Introduction to Model Theory
David Marker
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My goal in these lectures is to introduce some of the basic concepts and results from
model theory, starting from scratch. As my time is quite limited the topics covered will
be tailored to the model theory of fields and the later lectures this week. I will be using
algebraically closed fields to illustrate most of these ideas. The tools I will be describing are
quite basic and most of this material is due either to Alfred Tarski or Abraham Robinson.
At the end I will give some general references.

61 Languages and Structures

What is a mathematical structure? Some examples of mathematical structures we
have in mind are the ordered additive group of integers, the complex field, and the ordered
real field with exponentiation.

To specify a structure we must specify the underlying set, some distinguished oper-
ations, some distinguished relations and some distinguished elements. For example, the
ordered additive group of integers has underlying set Z and we distinguish the binary
function +, the binary relation < and the identity element 0. For the ordered field of real
numbers with exponentation we have underlying set R and might distinguish the binary
functions + and x, the unary function exp, the binary relation < and the elements 0 and
1.

Here is the formal definition.

Definition 1.1 A structure M is given by the following data.

i) A set M called the universe or underlying set of M.

ii) A collection of functions {f; : i € Iy} where f; : M™ — M for some n; > 1.

iii) A collection of relations {R; : i € I} where R; C M™: for some m; > 1.

iv) A collection of distinguished elements {c; : i € I3} C M.
Any (or all) of the sets Iy, I; and I may be empty. We refer to n; and m; as the arity of
fi and R;.

Here are some examples:
1) The ordered field of real numbers has domain R, binary functions +, —, x, relation <,
and distinguished elements 0 and 1.
2) The valued field of p-adic numbers has domain Q,, binary functions +, —, x, distin-
guished elements 0 and 1, and a unary relation Z, for the ring of integers.

In mathematical logic we study structures by examining the sentences of first order
logic true in those structures. To any structure we attach a language £ where we have
an n;-ary function symbol f; for each f;, an m;-ary relation symbol R; for each R; and
constant symbols ¢; for each c;.



An L-structure is a structure M where we can interpret all of the symbols of L. For
example, let £ be the language where we have a binary function symbol X and a constant
symbol 1. The following are examples of L-structures:

1) M; has underlying set Q. We interpret X as x and 1 as 1.
2) My has underlying set Z. We interpret X as + and 1 as 0.

Of course we also could take the natural interpretation of £ in Z.
3) M3 has underlying set Z. We interpret X as x and 1 as 1.

Definition If M and N are L-structures with underlying sets M and N, respectively,
an L-embedding, o : M — N is an injective map that preserves the interpretation of
all function symbols, relation symbols and constant symbols of £. An L-isomorphism is
bijective L-embedding.

We say that M is a substructure of N (and write M C N') if M C N and the inclusion
map is an £ — embedding.

Formulas in our language are finite strings made from the symbols of £, the equality
relation =, variables xg,x1,..., the logical connectives —, A,V, quantifiers 3 and V and
parenthesis. * We interpret —, A,V as “not”, “and” and “or” and d and V as “there exists”
and “for all”. I will use z,y, z... as variables and not use ~ ’s when no confusion arises.

Let £, be the language of rings where we have binary function symbols +, — and X
and constant symbols 0 and 1. The language of ordered rings, L, is £, with an additional
binary relation symbol <. (As usual we will write z + y instead of +(z,y) and z < y for
< (x,y).) Here are some examples of L,,-formulas.

r1=0Vaxy >0
E|.T2 T9g X Tog =21
V.Tl (.T1:0\/E|.T2 CEQXCUlzl)

Intuitively the first formula asserts that x1 > 0, the second asserts that x; is a square
and the third asserts that every nonzero element has a multiplicative inverse. We would
like to define what it means for a formula to be true in a structure, but these examples
already show one difficulty. While in any L,.-structure the third formula will either be
true or false, the first two formulas express a property which may or may not be true of
elements of the structure.

We say that a variable occurs freely in a formula ¢ if it is not inside the scope of a
quantifier, otherwise we say it is bound. For example x; is free in the first two formulas
and bound in the third, while x5 is bound in both formulas.

We call a formula a sentence if it has no free variables. For any L-structure each
sentence of L is either true or false. If ¢ is a sentence we say that M is a model of ¢ and
write M = ¢ if and only if ¢ is true in M.

We often write ¢(x1,...,z,) to show that the variables zq,...,x, are free in the
formula ¢. We think of ¢(x1,...,z,) as describing a property of n-tuples from M. For
example, the L, formula Jx5 x5 X £3 = 1, has the single free variable x; and describes

* 1 give precise definitions in the appendix.



the property “zy is a square”. If aq,...,a, are elements of M we say M = ¢(a1,...,an)
if the property expressed by ¢ is true of the tuple (ay,...,ay).

We say that two L-structures M and AN are elementarily equivalent if for all L-
sentences M = ¢ iff N = ¢.

Proposition 1.2 If M and N are isomorphic, then they are elementarily equivalent.

Proof
Show by induction on formulas that if ¢(z,...,z,) is a formula, 0 : M — N is an
isomorphism and aq,...,a, € M, then

M E ¢lay,...,a,) &N E od(o(ar),...,o(an)).

We say that an L-embedding f : M — N is elementary if for any a4, ...,a, € M and
any formula ¢(x1,...,z,)

M ):qﬁ(al,...,an)@N)Zﬂs(f(al),---vf(an))-

If M C N we say that M is an elementary substructure if the inclusion map is elementary.

Definition We say that a set X C M"™ is definable in the L-structure M if there is a
formula ¢(z1,...,Tn4m) and elements by, ..., b, € M such that

X ={(a1,...,an) : M E@(ar,...,an,b1,...,by)}.

