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CLASSIFYING PAIRS OF REAL-CLOSED FIELDS

by

Angus John Macintyre

Introduction.

The classical work of Steinitz gives a satisfactory classification
of the isomorphism-types bf algebraically closed fields. 1t appears
desirable to have a similar classification for real-closed fields, but
at present we have no such classification. However, Tarskil has given
a metamathematlcal cla551f1cat10n of real-closed flelds, in his thecoren
that any, two real-closed fields are elementarily equivalent with respect
to the usual fqrmal system for ordered fields. Tarski proved a corre-
sponding result for algebréically closed fields, nanmely, that any.two
algebraically closed fields of the same characteristic are elemenfé?ily
equivalent with respect tq the usual formal.system for fields.

A pair (K,L). éf fields is a pair (X,L) where K and L are
fields and L 1is a subfield of K. An isomorphism ¢ of (Kl,Ll)
onto V(KE,LE) is an isomorphism ¢ of K, onto K, -such that
¢[Ll] = L2. Using thg Steinitz theory, one'can read;ly obtain a satis-
factory classification of the isomorphism-types of pairs of algebraically '
closed fields. On the .other hand, it is clearly futile to attempt to
" elassify isomérphism—t&pes of single real-closed fields, without.ha#iné
a classification of ispmorphism—types of single real-closed fields.

There is a natural formel system for the theory of pairs of fields,

obtained by adjoining a unary predicate-symbol to the formal systém for




the elementary theory of fields. Similarly, there ig a natural formal
gystem for the theory of pPairs of ordered fields. Thus we are led to
the following questiong (i) and (ii),

(1) What are the elementary types of pairs of algebraically

closed fields?

Theorem. Suppose K l’ KE’ are algebraically closed fields of.
the  same chara"terlstlc, such that Ll c K and I, lE K2.

(a) If K 1 and Ky, = L, then (Kl,L ) = (K 'Ly ).

(b) Ifm K, £ L. and K’ # L., then (K 101y ) = (KE,L ).

Dana Scott Suggested to the author the second question, and ip
this work we report on the resulting investigations. It wili emerge
that thefe are 2R0 elementary types orf pairs of real-closed fields,
of which only four are known to be axlometlzable. Two of the latue;”

types had prev1ously been identifieq, by the follow1ng theorenm,

Theoren, Suppose ( 150y ) and (Ké’LE) are pairs of real-closed
fields, ' |
) = and K, e Ly, then (Kl’Ll) = (KE,Le).

(b) 1r K, £ L, and Xy % Ly, and L, 1is dense in K., and
L, 1is dense in K5, then (Ki, l) = (K2,L2).

(a) If x

(8) is simply & reformulation of Tarski's Theoren, (b) is a
result of A. Roblnson proved in order to solve a problem of Tarski
_toncerning the decidability of the pair (R, 8), where R is the

Teals and @ ig the field of real algebraic numbers. Robinson's proct




of (b) is by the method of model-completeness. In this work we prove
(b) by the method of ultrapowers. ‘P.J. Cohen has an unpublished proof
of (b) which uses the method of quantifier elimination. |

We found two new axiomatiiable types which are intimately related
to (a) and (b) of the above theorem. We partition the class 7 of
all pairs (K,L) into the class 7000, consisting of pairs (X,L)
where L is cofinal in K, and the class 'ynl, consisting of pairs
(K,L) where L is not cofinal in K. It is simple to show that "hﬁl
is non-empty. | _

Suppose (K,L) € 711. We define VL, the ring of L-bounded elements
of K, as the set of all x in K ﬁhich are bounded above in absolute
value by an element of L. VL is'a valuation-ring in K. We define
IL as the ideal of non-units of VL. We call the elements of IL the
L-infinitesimals. V/I' is a real-cldsed field, ®  ssy. Then L
is canonically embedded in GEL, and I is cofinal in G{L. Thus

(G&RL) is in 7090. Qur principal positive result is the following.

Theorem., If (Kl,Ll) and (K2,L2) are in 7N, and

(aLl,Ll) = (&, »Lp), then (KoL) = (Kp,Lp)e

We obtain this theorem as a consequence of a very‘important
isomorphism theorem of Ax and KXochen. We also have a related reéult
concerning elementary extension rather than elementary eguivalence.

We use the method of ultrapowers, and are iﬁevitably led to consider
pairs {X,L) where K and L are 14 of cardinality Rl. For such
pairs we prove some isomorphism theorems which generalize the 1955

result of Erdds, Gillman and Henriksen, nemely, that all hl real-closed

flelds of cardinelity Rl are isomorphic.

] 3




From the principal theorem above we find two new axiomatizable
types. The first of those is the type of pairs (K,L) where I, is
not cofinal in .K, end L =(RL. The second is the type of pairs
(K,L) where L is not cofinal in K, and L is a dense, proper
subfield of .. Let X be any proper extension of R, Then (K,R)
belongs to tﬁe first of the new types, and (K{Q) belongs to the second.
Our results in ﬁhis area may be of interest, becagse they can be con-
strued as completeness and decidability results for certain algebras
of infinitesimals,

By our Principal theorem, and some elementary results about fields
of power-series fields, we can reduce the study of palrs (K,L) to the
study of pairs (K,L) where I, is cofinal in K. Scott pointed oﬁt
to us the existence of pairs (K,L) such that L ‘is eofinai in X
but not dense in K. Our investigations reveal that there are ERO
elementary types of such pairs. .

When I is not dense in K, we study the ”gaps" in X, ‘i.e.,
the intervals of K that do not intersect L. In studying the "gaps",
vwe study the way in which an element of K may be approximated by
elements of T, We are led to consider the notion of the closure of L
in K. 1In Section 11, farious notionsrof clesure are &iscussed, and it
is shown that, for the most naturai noﬁion, the closure of I, in K
is a real-closed field. A notion of weak density is introduced, ang
the notion ig shown to be weaker than that of density.  Weak density
is defined in an elementary way, but we show that I ig weakly dense
in K if end only if L and K have the same group of archimedean

classes.. When L ig weakly dense in K, the "gaps" in x have a

fairly simple structure, However, we show that there are at least

"




R elementary types of pairs (k,L) subject to the condition that L

ijs weakly dense in K.

1t is easily seen that if Vi K-EEEEi& G is a vealuation, where X
ys real-closed, then G is & divisible ordgred abelian group, ©OT
D-group. A converse result is that if ¥ 1is real-closed and G is a
p-group, then K((tG)), the field of formal pOwer series with coeffi-
cient in X and exponents in G, is a real-closed field. We make
extensive use of the formal power-series construction, and to get the
examples in the final section we had to extend some of the classical

results.

Our principal negative result is the following.

Theorem. We can interpret ﬁithin the theory'of pairs of real-closed
fields the theory of pairs (G,H) of D-groups, subject to the condition
that G~ H ié‘coinitial in G. Within the latter theory we can
interpret the theory of-an arbitrary linear order. '
Since there are ERO elementary types of linear order, it follaws
that there are ERO elementary types of pairs bf D-groups, and ER

elementary types of pairs éf real-closed fields..

We conclude by 1isting some open problems.

Remark on notation. We have tried to be as informal as possible in our

presentation. Sometimes we use the same name for different things, and,

indeed, sometimes within the one context. Tor example, "o" may denote,

within one context, the zero of several groups OF fields. Similar
remarks apply to "1, vt gnd "<". If we nave to distinguisa the
order relation of a system 5 W€ write “<Sﬂ. Then ">S“ denotes

the converse relation, and "SS v  4{he union of <S and the identity




relation. We do not always distinguish a field from its domain

from its underlying additive group.

H

or

We have assumed in Our presentation that the Drospective regder

will know, from algebra, the material from a textbook such as Jacobson's

Volume III, and, from logic, the basic ideas of model theory, including

the wWltrapower construction. In Section 1 we list, without procf

classical facts about real-cloged fieldé.

» some




CHAPTER I.

ALGEBRAIC PRELIMINARIES

Section 1. Classical Results on Real-Closed Fields.

pefinition l.1. A field F is formally real if -1 is not a sum of

squares in F.

pefinition 1.2. F 1is real-closed if F is formally real and no proper

Theorem 1l.4. Every formally real field K can be embedded in a real-

algebraic extension of F is formally reail.

