentially closed
field and k is the constant field of K.

Let A# be the d-closure of the torsion points of A. It suffices to show that A# N X is
finite. Suppose not. Since A# is strongly minimal, A# \ X is finite. But then the Zariski
closure of A# is contained in X U A# \ X which is properly contained in A. This is a
contradiction since the torsion points are Zariski dense.

The proof above does not explicitly use the fact that A# is locally modular (though
this does come into the proof that it is strongly minimal). Local modularity plays more
of a role if we consider larger groups I'. Suppose K, k, A and X are as above and I' is a
finite rank subgroup of A. Let p : A — K™ be a definable homomorphism with kernel
A#. Since I' has finite rank, the image of I under p is contained in V' C K™ which is a
finite dimensional k-vector space. Consider G = p~!(V). This is a definable finite Morley
rank subgroup of A. Some analysis of this group allows us to conclude that it is 1-based
(see [H]-basically this means that all of the strongly minimal sets are locally modular).
Hrushovski and Pillay showed that in an 1-based group G any definable subset of G™ is a
boolean combination of cosets of definable subgroups. In particular X N G will be a finite
union of cosets of definable subgroups of GG. If any of these subgroups is infinite, then its
Zariski closure is an algebraic subgroup and must hence be the whole group. This would
contradict the fact that the Zariski closure would be contained in X.

To prove 5.1 in general, we use the fact that every abelian variety is isogenous to a
direct sum of simple abelian subvarieties and a number of techniques from finite Morley
rank group theory.
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