We say that X is A-definable or definable over A where A C M, if we can choose that
bi,...,b, € A. For example if m = 0 we say X is (-definable.

For example {x : x > 7} is definable over R but not (- definable, while {z : z > /2}
is -definable by the formula  x x > 1+ 1Az > 0. In the field (Q,, +, —, %,0,1) if p # 2
we can define the valuation ring Z, by the formula Jy y? = pz? + 1.

We can give a very simple characterization of the definable sets.

Proposition 1.3 Suppose that D,, is a collection of subsets of M™ for all n > 1 such that
D = (D, : n > 1) is the smallest collection such that:

i) M™ € Dy,;

ii) for all n-ary functions f of M, the graph of f is in D, y1;

iii) for all n-ary relations R of M, R € Dy;

iv) for all 4,5 <n, {(z1,...,2,) € M" 1 x; = x;} € Dy;

v) each D, is closed under complement, union and intersection;

vi)if X € D™ and w : M™ — M™ is the projection map (z1,...,2n) = (Tiy, ..., Ti,, ),
then 7=1(X) € Dy;

vii) if X € D™ and 7 is as above, then 7(X) € D,,.

viii) if X € Dyyp, and b € M™, then {a € M™: (a,b) € X} € D,.
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Then X C M™" is definable if and only if X € D,,.

§2 Theories

An L-theory is a set of L-sentences. Theories arise naturally as we attempt to axiom-
atize the properties of mathematical structures. For example if £, is the language of rings
we can write down the field axioms as L, sentences. We can give the theory of algebraically
closed fields (ACF) by taking the field axioms plus for each n > 1, the axiom

VeoVey .. Ven_13y Y™ + Tpo1y™ L+ .. x1y + o = 0.

We say that an L-sentence ¢ is a logical consequence of an L-theory T (and write
T k= ¢) if and only if M = ¢ for all M |= T. For example ACF}= VaVy3z 22 + y? = 22.

Godel’s Completeness Theorem (version 1) 2.1 T = ¢ if and only if there is a formal
proof of ¢ using assumptions from 7.

This has a very useful reformulation with an important corollary. We say that an
L-theory T is satisfiable if and only if there is an L-structure M with M = T and we say
that T is consistent if and only if we can not formally derive a contradiction from 7.

Completeness Theorem (version 2) 2.2 T is satisfiable if and only if T is consis-
tent. Moreover if T" has infinite models then 7" has a model where the underlying set has
cardinality &, for all x > |[L] + Ro.

This has an easy consequence which is the cornerstone of model theory.

Compactness Theorem 2.3 If every finite subset of T is satisfiable, then T is satisfiable.

Proof If T is not satisfiable, then by 2.2 there is a proof of a contradiction from 7. As
proofs use only finitely many assumptions from 7" there is a finite inconsistent subset of T'.

An important question when we try to axiomatize the properties of a structure is have
we said everything we can say. An L-theory T is complete if for all L-sentences ¢ either
T = ¢ or T = —¢. Another way to say this is that a theory is complete if any two models
are elementarily equivalent.

The easiest way to get a complete theory is to take the complete theory of a structure.
If M is a structure, let Th(M) = {¢ : M E ¢}.

Godel’s incompleteness theorem says that Peano axioms are not complete (and there
is no reasonable way to complete them). It is easy to see that ACF is not complete as it
does not decide the characteristic. For p a prime number let 1), be the sentence

Ve z+...+x2=0.
—_———

p times
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Clearly neither 1), nor —1),, is a logical consequence of ACF. But this is the only obstruction.
Let ACF, be the theory obtained by adding ¢, to ACF and let ACF, be the theory

obtained by adding to ACF the sentences {1, : p a prime }. We show shortly that ACF,,
is complete.

If k is a cardinal, we say that a theory T is k-categorical if any two models of T where
the underlying set has cardinality x are isomorphic. Since algebraically closed fields are
determined up to isomorphism by their characteristic and transcendence degree it is easy
to see that ACF, is k-categorical for all K > N;.

Vaught’s Test 2.4 If all models of T are infinite and T is k-categorical for some infinite
cardinal k, then T is complete.

Proof Suppose not. Then T'U {¢} and T'U {—¢} are satisfiable. By 2.2 we can find x and
M and N of cardinality x such that M E T + ¢ and N |E T + —¢. But this is impossible
as M must be isomorphic to N.

Thus ACF,, is complete for p > 0. This can be thought of as a version of the Lefschetz
principle.

Corollary 2.5 Let ¢ be an L;-sentence. The following are equivalent.

i) ¢ is true in the complex numbers.

ii) ¢ is true in every algebraically closed field of characteristic zero.

iii) ¢ is true in some algebraically closed field of characteristic zero.

iv) There are arbitrarily large primes p such that ¢ is true in some algebraically closed
field of characteristic p.

v) There is an m such that for all p > m, ¢ is true in all algebraically closed fields of
characteristic p.

Proof

The equivalence of i)-iii) is just the completeness of ACFy and v)=- iv) is obvious.

For ii) = v) suppose ACFy = ¢. By the completeness theorem, there is a proof of ¢
from ACF,. That proof only uses finitely many assertions —1),, thus for large enough p,
ACF,, = ¢.

For iv=-ii) suppose ACF [~ ¢. By completeness ACFy = —¢. By the above argument,
ACF,, = ¢ for sufficiently large p, thus iv) fails.

This result has a striking application.

Theorem 2.6 (Ax) Let F' : C™ — C™ be an injective polynomial map, then F is surjective.