Theorem 1.3. If F is an ordered field, the following are equivalent:
a) F 1is real closed; |
b) F(i) dis algebraically closed;
¢) every positive element of F has a square root in F, and

every polyncmial of odd degree OVer F has a root in F.

closed field F which is algebraic over K. Iﬁ-—?i;—?;——are—real-
closed algebreic extensiors—of —K;  thEl I, 1§ Tsomor pirie—be—F5—b¥

Te
) 7 ] - } .E. iE 7

Defipnition 1. 5 E is & real closure of K if F is a real-closed

algebraic extension of K.

Theorem 1.6.
a) Any re&l—closed field can be ordered in a unique way.
b) An isomorphlsm between real-closed fields preserves order.

c) A field can be ordered if and only if it is formally real.




Remark. When Fis Fo, tl, t,, ® are as above, we say that t.

Thecrem 1.7. If F 1s a real-closed field and K is a subfield of F,

nen K 1is real closed if and only if K is relatively algebraically

closed in F,

Theorem 1.8. If Kl, K2 are ordered fields with real closures Fl’

respectively, then any order isomorphism of XK. onto K2 has a

P 1

unique extehsion to an isomorphism of Fl onto Fy.

Definition 1.9. ILet K be an ordered field, and X(x) a pure tran-

scendental ordered extension of K. Then we define ( (K,x) as

{tlt €K A t<K(X)x]

Theorem 1.10. Let F be real closed, and let A be a subset of F

such that for all x, y if x e A and y < x then vy € A, Let F(t)
be & pure transcendental extension of F. Then we may extend the order

°on F to an order on F(t) such that € (F,t) = A.

Theorem 1.11. Let Fl F2 be real closed, and let 9 be an 1somorphlsm

of F, onto F,. TLet F (t ), *2(t2) be pure transcendental ordered

1 2

extensions of Fl,'F respectively. Then ¢ - extends to an order

2

isomorphism of Fl(ﬁi) onto F2(té), mapping ti to t if and only

03
ir

ol E(F 1)1 = E(F,y,t,)
When @ extends as required above, it exfends uniquely.

11 t2 make

_ ?-éorresponding cuts in F,, F, if and only if @[C?(Fl,ti)] = Cf(Fe,te)-



section 2. . Pairs
-——-'__—'-_ . it ——

pefinition 2.1, A pair of ordered groups is a pair (G,H) where G B

is an ordered group and H 1s a subgroup of G with the induced order. i

pefinition 2.2. A pair of ordered fields is a pair (X,L) where K

ig an ordered field and L is a subfield of K with the induced order.

pefinition 2.3, Let (Gl,Hl), (G2,G2) be pairs of ordered groups.

let @ be an order isomorphism of Gy onto Gy Then ¢ 1is an

order isomorphism of (Gl’Hl) onto (GE’HE) if and only if ¢[H11 = H,-

when this holds we write
~P
(Gl,Hl) = (GE’HE) .

Definition 2.4. Let (Kl,Ll), (KE,LD) be pairs of ordered fields.

Let @ bve an order isomorphism of Kl onto K2. Then ¢ 1is an order

iscmorphism of  (K;,L;) onto (K,,Ly) if and only if o{L,] = LE;

-

When this holds we write

oty 20 (kL)




Section 3. . .Density and Cofinality

For the definitions below, J is an ordered group or an ordered

ring, with zero 0, addition +, subtraction - , and order < .,

Definition 3.1,

a) If xe 2?,'le is x if x>0, and |x| is -x if x<o.
b) A is symmetric iﬁ' ag if and only if o € A and
(Vx)(xeA—»-xeA).
c) A is convex in J if and only if
(Vx)(Vy)(Vz)[(x<z<y AXEA A Yyed)-zeal
d) A is dense in ng if and only if
(VYY) x <y > (Ft)tean x<t<y)] .
e) (Assume & symmetric.) A is.cofinal in AS if and oniy ir
Vx)@y)Ixl < [y] A yea]

(V)ENx Ao (0< fyl < xl A yea). S

Lemma 3.2, If (K,L) is a pair of ordered fields, then I, -is cofinal

In K if and only if L is coinitial in K.

Proof. The result 1s trivial, using the fact that, for non-zero X, ¥

in an ordered field K, " xl < ly] if and only if [y".l[ < ]x-l[.

Remark., The resulg makes essential use of the field axioms, and is

not true in general for ordered groups or ordered rings.

Lenma 3.3. If I, is an ordered field and K is g real-closure of L

then 1 1s cofinal in K.

10

e, .

£} (Assume A symmetric.) A is coinitial in S i and only if
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F’M——

spoof. Let L be an ordered field and K a real closure of L.
:__-_. : .

¥ is algebralc cver L. Suppose a € K. If a €L, or o <L,
then clearly there is a B in L with |a| < ]BI Now suppose

ad L, and "Jal > 1. There is an integer n, and C;, ... » Cp

in L such that o +Co”™ + e. +C = 0. Then
1+ Cla'l et + Cna-n = 0. Then‘
1= Iéla' 4 eee + Cna'nl
= a7t A |_C;L + oaee cna'm'l_l-
< ot .

c(leg b+ depl + e + ey

men lal < logl+ lopl + «or + e l, ama oyl dopl + ee + dopl e T

Thus in all cases we have shéwn that there is a P in L with

lal < ||, and this proves the lemma.

Lemma 3.4, is an ordered

There exists a pair (K,L) such that L

field, K is a real closure of L, and L is not dense in K.

Proof. Iet R be the ordered field of real numbers, and let L be

R (t)., a pure tran.scendenjbal ordered extension of R, ordered so
that (S (R,t) = R. Let K be a real closure of L. Let /& be the
positive square roof of % iﬁ K. Then Y& >r for all r in IR,
By Theorem 1l.1ll, the identity map on R ‘extends uniquely to an orfier'
isomorphism @:R{7E) = R(t) such that | o( 7t) = t. Sulﬁpose there is
an £ in R(t) such that V% < £ < 2/&. Then o(#) < o(f) < 2£p(1/€).
Then t < @(f) < 2t. We observe that @(f) ¢ ]R_(tz), and it is easy
to check that there is no g in m(te) with t < g < 2t. It fc;llcws

that there is no f in R(t) such that V&< £ < 2V,

11l




Thus L 1is not dense in K, and the lemma is proved.

lemma 3.5. If (le, 32) is a pair of ordlered groups, or a pair of
ordered rings, and 232 is dense in Jl then 32 is both cofinal
and coinitial in .egl.

Proof. Trivial.

Definition 3.6. If (,81, 232) is a pair of ordered groups or a pair

of ordered rings, then gBl ~ 32 = [xlx € ;31 A X,ﬁ‘-’ 532}-

Lemma 3.7, If (él, 32) is a pair of -ordered groups, or a pair of
ordered rings, and gSl ~ (32 is not dense in 31, then e81 ~ CBE
is not coinitial in gl. | |

Proofs. Let (‘31, Je) be a pair such that Jl ~ 92 is not dense
in ;31. Then there exist x, y with x < ¥, and such that all t
witﬁ X<t<y are in Q32. Ir .91 ~ 52 is coinitial in ;,81,

there is & t, in Jlfvé’a with 0<%, <y -x, anda b, “with

2
0<t2<tl.'Then- x<x+t2<x+ltl<.Y,, 80 that X +t, and
x+tl are in 532, and there is no u with x+t2<u<x‘+ tl
and u ¢ 31"' 92.7 Then tl-tz is in JQ” and there is no v_

in 931-'" Q82 with 0 <v < tl - t2, so that le ~ 32 is not
coinitiel in Jl. This contradiction shows that Jl ~ 032 is not

coinitial in J 1+ @nd the lemma is proved.

lemms 3.8, z1r (K?L) is a pair of ordered fields, then either K = L
°f K ~1L is dense in K.
Proof. Suppose (K,L) is a pair of ordered fields. Suppose K ~ L

is not dense in k. Then, by Lemma 3.7, K ~ L is not coinitial in K.

12




~rus th

X €

Tnen

~erefore

-
s

ere exists an a with a 4 0 such that if |x] < ]a| then

1n particular a/2 ¢ L. Let x Dbe an arbitrary element of K.

la/2 . (l+

le)'llg la/2| < a. Therefore af2 - (l+lx|)'l € L.

-1
(1+|x]) "€ L. Therefore X € L. Therefore X = L. This

sroves the lemma.

13



- ‘Mﬂm -
‘ Section 4. | Convexity

Definition %.1. ILet X, Y be ordered sets, and f: X 5 Y a map.