Proof Suppose not. Let X = (X1,...,X,,). Let F/(X) be a counterexample where F'(X) =
(F1(X),...,F,(X)) where each F; € C[X] has degree at most d. There is an L-sentence
®,, 4 such that for K a field, K = ®, 4 if and only if every injective polynomial map
G : K™ — K™ where each coordinate function has degree at most d is surjective. We can
quantify over polynomials of degree at most d by quantifying over the coefficients. For
example ®» > is the sentence:



Vag oVao,1Vap 2Vai Va1 1Vas Vb 0Vbo,1Vbo 2Vb1,0Vb1 1Vb2 o | (Vo1 Vy1 V2 VYo

(2 aivffcliy{ = 2 ai,jﬂzyg A zbi,jffliy{ = > b”a:éy%) = (r1 = 22 Ay1 = y2)) —
VuvoIady S a; iyt = u A by javyl = U] .
If K is a finite field then K | ®,, 4. It follows that ®,, 4 holds in any increasing union

of finite fields. In particular the algebraic closure of a finite field satisfies ®,, 4. Hence by
2.5, C = @, 4, a contradiction.

Originally logicians looked for completeness results because they lead to decidability
results.

Corollary 2.7 The theory ACF,, is decidable for p > 0. That is, for each p there is an
algorithm which for each sentence ¢ will determine if ACF,, = ¢.

Proof By the completeness of ACF,, and the completeness theorem either there is a proof
of ¢ or a proof of ~¢ from ACF,. We can systematically search all finite sequences of
symbols and test each one to see if it is a valid proof of either ¢ or —¢. Eventually we will
find one or the other.

63 Quantifier Elimination

Let F be a field. If p(Xy,...,X,) € F[Xy,...,X,], then {z € F™ : p(x) = 0} is
defined by a quantifier free £,-formula. We say that a subset of F™ is constructible if it is
a boolean combination of zero sets of polynomials in F[Xy,..., X,,]. It is easy to see that
the subsets of F'™ defined by quantifier free formulas are exactly the constructible subsets
of F™. If F' is an algebraically closed field then Chevalley’s theorem from algebraic geom-
etry asserts that the projection of a constructible subset of F"*! to F™ is constructible.
Restating this model theoreticaly, this says that every definable set is constructible.

This is of course not true for non-algebraically closed fields. In the reals we can define
the ordering by:

r<yeIzzEO0Az+22 =y,

but this is not a constructible subset of R2. Here this is the only problem. We say that
a subset of an ordered field is semialgebraic if it is a boolean combination of zero sets of
polynomials and polynomial inequalities (like {z : p(x) > 0}). It is easy to see that the
semialgebraic sets are exacty the sets defined by quantifier free Ly-formulas. The Tarski-
Seidenberg theorem says that in the reals (or more generally in a real closed fields) the
projection of a semialgebraic set is semialgebraic. Thus in the real field the definable sets
are exactly the semialgebraic sets.

In model theory we study the definable sets of a structure. Even when we can not
eliminate quantifiers this is a rich, interesting and fruitful pursuit. Quantifier elimination
results are very useful as often one can show the quantifier free definable sets have good
geometric properties while the definable sets have strong closure properties. For example
suppose A C R” is semialgebraic. We want to show that the closure of A is also semial-
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gebraic. Since A is definable there is an Lo-formula ¢(z1, ..., x,, a1, ..., ay) that defines
A. Then the formula

Ve > 03y ...y, (¢(y1,...,yn,a1,...,am)/\(xl—y1)2+...+(xn—yn)2 <€)

defines the closure of A. Since the closure of A is definable it is semialgebraic.

In the structure (Q, 4, X, 0, 1) we can also define the ordering as nonnegative elements
are sums of four squares. In fact things are much worse. Julia Robinson showed that the
integers are definable in the field of rational numbers. By Godel’s incompleteness theorem
this implies that the theory of the rational numbers is undecidable and the definable subsets
are quite complicated.

There is a useful model theoretic test for quantifier elimiantion.

Theorem 3.1 Let £ be a language containing at least one constant symbol. Let T" be an
L theory and let ¢(vq,...,v,) be an £ formula with free variables vy, ..., v, (we allow
the possibility that m = 0). The following are equivalent:

i) There is a quantifier free L-formula 1 (vy, ..., vy) such that T = Vo (¢(v) <> 1(v))

ii) If A and B are models of T, C C A and C C B, then A = ¢(a) if and only if B = ¢(a)
for all a € C.

Proof

[i) — ii)]: Suppose T |= Vv (¢p(v) <+ 9(v)), where 1 is quantifier free. Let a € C
where C is a substructure of A and B and the later two structures are models of T'. Since
quantifier free formulas are preserved under substructure and extension

AE dla) & A E (a)
< CE(a) (since C C A)
<~ BEy(a) (since C C B)
< B E ¢(a).

[ii) — 1)]. First, if T = Yo ¢(v), then T |= Yo (¢p(v) <> ¢ = ¢). Second, if T' |= Vo —¢(v),
then T |= Vo (¢(v) <> ¢ # ¢). In fact, if ¢ is not a sentence we could use “v; = v1” in place
of c=c.

Thus we may assume that both ¢(v) and —¢(v) are consistent with 7.

Let I'(v) = {¢(v) : ¢ is quantifier free and T |= Vv (¢p(v) — ¥ (v))}. Let dy,...,dn, be
new constant symbols. We will show that T + I'(d) = ¢(d). Thus by compactness there
are 91,...,¢, € I' such that T |= Vo (A (0) — ¢(0)). So T = Vo (Avi(v) < ¢())
and A ;(v) is quantifier free. We need only prove the following claim.
claim. T + I'(d) | ¢(d).