£ 1is weakly order-preserving if and only if

4 xl)(V xa)(xl i Xp - f(xl) <y f(xe)).

' The notion of convexity is important for the following reason.
let (3,M) be a pair consisting either of an ordered group 3 and
a subgroup M, or an ordered ring Q3 and an ideal M in -e? + Then
the quotient system eg/M can be ordered in such a way that the
canonical map from o onto QQ/M is weakly order-preserving', if and

only if M is convex in 3. The relevant order on o /M is given

"by the condition: x +M>q8/M Oa=>x ¢ M Arx>§ 0.

Lemma 4.2, Let o pe an ordered group or ring, and let M, M, be

convex, symmetric subsets of 48 Then M &M or M2 c M

Proof. Let 98 M, M2 be as in the statement of the lemma. rsﬁlilrl_-p.pose

xeMl,x)éMa,yeMe,y,éMl. Bysymmetry;'lxleM [x!ﬁME,

Iyl e'Ma, Iy 4 M;. Thus x| £ lyl. Suppose without loss of gener-

ality that [x| < lyl. But 0 e M, and ly] €My, and 0< [x]< !y]

80 by convexity Ix] € M2, . contradicting our assumption. It follows

that Mi SME or M2 EMJ.' |
.Thus the set of convex, symmetric subsets of an ordered group or

ring is linearly ordered by inclusion, 1In particular, the set of

convex subgroups of a given ordered group or ring is linearly ordered

" by inclusion, with smallest element {0].

14
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pefinition 4.3, Let 3 be an ordered group or ring, and I a
DeliniblDn —°2

collection of convex subgroups of eg . Then

X Eqo¥ =g.¢, (Ve eX)(xe Gy« G)

x <<go¥ =yer. (Ve e)(xeGye Gg) .

(a) (Vv x)(Vy)(x E&C v «—> (x <<ch AY <<:ch)).
(b) =ge is an equivalence relation.
(e} (Vx)(Yy)(x K ¥ ¥ y<<scx).
(a) Let I (x) be the equivalence class of X with respect
to =g6, and let & = (3¢ (x) |x S1. Then & is (linearly)

ordered by the condition:
3C(x) SH(Y) =gep, X g ¥

(e) ge(mx) =3¢ (x), if neZ - (0. | .
(£) g (xry) > min (3¢ (x), H (), for all X, ¥
(g) ¥ (0) Z’J{:(x) for all x, and if {o) € 3¢ then &C(x) &'C(o)
if end only if x = O.
() (V) (V) (k] < Iyl =3 @) <% ).
Proof. (a) and (b) are trivial.
(c) suppose |x| < lyl. Thén-if Gé&é, and yeG, xeG by
convexity of G, Thus Yy << ch; Since [xls [y|, or
vyl < x|, (c) follows.

(d) In view of (a}, (b), (c) we need oniy show

(d‘) (V xl’xa’yl’YQ)[(xl EJ‘C x2 A yl E‘,}c Y2 A xl <<$c' Yl)

15



(e)

(£)

(g)
(h)

So, suppose xl '=‘ch2 and yl =5e¥s and xl << AR
Suppose G € JC, and s £ G. Then yl;é G. Then x, ¢ G.

Then x, ¢ G. Thus, if G e 3 and x, € G. Thus

2
Xy K30 ¥,. This proves (d).
Clearly for all x, and for n in 2, JC(x) < 3¢ (nx).

+ |x| for nez- (0], and

Conversely, ]xf < [n
]n] . ]x] = lnx]. Therefore, if G € 3 and nx ¢ G,

where n e Z - {0}, then x € G. Thus ¥ (nx) <3 (x) if
nez-{0).

Suppose without loss of generality that IC(x) < JC(y).

Sﬁppose Ged, and x e G. Then y.« G, so0 that x + y ¢ G.
Thus x <-<3C X + ¥. Therefore, |

3 (x5y) 2 9 (x) = min (3 (x), 5 (v)).

Trivial. |

See the proof of (c).

16




section 5. Valuations
-—-__—_- A ——————————————

We assume familiarity with the concept of a valuation on an
arbitrary field. In this section we develop the concept of a convex

valuation, both for ordered groups and crdered fields.

pefinition 5.1. Let .3 be an ordered group or an ordered ring.

Then QB* is oB— {0}.

pefinition 5.2. Let £ be an ordered group, and /\ an ordered

set (A, <,). A function v from S* onto N is a convex group-
valuation of -ES onto A if and only if

(8) (W %)(V ) (veay) 2 min(v(x),¥(y))), and

(@) (YRl 2 2w < v)

Lemea 5.3. Let v be a convex group-valuation of & onto /\ . Then
, *
(1) v(-x) = v(x) for all x in 3 , -
(11) v(x+y) = min(v(x),v(y)) if v(x) £ v(y), for all x,' y in
3*
and
L) - * -
(1ii) v(nx) = v(x) for all x in eg and n in Z - {0]}.
Proof. -

(1) By (b) of I5.2, i x| = ly| then w(x) ;v(y). Therefore

v(-x) = v(x).
(ii) Suppose +v(x) £v(y), and without loss of generality

v(x)_) v(y). - Then

¥(y) = v(xty-x) > min(v(xsy) , v(-x))

min(v(x+y) ’ v(x)) .

17
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since v(x) > v(y) it follows that v(y) > v{x+y). On the
other hand, v{x+y) > min{v(x),v(y)) = v(y). Therefore,
v(x#y) = v(¥) = min{v(x),v(¥))-

(iii.) Suppose n € Z, and n > O. By induetion, using 5.2(a),
we get v(nx) > v(x). Conversely, [nx| > Ix|, so, by (b),
v(nx) < v(x). Then v(nx) = v(x). The general result follows,

using (i).

5.k, If £ is an ordered group, and JC a collecticn of convex sub-
groups of ;3 as in 4.3 and 4.4, we get an associated valuation as
* -
follows. Let A be (3¢ (x)|xe 2 }, ordered as in 4,4(d). Then by
*
L.4(f) and 4.4(h), the map v: S - /\, where +w(x) =3¢ (x) for all

x in _3 , 1s a convex group-valuation of ~ onto .

5.5. Let QB be an ordered field, and 28_‘_ the underlying ordersd
additive group. We have a special interest in the convex group-valuations

.
v: §+ - /\ which satisfy the condition (Mult) below.
(vudt): (V Xy 0%, ¥15¥p) [(v(x)) > v(x5) A v(yl) > v(y,))

= v(xy) > vixgy,)]

Lezma 5.6. If (Mult) holds we can define an operation of addition on

A,_ wherebyl /\ becomes an ordered group. Addition is defined by:
v(x) + v{y) = v(xy) for all x, ¥y

Proof. Suppose (Mult) holds. By two applications of (Mwlt) we see

that if V(]{l) = v(xg): and v(yl) = V(YB)J then v(xlyl) = v(xzyz)'

18




1t follows that the proposed addition is well-defined. It is clearly
commutative and associative. v(l) is a neutral element, and for eny
x in 43* v(x) + v(x-l) = v(1). This proves that the proposed
addition gives /\ a group structure. |
By the convexity of v, we have for any x in QS*' that

v(x‘l) Zlv(i) 2 v(x) or wv(x)>v(l) > v(x-l), according to whether
Ix} > 1, or |x| < 1. Thus v(x) > v(1) or -v(x) > v(1), and if
voth hold then v(x) =v{1). If v(x) > v(1l) and v(y) > v(1) then
py (Mult) v(xy) > v(1), whence v(x) + v(y) > v(1). This completes .

the proof.

Definition 5.7. Let éS be an ordered field, and -G an ordered

group. A function v from o onto G is a convex valuation of s
onto G if and only if |
(a) (V) (¥ ¥) (v(x+y) > min(v(x),v(¥))),
® VOl 3 vl ov) <vE), em
(e) (V)Y ¥ (vxy) = v(x) + v(¥)).

Remark. Clearly a convex valuaticn on an ordered field is simply a
speciél kind of valuation on & field. We will use the notions of
valugtion-ring, residue-class field, and place, without further

explanation.

Lerms, 5.8. Let 93 be an ordered field, and Vv a convex valuatlon —

of 18 onto the ordered group G. Let V Dbe the valuation-ring of

v, and I the maximal ideal of non-units of V. ILet =x: v - V/I

be the canonical place. Then V is convex in éa, I is convex in V,
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V/I has the natural induced order, and = is weakly order-preserving.

proof. Assume the hypothesis of the lemma. Suppose x and y are

Gl

tn v, and x <t <y with t £0. Then |t] _<_max(|x],lyf). Suppose

without loss of generality that [t[ < Ix[ By convexity, ‘

v(t} > v(x) > 0. Therefore t ¢ V, ‘Therefore V is convex in :,8
Suppose Xx and y arein I, and x<t<y, If t =0 then

t € I. We have ft['s max{ |x|, ly]). Suppose % £ 0 and without loss

SIS

.o1f th e v it

of generality It] < lxlf We have lx
follows by convexity of V that xte V, whence x £ I. Therefore,
- ¢§ V, and t e I. Therefore I is convex in s .

The rest of the lemma is trivial, by earlier remarks about con-
vexity. |

Henceforward,. when we talk of the résidue-class f;’.eld of a convex

valuation we mean the residue-class field with the natural ordering.

4

Definition 5.9. Iet 98 be an cordered field. A subset T of :g is

quasi-archimedean if and only if
(a) 2¢m,
(o) (Vx)(xeTo |x] e , and

() (VX)(Y¥)xeT AyeT) oxye 1]

Definition 5,10. ILet 93 be an ordered field and T a quasi-archimedean

subset of . JeT 1is the collection of convex (additive) subgroups

G of .3, such that (Vx)(x e G > (VEt}(t e T =t - x € G)).

: T ' *
Definition 5.11. v is the group-valuation on Qg associated with J{’,T




*
Lerma 5.12. If X, ¥ € g?) then VT(X) > vT(y) if and only if there
jge & in T such that ix|_<_t . Iyl
proof. By the definition of g%, if there is a t in T with
x| <t « lyl then Vx) > v ) |
Conversely, suppose v (x) > v (y) Let Gy be
(z|(3 ¢t € oy(lz] < tly])). since 2eT, ¥ € G+ Clearly G, 1is
convex and symmetric. If [zll <ty lyl, and lz,l <ty Ivl,
where ty; tp €T then |z, +2 l< 2 max(ty,tp) lyl. But
2 max(t %, Y eT, byS5S. 9(8.) and 5.9(c). Therefore, G, is a convex
subgroup of ‘£+ By 5.9(c), Gy ¢ 3T, since y e Gy, X € Gy, 50
there isa t in T with lxl <t ly‘ _This proves the lemma.
T s aps
Lemma 5.13. Vv~ satisfies (Mult).
T T T T
proof. Suppose V (xl) >V (xz), and vV (yl) >V (ye). Then by 5.12
there are t, u in T such that |xll <%t - |x21, and
lyll <u - lyzl Then lxlyll < tu ¢ lxayzl, .and tu e T by-p-.9(c).

Therefore by 5.12 Vv (xlyl) >V (x2y2) This proves the lemma.

By 5.13 and 5.6 there is & natural structure of ordered group-on
v [3*], and we henceforward construe v as a convex valuétion on
the field .

We not,g that Z is quasi-archimedean in any ordered field :S .
Vz' is the valuation onto the so-called group of arcnimedean classes of
3, and J{‘.Z is the collection of a1l convex subgroups of eg For
X, ¥ in 3*, vz(x) =l,vZ(y) if and only if there are integers 1, n

- Ixl.

such that |x| < In| ly| end [yl < In
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To any pair (K,L) of ordered fields we associate a convex
valuation on K, as fbllows. It is clear that L is quasi-archimedean
in XK. Then IVL is a convex valuation on K, hencefofward known as
the canonical valuation of (K,L). Let VL be the valuation-ring of

VL,' and IL the maximal ideal of non-units of VL.

Lemma 5.1%. Let (K,L) be a pair of ordered fields, and vt the

canonical valuation. Then

(a) V©

T

1

x[( @)t el A [x] < le]))

(b) I

[}

(x[(Ve)[(2e L g £0) > [x| < []]).
Proof. Let K,L, v' be as in the statement of the lemma.
(8) xe V' &= (x =0 v vix) > 0)
<= (x =0 v v(x) >v"1))
= @8N en A x| < (4]
using 5.12.

(b) This follows easily from (a). -

Definition 5,15, .Let (K,L) be a pair of ordered fields, and x, y
elements of K. ]

(a) x is L-bounded if and only if x e Vo

(®) x is L-infinitesimal if and only if x e TL,

(e) x is L-infinitesimally close to y if and only if x -y

is I-infinitesimal.
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gection 6. Convex Valuations on Real-Closed Fields

pefinition 6.1. Let (K,L) be a pair of ordered fields, and v

the canonical valuation. Let @& (L) be the (ordered) residue-class

field VL/ IL, ~and let TfL be the canonical place from VIl onto

® (L)-
| x
i Recall that if M is a field M is M - {(0}.
*
| Lemma 6.2. Suppose (K,L) is a pair of ordered fields, and x € L .
Then vL(x) = 0. |
Proof. Trivial, by S.llk('a.).r
' Thus L C VL, and ;cL injects L into R (L).

Lemma 6,3, rrL[L] is cofinal in ® (L).

Proof. X is weakly order-preserving from VL onto ® (L). Suppose

x ¢ V', Then by S.lu(a), there is an £ in L with x| < {z]. But

then lscL(x)| < ]nL(ﬁ) |. This proves the lemma.

Definition 6.4. Let K be an ordered field and v a convex vaiuation
on K. Let M be a subfield of K. Then v is trivial on M if and

: ¥*
only if for each x in M v(x) = O.

Lemma 6.5. Let (K,L) be a pair of ordered fields. Then there exist
subjields M of K maximal with respect to the property that L is a
subfield of M and v° is trivial on M.

Proof. The proof is obvious, by 6.2 and Zorn's lemma.
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tefinition 6.6. Let (K,L) be a pair of ordered fields, and let N

be a subfield of K maximal with respect to the property that I is

a subfield of M and vL is trivial on M. Then M is said to be

Lerma 6.7. Let (K,L} be & pair of ordered fields, and M an
L-maximal subfield of K, Then ®R(n) 1is algebraic over ﬂL{M].
Proof. Let (K,L) be a pair of ordered fields, and let M be an
L-maximal subfield of K. Then xL. is a monomorphism on M. Suppose
X € VL and ‘ﬁL(x) is transcendental over nL[M].

Suppose t e M[x]. Then there is an integer m ang element
”e’ cens By in M such that + - ri;urxr. Then

o

KL(t) = ijL(ur) . (xL(x))r. But then since ﬁL(x) is tran-
scendentzioover nL[M] it foliows that nL(t) = 0. if and only if each
nL(Hr) = 0. Since i is a monomorphism on M it follows that
:tL(t) =0 if and only ir t = 0. T& follows that vL(t) =0 if
t e M[x] - (0), and then it follows that v= 4g trivial on M(x).

Thus if nL(x) is transcendental over ‘ﬂL[M] then M is not

L-maximal, The lemms follows.

Lemma 6.8. ILet (K,L) be a pair of ordered fields, with K real
¢losed. _Let- M be an IL-maximal subfield of K. Then M is real
closed,'andl nL[M] = R (L).

Froof. Tet (K,L}) be a pair of ordered fields, with X . real closed,

Let M be an L-maximal subfield of K. Then WL is a monomorphism

on M. ILet M; be the relative algebraic closure of M in K. Then
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the proof of 3.3 shows that M is cofinal in Ml' Since M C vL
34 follows by 5.14(a) that Ml'c vL, and so since My is a field

VL is trivial on Ml' By the paximality of M, Ml = M. Therefore
¥ is relatively algebraically closed in X, and 80 by 1.7 M is
real closed. But then ﬂL[M] is real closed, since ﬁL is a

gonomorphnism on M. By 6.7; ® (L) is an ordered algebraic extension.

of nL{M]. Therefore @& (L} = ﬂL[M].

corollary 6.9. Let (K,L) be a pair of ordered fields, with XK real

closed. Then @ (L) is real closed.
proof. By 6.5, there are L-maximal cubfields of K. The result now

follows by 6.8.

Lemma. 6.16. Tet K be an ordered field, and Vv & convex valuation
on XK, with valuation-ring V. Let M be a maximal subfield of K
on whicﬁ v is trivial.i Then V = VM, the valuation-ring of v
Proof. Let X, v, V, M be as in the statement of the lemma._‘Let ﬂ
be the place agsociated with v. Then examination of the proof of
§.7 shows that =[V] is algebraic over x[M]. Then, by 3.3, w{M]
is cofinal in K[Vj.‘ | |
Suppose x € V. By the preqeding remarks, there is an m in

M such that |n(x)| < lﬂ(m.)l = x(|m|). Now, if x> | m| + 12,
(kD) 2 a(lanl+ 1) = alinh) + 2> allnl

Therefore (x| < [m| + 1, end since [m| +1eM it follows that

X € VM, using 5.14(a), Therefore V C Ve,
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since

.

v

in M with [x] < |m].