Suppose not. Let A |= T + I'(d) + =¢(d). Let C be the substructure of A generated
by d. [Note: if m = 0 we need the constant symbol to ensure C is non-empty.]

Let Diag(C) be the set of all atomic and negated atomic formulas with parameters
from C that are true in C.



Let & = T'+Diag(C)+¢(d). If ¥ is inconsistent, then there are quantifier free formulas
quantifier free formulas 1 (d), . ..,wn( 1) € Diag(C), such that T = Vo (A (0 — —¢()).
But then T |= Vo (¢(9) — \/ —4(?)). So \/ ~;(¥) € T and C = \/ =¢;(d), a contradiction.
Thus Y is consistent.

Let B = ¥. Since ¥ O Diag(C), we may assume that C C B. But by a), since
A E —¢(d), B = —¢(d), a contradiction.

The next lemma shows that to prove quantifier elimination for a theory we need only
prove quantifier elimination for formulas of a very simple form.

Lemma 3.2 Suppose that for every quantifier free L-formula (v, w), there is a quantifier
free 1(v) such that T = Vo (Jw 0(v,w) <> ¢(0)). Then every L-formula ¢(9) is provably
equivalent to a quantifier free £L-formula.

Proof. We prove this by induction on the complexity of ¢.
This is clear if ¢(v) is quantifier free.

For ¢ = 0,1 suppose that T = Vo (0;(v) <> 1;(0)) where 1); is quantifier free.

If p(v) = =0y (v), then T = VYo (¢(v) <> =1ho(v)).

If p(v) = 0p(v) A O1(v), then T |= Vv (¢(v) <> (Yo(v) A 1(v))).

In either case ¢ is provably equivalent to a quantifier free formula.

Suppose that T = Vo (0(v,w) <> 1o(v,w)), where 9 is quantifier free. Suppose ¢(v) =
Jw 6(v,w). Then T = Vv (¢(v) > Fw(y(v,w)). By our assumptions there is a quantifier
free 1(v) such that T = Vo (Jw ¥o(v, w) <> ¥ (v)). But then T |= Vo (¢(v) < ¢(v)).

Thus to show that T has quantifier elimination we need only verify that condition ii) of
theorem 3.1 holds for every formula ¢(v) of the form Jw6(v, w) where 6(v, w) is quantifier
free.

Theorem 3.3 The theory ACF has quantifier elimination.

Proof Let F' be a field and let K and L be algebraically closed extensions of F'. Suppose
¢(v,w) is a quantifier free formula, a € F, b € K and K = ¢(b,a). We must show that

L= ¢(v,a).
There are polynomials f; ;,9;; € F[X] such that ¢(v,a) is equivalent to

\_l/(/ib\ fij(w) =0A Z\gi,j(v) 4 0).

ThenK):/\ Ly fii(0) = 0A A, gi,j(D) for some .

Let I be the algebraic closure of F'. We can view F as a subfield of both K and L.
If any f; ; is not identically zero for j =1,...,m, then b € F' C L and we are done.

Otherwise since .
N\ 9i.5(b) #0
i=1



gi.;(X) = 0 has finitely many solutions. Let {c1,...,cs} be all of the elements o L where
some g; ; vanishes for j = 1, ..., m. Thus if we pick any element d of L withd ¢ {c,...,cs},
then L = ¢(d,a).

The next result summarizes some simple applications.

9



Corollary 3.4 Let K be an algebraically closed field.

i) If X C K is definable, then either X or K \ X is finite. (This property is called
strong minimality).

ii) Suppose f : K — K is definable. If K has characteristic zero, there is a rational
function g such that f(z) = g(z) for all but fintely many x. If K has characteristic p there
is a rational function g and n > 0 such that f(z) = g(z)'/?" for all but finitely many z.

Proof

i) X is a boolean combination of sets of the form {z : f(x) = 0} and these sets are
finite.

ii) Assume K has characteristic 0 (the p > 0 case is similar). Let L be an elementary
extension of K and let « € L\ K. If ¢ is any automorphism of L fixing K(a), then
o(f(a)) = f(a). But then f(a) € K(a). Thus there is a rational function g € K(X) such
that f(a) = g(a). The set {x € K : f(z) = g(z)} is either finite or cotfinite by i). If it has
size N, then the fact that it has exactly N elements is expressed by a sentence true of L
and K. Then L would not contain any new elements of this set. Thus f(z) = g(z) for all
but finitely many .

Indeed, (in characteristic zero) if f is definable there is a Zariski open O and a rational
function g such that f|O = ¢|O.

The quantifer elimination test has many other applications. For example consider
RCF, the theory of real closed ordered fields in the language L,,. The axioms for RCF
consist of:

i) the axioms for ordered fields;
i) Vo > 03y y? = x;
iii) the axiom Vzg...Vo,_13y y™ + 2,1y 1 + ...+ 29 = 0 for each odd n > 0.

Clearly RCF is part of the Ly-theory of the real field. We will see shortly that this
theory is complete and hence axiomatizes the complete theory of the real field. First we
show RCF has quantifier elimination. We use the algebraic facts that every ordered field
has a unique real closed algebraic extension and over a real closed field any polynomial
in one variable factors into a product of linear and irreducible quadratic factors (see for
example Lang’s Algebra).

Theorem 3.5 The theory RCF has quantifier elimination in L,;.