Conversely, suppose x e yM - Then by 5.14(a) there is an
By convexity of v it follows that x e v,

me V. Therefore_ VME V. This concludes the proof.
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1233122;1. Fxtension Theory for Convex VaLuatlons

-rtaition 7.1. Let (F y Vo G. ) (1 =1 2), be triples consisting of
rtr

an ordered field Fi’ an ordered group G , and a convex valuation V.
e Fi onto Gi' An analytic isomorphism of (Fl, vl, Gl} onto

{Fys Voo G, } is a pair of maps (@, ¥) such that
a) ¢ is an order-isomorphism of Fy onto F,,

b) ¥ is an order-isomorphism of Gy onto Gy

c) Vvl = V0.

Let (K,L) be a pair of ordered fields. In Section 5 we defined
vL as A convex valuation of K onto a certain group of equivalence
:.asses of the relation = 1 _For our purposes the valuation-ring
H VL js more important than the value-group, and we shall sometimes
vientify VL with arbitrary convex valuations on X which have
valuation-ring VL. fd"

when we defined +F we had a specific pair (K,L) in mind, and
cur notation for vL omitted reference to K. In this section and the
=ext we encounter situations where we have to‘consider simultanéousiy_
salrs (X,L) and (Ki,L). Then vﬁ and v;l are the respective
waiuations defined as in Section 5 for the pairs (x,L) and (Kl,L).
tre=a 7.2, Let (K,L), (Kl,L) be pairs of ordered fields, where K,
ts wn extension of K. Then vﬁ extends vﬁ.
Zroof.  Let {K,L), (Kl,L) ‘be aslin the statement of the lemma. Suppose

" .
» Y€ X and v;(x) = vi(y). Then by 5.14(a) there are Byy 2o in L
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such that 0O < ]zll < [x/y | < leal. But then, applying 5.14%(a) again,

VL (x) = vZ (y). This proves the lemma.
Ky Xy

Theorem 7.3. Let K be an ordered field, and v a convex valuation
of K onto an ordered group. Let Kl be & real-closure of K. Then,

up to an analytic isomorphism (¢,W) where @ 1is the identity map of

Kl’ v has a unique extension to a convex valuation v, on Kl'
Proof. Let K, v, Kl be as in the statement of the theorem.

Let M be a maximal subfield of K on which v is trivial. Then,

by 6.10, v = v, By 7.2, V! is a convex extension of v to K,.

K Kl 1
Let vy be any convex valuation on Kl with vy extending .
Let V% be the valuation-ring of v? . Let V) Dbe the valuation-ring
1 ' 1 .
of vy We will show that Vi = VE » and this will establish the
4 l . .

unigueness part of the theorem, and will conclude the proof,
Let .ﬂl be the place asscciated with vl. Suppose x € Vi. Now

X is algebraic over K. Thus there is an integer n, and Cgs wves Cp

e - .
in K such that c_ £ 0 and § c_+ x =0. Let r_ be the least
n —o r . ) (o]

r such that [c-.r | is maximal in the set [[gol, cees [cn]}. Let

o - , .
' . i 1
¢ bg cr/cro' Then lc;| <1l, so vl(cr) >0 for 0<r<n.

Further, é;; = 1, so that vl(céo);()) and ﬁl(c;o) =1, We have

Il .
2 mplel) - () =0,
=0 :

80 that ﬂl(x) is algebraic over x1[V¥]. Thus nl(x) is algebraic

dver nmfvﬁ]. By 6.7, ﬂM[Vﬁ] is algebraic over ﬂM[M].

28
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' M
1+ follows that :tl[vl] is algebraic. over #'{M]. On the other
«andy let Ml ve the relative algebraic closure of M in Kl' Then,
Ml is a resl-closure of M. By 3.3, M is cofinal in Ml'

since MC VL and. v 45 a convex extension of vi, it follows that
, 1 i i i is trivial on M- Bul then
®. c VJ.’ and s:mce Ml is a field vy 5 ivial on M,

F e, is a monomorphism on M. Thus 1 is real closed. Since

n
1‘1

. jex [V ]}, and ﬁl[v ] is an ordered algebraic extension of
H-y], it follows that & AR 1.
We can now show thab = (x[{(m)(meM A x| < m}.

Suppose x € V,. Since ﬁl[vl] = nl[;\'il], it follows that there

‘5 an Iy in Ml such that vl(x-ml) > 0. By conve}_tity, [x-nil} < 1.

TR

~erefore lx] < [mll + 1. Sin;e M is cofinal in 'Ml’ there is an m
2 M with |m l + 1< |nf. Therefore x| < iml.

On the other Land, suppose- X € ;{l and (x| S_- m| for some m
i v. Then m A0, and v (x)2 v (m), oY convexity. Bub

f v.iz) = v{m) = O, Therefore vl(x) >0, so X &V« —

Therefore Vl = VINé » oY 5,14(a), and the theorem is proved.
l ' .

_eca 'T.l:-. Tet Vv bé a convex valuation of a.nl ordered. field X. Let

= be the pla.c:e a.ssocn.ated w:.th v, and suppose M is a subfieid of

X on waich v ‘is trivlal a.nd such that = dis an 1son'orn‘"1.sr" on M.

A% I{l be a real closure of X, and let vl' be the unique convex
exteasion of v %o K. Let M ve the relative algebraic closure ol
x 4 \ . 5 V > PR o R ~

<n KJ., Tngn v, is trivial on Ml’ gnd Ty the place ol V.,
l'-l an isomorphism on Ml.‘ ' /
. :

¢of. The result {s true even if we require only that M be a maximal
§:bfield of K on which v is trivial. The proof is contained in the
sroof of T.3.
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rerma 7.5. Suppose K is a real-closed field and M is a M-maximal
Lemma (.0
gubfield of K. BSuppose F 1is a real-closed subfield of X such that

,(:*:[\f"I nNr] = TM[MVQ Fl. Suppose me M - F. ILet F, be PF(m). Then

2t a F = A n Fl .

Proof. Assume the hypotheses of the lemma. Suppose x € Fl' Then there

are integers n, m and Cus 05 C do, ceay dm in' F such that

n,
n . om o
X = ZO e - ml/jgo dJ.mJ. pet i, be the least ‘i such that |ci[ is

zaximal in {Icol, ceey ’cn]}. Let j, be the least Jj such that Idjl .

is maximal in {]dol, e, ldml]. For 0<i<m, let ¢} be ci/cio

For 0<Jj<m, let d:_.J be dj/dj - Then e! =1, d! =1, and so

Q. o] JO
Aer ) =1, Mar ) = 1. Then
i d.°
o o _
x=ci/dj 2 clrm/ ai - m .
o Yo i=o j=0 :

Now, by an argument like that in 6.8, nM[VM N F] is real c¢losed, and
50 ry(m) is transcendental over :rM[vM N F]. Since [ci[ <1, and

lajl < 1, 1t follows that cf € V' and ay e V. Then

2 2 _ci . mt)

i=0 :

3 e - (Mt 4o

M5 e )
i=o

Jd

m .
2 nM(dé) . (13\'[(131))‘J £O.
J=0 '

Thus X ¢ V' if and only if ey /dy e W thus if x e VY,
. v ' B . o

o
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o 5 ey - (At
#(x) = 2e, /a ) - = .
° oy Ay - (Fw)

j=o

Now, by hypothesis there are mi(o < i< n), uJ.(O <3< m

and v in MNF such that

) = ey /a5,
: o o
1'94(13]'1) = ny[(ci) [

) = 2Yay)

But then rfM(x) L

€ 1 M N F_l]. The lemma follows

easily.
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section 8. D-Groups

pefinition 8.1." Let G be an abelian group. G is divisible (resp.

uniquely divisible) if and only if for each X in G and positive

integer n there is a4 y (resp. a unique y) in G such that ny -

Lemma 8.2, If G is divisible and torsion free then G is uniquely
divisible,

Proof., Trivial.

8.3. If G is uniquely divisible, and x ¢ G, and n is a positive

integer, then % - X is defined as the unique y such that ny = x.

Definition 8.4. ILet @ be an ordered abelian group. Then G 'is a

D-group if and only if G is divisible,

-~

8.5. It is clear that a D-group is torsion free, énd 8o is uniquely

divigible. It is clear that a D-greoup is densely ordered, and clear also

that the additive group of an ordered field is a D-group. |
For us the chief importance of D- -groups comes from the following

lemma,

: . . . o ' th
Lemma 8,6, Tet K be a field in which every element has an n root,
for each positive integer n. et v be & valuation of K onto g,

Then ¢ is g D-group.

E{gg{. Assume the hypothesis of the lemma. Suppose g € G, and n is
-8 positive integer.. Select x in K with v(x) = g, and theh select
¥ in K with 3y < x, Then v(yn) = nv(y). Thuslthere is an h in ¢
with nh - €. B8ince g was arbitrary, G is divisible,_énd‘so, G‘ is

D-group, : ‘ : ' i
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~grollary. Suppose-‘K‘ ig either algebraically closed or real closed.
of's})

sy V DA valuation of K onto G. Then G 1is a D-group.

proof. Clear. : . I
f‘ . . N

a,7. We now know thet if K is real closed and V is a convex valuation
of X onto G, with residue-class field F, then F is real closed :
ard G 1is a D-group. In Section 10, we discuss the formal-power-series

construction which, given F real closed and G a D-group, will yield

real-closed K and convex v: K =—=G with residue-class field F.
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Section 9. _ ; Hehn Groups

9.1. In the notes at the end we refer the reader to some of the

literat
theory,

Le
be an i

complet

cartesi

support

ure on Hahn groups. For our purposes the deeper facts of the

€.g., Hahn's Embedding Theorem, are not relevant.
t; (/\, <} be & linearly ordered set. TIet ({H,, +59 OA’ <l)]le/\
ndexed family of ordered groups. Let (X, +, 0} be the

e direct product ?ﬁéHx, +3 Ok)' X is, of course, Il Hy, the
Ae A :

an product of the Hy. If feX, wedefine supp(f), the

of £, as [(M£(X) A 0yJ. Let W be the subset of X con-

sisting of those f for which supp(f) is well ordered by <. It is

a simpl

define

<won

‘ . *
€, known result that W is a subgroup of X, If f ey » We
v(f) as the least & such that f£(A) 4 Oy. We define an order

W by:

T8 =3t FanD (=g ) BV (E=g))-1(v(2-g))) .

Again, it is a simple known result that {w, +, 0, <w.) is an ordered
group, and v is a convex valuation of W onto /\. Adopting the con-
ention of identifying (Hi, YRASY <l> with Hy, for each A in /\,
et P @ obe W, +, 0, <), '

e A A , W

- 3:2. If A 1is a subset of /\, well ordered by <, let ord(4) be

the orgd
ord(sup
Leﬁma
AUBg

inal of A with respect to <. If f ¢ W, we define ”f” as
p(£)).

3. &) if A and B are well-ordered subsets of /\, then

is well ordered.
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(e)
(@)

If A and ‘B are well ordered subsets of f\, then
orda(A U B) < (1+ora(B)) ° (l+ord(A)+l).
Ir f, g are in W, ‘then supp(f+g) < supp(f) Y supp(g) -

Ir £, g ere in W then le + gll < (1+{igll) - (1+]l£fl+1) .

This is obvious.

Suppose A and B are well—orderéd subsets of f\. Let A
pe ord(a), and let & be ord(B). Thus, in the order <,
A may be well-ordered as (a_} N Let B_y be the subset

77

of B consisting of those b 1in B such that b < a_ for

all t. Let B, be the subset of B consisting of those D

in B such that a_ < v for all =t. For t < A we define
BT as the subset of B consisting of those b in 3B such

that a_ < b<a_ i unless T + 1 =% when we define B
-1 T+l T

as B . Then clearly

2: (1+ ﬁrd(BT)) + ord(B,)

ord{a U B) < ord(B_l) +
, o T+1<A

iA

TR S (l+#)l + W

LA

(L4n) + (L) + (T0)

(Lm)U¢M¢).

This proves (b).
is clear.

This follows from {(b) and (c).
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ELE' Let ¢ be an ordinal closed under addition and multiplication., ILet
-,;(") be the subset of W consisting of those ¢ in W for which ¢l < o..

' ‘ 2
Tien, by 9.3, (w(g), +, 0, <W N GJ(G)) ) is en ordered group, for which
we use the notation F(U)Hh.
Ael\

- {0) . .
lerma 9.5, lEA Hi and XZA Hy are D-groups if and only if all the Hl

are D-groups.

rroof. Triviél.
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gection 10. ‘ Formal Power Series
seetim —~ kil

32;1' In this section we adopt a procedure 1ike that of Section 9. We
will givé a brief explanation of the classical construction, and list
without proof certain basic results pertaining to this construction. From
snese results we will obbain estimates analogous to 9.3(d).

To begin with, let {F, +, +» 0, 1} be an arbitrary commutative ring.
'tater we restrict F %o be a field, and still later'to be aﬁ ordered

s1e1d). Let {a, +50 Og <G) be an ordered group. We will define .F((tG)),

.ve ring of formal power series with coefficients in F and exponents in

~
LV ¥

Pirstly, let X be the abelian group n {F, +, 0). If feX,we

geG
define supp(f) as (glelg) £ O). Let W be the subset of X consisting

of those £ in X for which supp(f)  is well-ordered by <(£. Then, as

in9, W is a subgroup of X.

It is convenient to construe W as the group of formal power series
L f(g) - +8  with well-ordered support. 1 is.a.formal symbol, and addition
?s defined coordinatewise. | | |

We are going to @efine on W a multiplication -, which will make W
into a ring. {No confusion should result from the use of the same symbols
for addition‘aﬁd multiplication in F and W.) If 2 fl(g) . t% and

% fa(g) . tg) 1aré in W, we define

(Ve (e) - t5) - ( LEae) - £8)
g _ g '
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E(;fl(h) '. fg(g-hj - 8,

g

Zt is well known that if fl and f2 are in W and g ¢ G, then the

sam I £ (h) - fz(g—h) is really a finite sum. To show that W is closeq
h

under -, Wwe need essentially the following fact.

Fy

_'"&C Ve

Let A, B be subsets of G, well ordered with respect to <g"

cefine 2(2)(A,B) as the set of all sums a-n}ﬁ, where @ € A and

3 € B. Then 12(2)(A,B) is well ordered by <

Go

The above fact is rather clear, and in the notes we give references

%0 the literature.

vhat

The unit element of W is 1 . t°, It is a routine exercise to check

W 1is a ring under + apg . - F 1is canonically embedded in W,
o]

oy the map xn~p x . t°,

1002.

the ordinal of A with respect to <«

If A is a subset of G, well ordered by < let ord{A) bve

G’

G+ If feW, wedefine [f| as

ord(supp(f)). Just as in 9.3(d) we have the estlmate

o+ gl < (gl (+lell + 1), for £ ang g in W. We are now going

Zor all ordinals 16,' nys b

to obtain an‘estimateifor Hfg”.

10.3. we define a binary relation R between pairs of ordinals by;
A A - |
(A s IR 0, ) det Yo S A By SH A (o) £ (o)

10 Hye It is & simple matter to check that R

is a partial order, and R ig well founded. By means of transflnlte




s
%

~efinition of P. p{0,0) = L. If (0,0)R(M,n}, then

p(A,p) = [ sup (l+P(7\-l,|J.l)+l)2]+ 1.
r (Llsul)R(x’P)

Lerma 10.4., Suppose A and B are well-ordered subsets of G, with
lermd -~

respect to <. Let XA’ )LB be ord{A), ord(B) respectively. Then

ora( 3 (P (a,8)) < BAyorg) -

spoof. We prove the result by transfinite induction on (lA,lB) with
respect to R. If ('AA,KB) = (0,0), the result ijs clear. Suppose now
that we have proved the result for all pairs Al, Bl for which

(ord(Al), ord(Bl))R(lA,?\. ). Well-order A, with respect to <., 88

. - . i . b . L
[ak]klp: and well-order 3B, with respect to <, 88 ( u} “<?"B For {
o - : . %
each 1 < Mys let A" be. [ak}l<1. For each g < kB’ let B~ be i
- - X
[bu}u <e Le‘; Ts g pe fixed ordinals such that T <My and E
). . . ) ! * . E
€, < B Then, if GT +q B'e <G aTo *q BEO, e:.ther T< T, OF e < €, ﬁ?
Thus the set of predecessors, in 2(2) (A,B), of 0. *g ﬁe is a subset
) ‘

_ o]
ot 2@ 40,5y U £® (48 °). Now (ora(a ©), ord(8)) = (Tg,hg)s and

, £

(1°,kB)R(xA,xB). gimilarly, (ord(A), ord(B °))R(XA,XB). It follows
T

by induction that ord(Z(a) (A ° B)) < P(TO,XB), and

E : _
°rd(2(2)(A,B N < P(kA,eo). It then follows, using 9.3(b), that

ord(z(‘a)(ATo,B) v (2 (A,Beo)) < (1+P(TO,>~B)+1) . (l+P(7tA,so)+l)

< . sup (1+P(M 51 )+l)2. It follows that every initial segment
O RO M) i |
of 3(2) (A,B) has ordinal

< ( sup (l+P(3\-l,ul)+l)2] + 1 ,

(Kl’“l)R(l slB)
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therefore, by definition of P,
5 _
ora(x® (a,8) < p3, 1)

This completes the proof.