Proof. We apply theorem 3.1. Let Fy and F; be models of RCF and let (R, <) be
a common substructure. Then (R, <) is an ordered domain. Let L be the real closure
of the fraction field of R. By the uniqueness of real closures we can may assume that
(L, <) is a substructure of Fy and Fy. Suppose ¢(v,w) is quantifier free, a € R, b € Fj
and Fy = ¢(b,a). We need to show that Fy = Jv ¢(v,a). It suffices to show that
L =3Jv ¢(v,a).

As in the proof of theorem 3.3 (and fooling around with the order), we may assume
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that there are polynomials f1,..., fn,91,- .., 9m € R[X] such that ¢(v,a) is

n

/\ filv)=0A /\gi(v) > 0.

1=1

If any of the f; is not zero, then since ¢(b,a), b is algebraic over R and thus in L. So we
may assume ¢(v,a) is

/\ gi(v) > 0.

Since L is a real closed field, we can factor each g; as a product of factors of the form
(X —c) and (X2+bX +c) where b? —4c < 0. The linear factors change sign at ¢, while the
quadratic factors do not change signs. If follows that we can find a,...,q; € LU {—00}
and f1,...,0 € L U{+oo} such that for v € Fy, ¢(v,a) if and only if

l
\/ai <o < b
i=1

Since Fy = ¢(b,a), for some i, a; < b < ;. Then L = ¢(aT+B7 a).

Corollary 3.6 RCF is complete and decidable.

Proof Let ¢ be a sentence. By quantifier elimination there is a quantifier free sentence v
such that RCFl= ¢ <> 9. We can embed the rational numbers in any real closed field F
and F' = ¢ if and only if Q | 9. Thus F |= ¢ if and only if Q = ¢. In particular if Fy
and Fy are real closed fields then F; = ¢ if and only if Fy = ¢.

Hence RCF is complete. Decidability follows as in 2.7.
We also have an analog of 3.4.

Corollary 3.7 If R is real closed and X C R is definable, then X is a finite union of points
and intervals (this is called o-minimality).

Proof

Definable subsets of R are boolean combinations of {z : f(x) > 0} which are finite
unions of intervals.

§4 Model completeness

We say that a theory T is model complete if whenever M and N are models of T and
M C N, then M is an elementary substructure of V.
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Proposition 4.1 If T" has quantifier elimination, then 7" is model complete.

Proof Let M C N. Suppose ¢(v) is a formula and a € M™. There is a quantifier free
formula v (v) such that in models of T

¢(v) < P(0).
Since ¢ is quantifier free, M = ¢(a) & N = 9(a). Thus M = ¢(a) & N = ¢¥(a).

Model completeness can arise in cases where quantifier elimination fails. For example,
let T be the £,-theory of the real numbers (with out a symbol for the order). The formula
Jy y? = x is not equivalent to a quantifier free formula (recall that quantifier free definable
sets in Lo, are constructible), so T does not have quantifier elimination. On the other hand
the ordering of a real closed field is definable in the field language, thus if F' and K are
real closed fields and F'is a subfield of K, then the ordering on F' agrees with the ordering
inherited from K (ie. F is an Ly-substructure of K). Thus, by quantifier elimination in
Lo, F' is an elementary substructure of K.

This example shows that “quantifier elimination” is sensitive to the exact choice of
language. In general we can always enrich the language so that we have quantifier elim-
ination. If Ty is an L-theory, we can add to our language an n-ary relation symbol R4
for each formula ¢ with n free variables and we could let 7" be the theory where we add
to Tp axioms VZ (¢4(Z) <> R4(Z)) for each formula ¢. The theory T' will have quantifier
elimination, but this would be useless as we would not be able to say anything sensible
about the quantifier free formulas. The goal is to show we have quantifer elimination in a
language where the quantifier free formulas are simple.

Wilkie showed that the theory of (R, +, —, X, <, exp) is model complete, but
y>0AJw (wy =z Az=yexp(w))

is not equivalent to a quantifier free formula in the language {+, —, x, <,0,1,exp} (or any
expansion by total real analytic functions. Van den Dries, Macintyre and I showed that
you can eliminate quantifiers in a much more expressive language, but we do not know the
simplest language for quantifier elimination.

Model completeness itself has useful consequences. For example the model complete-
ness of ACF leads to an easy proof of a version of the Nullstellensatz.

Theorem 4.2 Let F be an algebraically closed field and let I C F[X}y,..., X,,] be a prime
ideal. Then there is a € F™ such that f(a) =0 for all f € I.

Proof
Let K be the algebraic closure of the fraction field of F[Xy,..., X,]|/I. If z; € K is
X;/I, then f(xq,...,z,) =0 for all f € I. Choose fi,..., fn, generating I. Then

KE3Jy,. .. n /\fi(yl,...,yn)zo.
i=1
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As this is a sentence with parameters from F', by model completeness this sentence is also
true in F. Thus there is a € F™ such that f;(a) =0 for i = 1,...,m and hence f(a) =0
for all f € I.

A very similar argument can be used to reprove Artin’s solution to Hilbert’s 17"
problem.

Theorem 4.3 Let F be a real closed field. Suppose f(X1,...,X,) € F(Xy,...,X,) and
f(a) > 0 for all a € F™ (we call f positive semi-definite). Then f is a sum of squares of
rational functions.

Proof If not then we can extend the order of F to F(Xy,...,X,,) such that f < 0 (see
Lang’s Algebra). Let K be the real closure of F(Xy,..., X, ) with this ordering. Then

KE3y...3unf(y1,---,yn) <0,

since we can use X1q,...,X,, as witnesses. By model completeness

FE . ynf(r,--,yn) <O0.

Definition We say that a theory 7' is the model companion of a universial theory T} if:
i) every model of T' is a model of T,
ii) every model of T can be extended to a model of T', and
iii) 7" is model complete.

For example the theory of algebraically closed fields is the model companion of the
theory of integral domains and the theory of real closed fields is the model companion
of the theory of ordered domains. More interesting examples will arise in Chatzidakis’
lecture.

Model theoretic methods can sometimes be used to obtain effective bounds. Com-
pactness arguments alone can lead to crude bounds.

Proposition 4.4 There is a computable function 7(n,d) such if F is a real closed field
and f = g/h € F(Xq,...,X,) where f and g are polynomials of degree at most d and f
is positive semidefinite then f is the sum of squares of at most 7(n,d) rational functions
with numerator and denominator of degree at most 7(n, d).

Proof Fix n,d. We claim that there is an M such that any positive semidefinite rational
function in n variables with numerator and denominator of degree at most d is a sum of at
most M squares of rational functions with numerator and denominator of degree at most
M. Computability is free.

Suppose not Let ¢1,...,cy be new constants which will be coefficients of a rational
function f in n-variables with numerator and denominator of degree at most d. Let &/
be a sentence asserting “f is not a sum of at most M squares of functions of degree at
most M”. Then RCF+ “f is positive semidefinite” + {—-®,; : M > 1} is satisfiable
contradicting Hilbert’s 17th problem.

13



85 Types

Suppose M is an L-structure and A C M. Let £ 4 be the language obtained by adding
to L constant symbols for all elements of A. Let Tha(M) be the set of all £4-sentences
true in M.

Definition An n-type over A is a set of L 4-formulas in free variables z1,...,z, that is
consistent with Th4(M). A complete n-type over A is a maximal n-type. In other words
a complete type is a set p of L4-formulas consistent with Th4(M) in the free variables
Z1,..., Ty such that for any £4-formula ¢(z) either ¢p(z) € p or =¢p(z) € p. Let S, (A4) be
the set of all complete n-types over A.

We sometimes refer to incomplete types as partial types.

By compactness every n-type over A is realized in some elementary extension of M.

There is one easy way to get complete types. Suppose N is an elementary extension
of M and b € N™. Let tp(b/A) = {$(Z) € La : N | ¢(b)}. It is easy to see that tp(b/A)
is a complete type.

If p € S,,(A) we say that b realizes p if tp(b/A) = p.

What do types tell us?

Proposition 5.1 Suppose a,b € M™ and tp(a/A) = tp(b/A). Then there is an elementary
extension A" of M and an L-automorphism of A which fixes A and maps a to b.

Proof We carefully iterate the following lemma.

Lemma 5.2 Suppose M is an L-structure, A C M and f : A — M is a partial elementary
map (ie. M E ¢(a1,...,a,) if M = ¢(f(ar),..., f(an)). If b € M, we can find N an
elementary extension of N and extend f to a partial elementary map from AU {b} into N.

Proof Let ¢ be a new constant symbol. Let

I'={é(c, fla1),..-, flan)) : M E ¢(b,ar,...,an),a1,...,an € A} U Thp (M).

Suppose we find a structure N and an element ¢ € N satisfying all of the formulas in
I'. Since N = Thp (M), N is an elementary extension of M. It is also easy to see that
we can extend f to an elementary map by b — c.

So it suffices to show that I' is satisfiable. By compactness it suffices to show that
every finite subset of I' is satisfiable. Taking conjunctions it is enough to show that
it M &= ¢(byaq,...,a,) then M = Jv ¢(v, f(a1),..., f(a,)). But this is clear since
M = Jvp(v,a,...,a,) and f is elementary.

The type space S,(A) can be topologized as follows. For each L s-formula
¢(x1,...,2n) let By = {p € Sp(A) : ¢ € p}. The Stone topology on Sy, (A) is the topology
generated by using the sets By as basic open sets.*

* Note: S,(A) can be thought of as the set of ultrafilters on the Boolean algebra of
A-definable subsets of M™ so it is in fact the Stone space of a Boolean algebra.
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Proposition 5.3 S,,(A) is compact and totally disconnected.

Proof Suppose {By, : i € I} is a cover of S,,(A) by basic open sets. Suppose there is no
finite subcover. Let I' = {=¢;(x1,...,2,) : i € I}. Since there in no finite subcover every
finite subset of I' is satisfiable. By compactness I' is satisfiable and this yields a type that
is not contained in any By, .

Since Sy, (A) \ By = B4, each By is clopen. Thus S, (A) is totally disconnected.

Suppose K is an algebraically closed field and F' is a subfield of K. What are
the complete n-types over F'? Suppose p € S,(F). Let I, = {f € F[Xy,...,X,] :
“f(z1,...,zn) = 07 € p}. Let Spec(F[Xy,...,X,]) be the set of prime ideals of
F[X4,...,X,]. We topologize this space by taking sub-basic open sets {P : f ¢ P},
for f € F[X].

Proposition 5.4 p +— I, is a continuous bijection between S, (F') and Spec(F[X]).

Proof If fg € I, then “f(2)g(z) = 0” € p. Since p is complete either “f(z) = 0" € p or
“9(z) =07 € p. Thus I, is prime. It is just as easy to see that it is an ideal.

If P is a prime ideal, then we can find a prime ideal P; € K[X] such that P; N F[X]
P. Let K4 be the algebraic closure of K[X]/P; and let a; = X;/P. For f € K[X] f(a) =
if and only if f € Py, thus I,a/F) = P. Thus the map is surjective.

0

By quantifier elimination if I,, # I, then p # q.

Continuity is clear.

This shows that the Zariski topology on Spec(F[X]) is compact.

We can identify (as objects) Sy, (F) and Spec(F[X]), but the Stone topology is much
finer that the Zariski topology. The Stone topology corresponds to the topology generated
by the constructible sets.