)

Corollary 10.5. Suppose f and g are in W. Then ltg ]l < P(”f”,”gl

proof. This is clear, from 10.4, and the fact that
2
supp(fg) < ! )(supp(f), supp(g)) .

10.6. Suppose now that g is an ordinal closed under addition, multi-
plication, and "P. Then, by the asbove, W(a), the set of those f in W
such that fifll < o, is a subring of W. Let F((t%)) be W, and let

f((:%)), ve W%,

10.7. If n 1is a positive integer, and Apy weey A are subsets of G,

ve define Z(n)(Al,...,An) as the set of all sums + + where

617 " T8y | i
8 €A, ..., G This definition generalizes that of 8(2), given

in 10.1. It is easy to see that if Ay; «.o; A are well ordered by <4

then so is E(n)(A ;""An)'
If A is o subset of G we define oA s E(n)(A,...,A). We
define o - A'\aé lfi n - A. Even if A is well ordered by <g» © .
n= ‘ .
need not be well ordered by <C.‘-Howefer,_it-ié.a classicel fact

that if 4 -ié a well-ordered pqsitive subset of G (i.e., every
member of A is positive) then ® . A is well ordered.,

Another important classical fact about positive well-ordered A
is that if gew -« A, then there are only finitely many n  such

that g en . A, We refer to the literature for proofs offthese results.

ko
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-5.8. On the basis of the pfeceding cubsection, one may establish the .

re—

assical fact that if F is a field then r((t¥)) 1is a field. For, | i

;oppose F is a field, and x 1is & non-zero element of F((tG)). Then,
] sy an easy argument, x is of the form & ° +7. (1+h) where a € Ff,

y ¢ G, 8&nd h has positive support. Since & - t/ is certainly ' - I
«rvertible, we have our result as soon a&s we show that 1 + h is invertible. _ 8

=]
5.t from the results of 10.7 one sees that 3 (-1)"n" is & well-defined
n=o

' o0
clement of F((tG)), and then by a familiar formal argument )3 (-1)"n"
: B n=o0

¢35 the inverse of 1 T h.
We are going to show that a similar argument may be carried out in
?((tG))a for certain o. For h of positive support, we will obtain an

" .
estimate for || 2 (-1)"n"}f in terms of k]|
n=0

nefinition 10.9. For 1 <mn < ® we define functions P, from ordinals to

¢erdinals by

pl(?s.) =N\ for all A

l ' p,(A) = B(A,N) for all N j

pn+2(7s.) =‘P(7\ ,pn_l_l(?\)) for all A .

One may easily check that the P, are non-decreasing functlons.

lemza 10.10. If l<n<w and A is a subset of G well ordered by .

<y then oxd (n-A) < Pn(OI‘d(A))-

®roof. This is clear from 10.4 and 10.9.

<ma 10.11. If !~L_L, ey A are finitely many well-ordered subsets of

k k
G, then ora( \UA )< T (L+ora(A )+1).
m==1. n m=1

! 3 ‘ . ' b1




4

Proof. The result is trivial for k = 1. We prove the general result

by induetion on k. Suppose we have proved that

K K | _ *
ord(\JA ) < T (l+ord(A J+1) . . !
m=1 m=1

NOW, bY 9‘3(b) 2

k+l
ord( UlA ) < (l+ord(UA )) (l+ord(Ak+l)+l) .

We distinguish two cases,

k
Case (i), ord(L_)A ) 1nf1n1te.
- m=]

Then
1y ord(UA ) = ord(UA ),
m=1 m=1 ©
EQ
k+1 ‘ :
ord({ JA ) < ord( A ) (1+ord( J+1)
(é:i h Q:i * ék*l .
ok -
< mIEl(1+ord(A )+1) (l+o?F1(Ak+l)+l)
k+l
= I (l+ord(A )+1) .

m=1

Case (ii). ord(UA) finite,
m=1

b2




- <hen for 1 < m < k, ord(Am) is finite, and then clearly

ord(UA ) < z ord(A ) .
m=1

m=1
Then
X k i
1+ord(\JA) <L+ 2 ord(A_)
m=1 m=1
) X
< It (l+ord(A )+1) .
n=1
Therefore '
| : k+1 k+1
] ord(\J A ) < W (Lrord(a J+1) .
m=1 m=1

This gives the inductive step of the proof, and we are through.

Definition 10.12. For all ordinals A

H .

k
P,(*) = lim T (1+p (k)+l)
w
k= w m=]1

10.13. As a fifst step in estimating ord(w:A), when A 1is a positive

well-ordered subset of G, we discuss the special case in which A

satisfies (Arch): If @, is the least element of A, and a is any

element of A, then there is an integer n such that a<n - .

Lemma 10,14, If A is a positive well-ordered subset of G satisfying
m .

(Arch), then ord({Un-A) < pw(ord(A)).
n=1

43




proof. If A =, the result is trivial. Suppose now A is nen-
’ -
cmpty and satisfies the conditions of the lemma. Iet x be an arbitrary

element of Cn *+ A. Then, since x is a finite sum of elements of A,
n=l

and A satisfies (Arch), there are positive integers k such that

x <k a,. Let ko be the least such k. Suppose now y € | jn - A,
- . n=1

g

and ¥ <,X. . Then there is an integer n, and elements Bys eves 0

G

1 G G l G
But clearly na < a; +G +G a s and, since cr is positive,
n<k. Therefore y ¢ dn-A. Thus {y]yem-AAy<x] is a
n=1 :
ko
subset of | jn + A, Now, by 10.10 and 10.11,
n=1 X .
k‘ o
ord(Un A) < 1 (l+p (ord(A))+l)
n—l n=1

< p,(ord(a))

Since x was arbitrary, the result follows.

10.15. After Lemma 5.13 we mehtioned the com-rex valuation vz on an
ordered field _.gg We observed that, for x,y in .3 vz(x) = vz(y)
if and only if there are positive 1ntegers m, n such that [x[ < m]y[
and [y] < n[_x[. It is clear that by the latter property we may define
& convex group-valuation -on an arbit;t'a_ry_oraere;d group. We denote the
resulting group valuation by "vz" alsq, without risk of confusion.
It is easily seen that (Arch) holds for a well-ordered positive

-.set A if and only if for all a in A v (a) vz(ozo), where cro is

the least element of A,

I

in A such that y =a, +_ ... & an. Then a, + ---+Gan5x_<_k-ao.

R e A v e, s
P yarainivg

e

i




For the general case, let A be a positive well-ordered suvbset of
Z .
g. If x €A, we define A, as (ylyea A vz(y) = v7(x)}. 8Since

'VZ ig convex, we may introduce a linear order < on [Ax]xe A by:

A, <Ay Zger X<y A Ay £ A, - | )

since A 1is well ordered by <G it is easily seen that [Ax]xeA is

vell ordered by <. We define ¢ the index of A, as the ordinal

A’

of {Ax] xeA under < . Clearly €, < ord(A). We will shortly define 8

pinary function q from ordinals to ordinals and show that

ord(e+A) < q(ord(a),g,).

Let x be an element of « -+ A. Then there is an m, and

m
815 +evs 8y in A such that x = jz—.lG age Then, since the a's are
positive, \fz(x) = min irz(aj). Define A(x) as , o :

I<j<m
{y ¢ A[vz(y) > vZ(x.)} . On the basis of the preceding few lines, the

e

following facts are evident.