IfpeSy(F),let V={xeK": f(x) =0} for all f € I,,}. Then the type p asserts
that z € V and £ € W for any W C V defined over F. Thus realizations of p are points
of V' generic over F.

What about real closed fields? If F' is an ordered subfield of a real closed field and p
is an n-type, let I, be as above and let C,, = {f/I,: f € F[X] and “f(z) > 0 € p}. Then
p — (Ip,Cp) is a bijection onto the set of pairs of real prime ideals P (prime ideals where
—1 # Y a;b? where a; > 0, a; € F[X], b; € P) and orderings of F[X]/P. This is the real
spectrum of F[X].

In particular if R is a real closed field, then elements of S;(R) correspond to either
elements of R or cuts in the ordering of R.
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§6 Saturation

It is often useful to work in a very rich model of a theory. For example it is sometimes
easier to prove things in an algebraically closed field of infinite transcendence degree. Or
when dealing with the reals it is useful to use nonstandard methods by assuming there are
infinite elements. In model theory we make this precise in the following way.

Definition Let s be an infinite cardinal. We say that a structure M is k-saturated if for
every A C M with |A| < k if p € S1(A), then there is b in M such that b realizes p. An
easy induction shows that in this case every n-type over A is also realized in M.

We say that M is saturated if it is |M|-saturated.

Lemma 6.2 If M is saturated, A C M and |A| < [M|, then tp(a/A) = tp(b/A) if and
only if there is an automorphism of M fixing A mapping a to b.

Proof The argument from 5.1 can be done completely inside M.

Proposition 6.3 An algebraically closed field K is saturated if and only if it has infinite
transcendence degree.

Proof

Suppose A C K is finite and F' is the field generated by A. Let p be the 1-type over A
which says that z is transcendental over F'. If K is Nyp-saturated, then p must be realized
in K. Thus every RNg-saturated algebraically closed field has infinite transcendence degree.

On the other hand suppose K has infinite transcendence degree and F' C K is a field
generated by fewer that |K| elements. Let p € S;(F) and let I, be as in 5.4. If I,, = {0},
then p simply says “z is transcendental over F"”, and we can find a realization in K. If I,
is generated by f(X), then any zero of f realizes p and we can find a realization in K.

Unfortunately saturated models are not so easy to come by in general. In general
|S,,(A)| can be as large as 2/4IFI£1+%0  For example 1-types over Q in the theory of real
closed fields, correspond to cuts in the rationals so |S;(Q)| = 2%°. Thus set theoretic prob-
lems arise. Under assumptions like the generalized continuum hypothesis or the existence
of inaccessible cardinals we can find saturated models, but it is also possible that there are
no saturated real closed fields.

Suppose |L£| < Xy and A is an infinite cardinal. We say that an L-theory T is A-stable
if and only for all M =T and all A C M, if |A| = A, then |S,(A)| = \. It is easy to see
that algebraically closed fields are A-stable for all infinite .

Proposition 6.4 If T is A-stable, then T has a saturated model of size \T.

Proof We build a saturated model of size AT as a union of an elementary chain of models
(Mg i a < AT) where each M, has size A. Let Mg be any model of size A\. For « a limit
let M, be the union of the Mg, for 5 < a.

Given M,. Let (pg : f < A) list all 1-types over M,. Build a chain of elementary
extensions (Ng, f < A) where Ny = M, and where N contains a realization of pg. Let
M1 be the union of the Nj.
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Let M = U Myg. Then |[M| = AT, If AC M and |A| = A, then A C M, for some

a<\t
a. Thus any 1-type over A is already realized in My41.

§7 Interpretability and Imaginaries.

It is often very useful to study the structures which can be defined inside a give
structure. For example, let K be a field and let G be the group GLo(K). Let X =
{(a,b,c,d) € K*:ad — bc #0}. Let f: X? — X by

f((a1,b1,c1,d1), (az,ba, ca,d2)) = (a1a2 + bica, ar1by + bica, craz + dica, c1by + dids).

Clearly X and f are definable and the set X with the operation f is isomorphic to GLy(K).

We say that an Ly-structure A is definable in an L-structure M if and only if we can
find a definable (in £) subset X of M™ for some n and we can interpret the symbols of £,
as definable subsets and functions on X so that the resulting Ly-structure is isomorphic

to NV.
The above example shows that GL, (K) is definable in K. It is also easy to see that
any linear algebraic group is definable in K.

We give a more interesting example. Let F' be a field and let G be the group of
matricies of the form
a b
(6 1)

where a,b € K,a # 0. We will show that F' is definable in the group G. Let

1 1 T 0
a-(o 1) andﬁ-(o 1)
where 7 # 0, 1. Let
Az{gEG:gazag}z{(é a{):azEF}

and

Bz{gergﬁzﬁg}={<g

0):;”&0}.

—_

Clearly A and B are definable.
B acts on A by conjugation

GG OG-
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Clearly the action (a,b) — b~ 'ab is definable. We can define the map i : A\ {1} — B by

i(a) = b iff b= tab = 1, ie.
(1 =\ _ (x O
“\o 1) \o 1)

a*b:{aw4m ifb+#1
1 ifb=1"

Define an operation * on A by

It is now easy to see that (F,+, x,0,1) is isomorphic to (A,-, *,1,«). Thus the field is
definable in G.

This will not be true for all algebraic groups. For example if E is an elliptic curve
and @ is the addition law on E then we can not interpret a field in the group (E, @).

Often we want to do more general constructions. For example, suppose we have a
definable group G' and a definable normal subgroup H. We might want to look at the
group G/H. 1t is possible that G/H does not correspond to a definable group in our
structure. But it does correspond to the cosets of a definable equivalence relation.

We say that an Lg-structure N is interpretable in an L-structure M if there is a
definable set X, a definable equivalence relation £ on X, and for each symbol of £ we
can find definable FE-invariant sets on X, such that X/FE with the induced structure is
isomorphic to N.

As an example let us show that we can interpret the additive group of integers in
the field Q,. First note that we can define Z, = {z € Q, : Jy y> = paz? + 1} (at least
for p #2). Let U ={x € Z, : Jy € Z, : xy = 1} be the units of Z,. Then (Z,+) is
isomorphic to the multiplicative group Q,,/U. We can define the ordering on Q;/U by
z/U 2 y/U & €Ly

Quotient constructions are so useful that we often enrich our structure so that we can
deal with all quotients as elements of the structure. Let M be an L-structure. If F is a
()-definable equivalene relation on M™, let Sg = M™/FE and let 7g : M™ — M™/E be the
quotient map. Let M®? be the structure whose underlying set is the disjoint union of M
and all of the Sg for E a ()-definable equivalence relation. In addition to the relations and
functions of £, we add function symbols for each map ng. We call the new elements of
Me®9 imaginary elements.

If a structure N is interpretable in M, then N is definable in M®2. On other hand,
not much has changed, if X C M™ is definable in M®? then X is already definable in M.

An important property of many of the theories of fields that we will consider is that
the passage from K to K°! is unnecessary.

Van den Dries showed that in real closed fields any definable equivalence relation has
a definable set of representatives. Nothing this strong could be true in algebraically closed
fields as a set of represntatives for the equivalence relation zEy < 2? = y? would be
infinite and coinfinite.
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We say that M has elimination of imaginaries if whenever F is a definable equivalence
relation on M™, there is a definable function f : M"™ — M™ for some m, such that zFEy

iff f(z) = f(y).

Theorem 7.1 (Poizat) Algebraically closed fields have elimination of imaginaries.

In other words if X is a constructible set and F is a constructible equivalence relation
on X, then X/E can be viewed as a constructible set.

The proof of 7.1 proceeds by first showing that a theory has elimination of imaginaries
if and only if for any saturated model M and any X C M™ definable there is a € M™
for some m such that for all automorphisms o of M, o fixes X setwise if and only if
o(a) = a. We call @ canonical parameter for X. If X is defined by ¢(z,b), we could define
an equivalence relation by Eby iff ¢(Z,b1) <+ ¢(Z,bs). Then b/E is a canonical parameter
for X. In general canonical parameters will only be found in M®9.

Suppose K is an algebraically closed field and X is an irreducible variety. There is a
smallest subfield £ C K such that X is fixed by an automorphism iff £ is fixed pointwise
(k is called the field of definition of X). k must be finitely generated and if @ generates £k,
then @ is a canonical parameter. From this observation and quantifier elimination one can
derive elimination of imaginaries.

The field of p-adics is a natural example where elimination of imaginaries fails. We
saw above that we can interpret the integers in Q,. Analysis using quantifier elimination
for the p-adics, shows that any definable set is either finite or uncountable, so the integers
can not be isomorphic to a definable set.

Here is another instructive example where elimination of imaginaries fails. Let K be
an algebraically closed field of characteristic zero. Let C' be curve of genus at least one
and let C be the structure with underlying set C' and relation symbols for all constructible
subsets of C™. Since there is a rational map 7 : C' — K, we can intepret the field on C
using the equivalence relation xEy iff 7(z) = n(y). If C/E was definably isomorphic to a
definable set X C C", this would give rise to a definable map f : K — C. But (by 3.4)
there is a rational map g : K — C' which agrees with f on all but a finite set. By genus
considerations g is constant.

It is often very important to understand the groups and fields interpretable in a
structure. For algebraically closed fields we get a very satisfying answer. It is easy to see
that if K is an algebraically closed field any algebraic group defined over K is interpretable
in K and hence, by elimination of imaginaries, isomorphic to a definable group. The
following theorem is related to Weil’s theorems on group chunks.

Theorem 7.2 i) (van den Dries/Hrushovski) If a group G is definable in an algebraically
closed field K, then G is definably isomorphic to the K-rational points of an algebraic
group defined over K.

ii) (Poizat) If F is an infinite field definable in an algebraically closed field, then F' is
definably isomorphic to K.
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Appendix A: Formulas
Throughout the notes I have been discussing formulas. Here I will give a precise
definition. Let £ be a language.

Definition The set of L-terms is the smallest set 7 such that:

i) all constant symbols of £ are in T,

ii) all variables are in 7, and

iii) if ¢1,...,t, arein 7 and fis an n-ary function symbol of £, then f(tl, coytn) €T
The set of atomic L-formulas is the smallest set A such that:

i) if t; and t5 are terms, then ¢y = t5 is in A, and

ii) if ¢1,...,t,, are terms and R is an n-ary function symbol, then ﬁ(tl, ooy tpy) s in
A.
The set of L-formulas is the smallest set F such that

i) every atomic L-formula is in F,

ii) if ¢ € F, then = € F

iii) if ¢ and ¢ are in F, then (¢ V ¢) and (¢ A1) are in F,

iv) if ¢ is in F and x; is a variable, then 3z;¢ and Va;¢ are in F.

For example x1+ (22 X (x141)) is an Lo-term, x1 X (x9+2x3) = x1+1 and 21 < z3+2x7
are atomic Lo-formulas, and 3z (1 X (2 + 23) = 1 + 1 Azg < x1) is an Ly-formula.
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