(<)

Fact 1. (ulue = « & A uSGx} is a subset of o« ¢« A

Fact 2. AK) = ( U.'_A ) UA_.

Y
ARh,

pach 3. @ - A ce (U a)Ue A UEB ey ), e a)
| s ¥ F a<a ¥ x
_ Y rx . ¥y X
Fact 4. A_ satisfies (Arch).
Fact 5. The index of (J A is less then the Index of A(x).
: AR, y

Motivated by the above facts, we can now define q.

k5




zefinition 10.16. For arbitrary ordinals A
(1) a(*,0)
(11) a(*1) = p (A);

(1i1) if o> 1,

0;

I

3(h0) = (Lesup a(hu)41) « (Lo (M)41) - (LeB(sup a(%m),p,(2))+1)
H< <

Lemma 10.17. If A 45 g positive, well ordered subset of G, then

ord(=-4) < q(ord(A),gA)

Proof. We Observe first that the functions P ang Q@ Aare non-decreasing
in both arguments,

The case gA =1 1is covered by 10.14. we pProve thes general result

by induction on the index of A, Suppose we have proved the result for

all B with € < Epr Let x be an arbitrary element of w . A. Then

by Fact 1, (ufucw « 4 A y SeX} is a subset of w . A(x)_‘.LéEJ'B

be _ A_. Then & < €,> and A(x) = B U.Ax, by Fact 2, By Fact 3,

® . A(x) is a subset of o . BUw= . A u Z( )(m * B, m . A ) Iet A

be ord('m . B), and let u .be ord(e . Ax). By Fact 5, and the induction

bypothesis,

orél(m * B) < 1(ord(B),ep)

< sup q(ord(B),t) .
1<e,

BY Fact 4 gng 10.14,
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ord(= - Ax) < Q(Ord(Ax):Eﬂ )

p (ord(a,))

< p ford(a)) .

gy 10.4,
ora(5@ e « B, =+ 8)) < 20w)

< P(sup a(ord(a),7), p,(ord(A)))

1<§A

Now, by 10.11 and the definition of g, Wwe S5€é€ easily that
£2) | g
ord(= + BU® * A U (@ « B, ® «A)) < q(ord(a),e,) -

It follows t@at ord{e - A(x)) < q(ord(A),sA). Since x was arbitrary,

the result follows, using Fact 1.

1

Corollary 10.18. If A 1is & positive, well-ordered subset of G, then
ord(w - A) < qlord(A), ord(A)) .

Proof. Clear, since €, < ord(A).

Lemma 10.19. Suppose F 1is a field and ¢ ;s closed under ¢ (as well -

as +, -, and P). Then P((¢%)), is a field.
Proof. If h e*F((tG))0 and h has positive support, then by 10.18

1S (c1"7 < 1+ allul, ) -
n=0

The result now follows from the remarks in 10.7.

k7




10.20. Henceforward, in this section We assume F ig g field and o
i closed under‘ +*s *» P and q. OQur final aim in this section is to
show that if F is real clogeq and G is a D-group, then F((t ))c
is real closged,

Henceforward, in thig Section let K be F((t )) We observe
that we have the obviouyg canonical valuatlon v from K onto G, with
residue-class field F, Let V be the valuation ring of v, et =x
be the canonlcal place of V onto F, TIf f(x) 1is a polynomial
b anx with coefficients in V, then we défine £(x) as the poly-

nomial I n(an) - x" in Flx].

g Lemma 10.21. (Hensel's Iemma). Suppose f(x) e V[x] is monic, and
zcmme 10.21

suppose f = @ < ¥, where P, V¥ are’'relatively prime elements of

F{x]. Then there are &> 0 in V[x] such that ¢ . g€-+h, g=gq,

h = ¥, deg(g) = deg(¢), and deg(h) = deg(y),

Proof. TLet r, P, ¥ be as in the statement of the lemma. Let p be

T T TR B e i e R R T,

deg(m), and let n bpe deg(¥). Then m + n - deg(f) = N, say £x)

- . - +
is of the form + kl oL + oees + AN’ where, for 1 Sr<un, S

lr is a formal Dower series in t, with non-negative support and

ordinal less than 9. Let B be the union of the supports of the

An’ and O, :Then, by a preV1ously mentloned classical result, o . B,
is g well-ordered semlgroup of G. Moreover by 10.17 and the closure‘
Properties of a, wro B has ordinal less than o, Let A be = . g,

Then for 1 STEN, and qe A, there are CZr q 10 F such that
. b

za

Qel : .
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_,fﬂ““ﬂ‘ﬁ;

Q
We NoWw Brrange f(x) 1in powers of & as zrfa(x) « 4, Where
el

N o |
¢ (x) = F(x) if @ =0, and £(x) = "Zla'r,o?‘n_r’ if o f 0. Clearly
. . r=

‘o

if o f 0, them T, is of degree at most (N-1). We define go(x) as

o(x), and ho(x) as V¥(x). Then fo(x) =go(x) . ho(x), and g, and
ho are relatively prime.
F We sre going to express the required g(x) and h(x) as

Se (x) * t* and 2 h (x) - +& respectively, where the g and h
(oA a (0 o
achA QeA

are in F{x]l.

Proceeding formaily, we see that
: o a\. a
(2, et ) Zra - )= 20 8
[0/} Cicl Qieh _

if and only the following equations hold: ' _ :

S (0 B (0 = 30 ]
Q50588 ! % ¢
ot ;

We are going“to demand that deg(ga) <m -1, _deg(ha) <n-1, if
a £ 0. |

Since A 1is well ordered, for any - in A there are only finitely

many O, d, in A such that a='a‘l +a Qe Also, since A contalns

no negative elements, if o, &, & €A and O =0 + O then
al SG a and (Iz SG a.
We have already solved that one of the above equations which

corresponds to O = 0. We have chosen g ‘and h0 so that goho = fo.
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We define A* es A~ (0). For Qe _A*, the eorresponding
equation may be reformulated ag -
g, (X (x) + g (x) = h (x) = £ (x) - 2 g, (x) « h_ (x) .
or @ . © ¢ & ,0eA% %
S 1
. F =

*
We observe that if @, % €A and « 1t = Q then cxl <G @ and
a < <. & Suppose we have defined gB, h!3 for aJ_'L B in A with

8 <G @ 1in such a way that

ii) deg(gg) <m - 1, deg(hﬂ) <n-1;

1) 5 o, () hg (). = /o( (x)

al’a2€A
At .
We define Ba(x) as fa(x)-- z . % (x) haz_(x). Then - |
s, EA 1 ‘3
%% _
lal+Ga2 . : — !
F

Ba(x)eF[x], and:.f aeA,degB <N-l - Now since g, b are

relatively prime and respect:wely of degrees m, ny it follows by
elementary a.lgebra. (53, ch. 2, §11+] that there a.re 8o by, 1in Flx],

with deg(g ) < m- 1, deg(h ) <n -1, such that

8, (x)h (x) + 8, (x)h (x) B (x)

But then




(x) « b, (x) = fa(x) .

al‘,gzeh bay %

Ofl+GCt2 =

It follows, using the fact that A is well ordered by <G’ that

we may inductively define gy, b, (ccA) in F[x] such that:

(l) SO =9, hO =¥; |
(2) if a £0, deg(ga) <m - 1,‘.,;, deg(ha) <n - 1;

(3) ( q?;-fa(") - %) B 20 ¥ = Z 5 - e

We now define g(x) as Zga(x) . ta,',_ and h(x) as 2 hcx(x) . %,
- Ceh . B , QeA

Then clearly g(x) and h(x) are in va]; and g{x)h(x) = £(x).
Clearly also deg(g) =m, and deg(k) = n. Finally, g = g, =9 and,
h = h =¥, This proves the lemma.

The following'lémma is in the literature, and we later give references;

lemma 10.22, Let U be a field and H an-ordéred group, and v a
valuation of U lonto G, with_residueéclass field T. Supposé
(1) (u, v, ) ‘satisfies Heﬁsel's lemma,-
(ii) H is a D;group. |
(111) T is algebraically closed of characte;isticr o.

Then U is algebraicaily closed.

Corollaiy 10.23. 1If Fl is algebraically.closed of characteristic GC,

and G is a D-group, then Fl((tG))c is algebraically closed.
. - LY . . ’

Proof. Clear, by 10.21 and 10.22.
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}Q;gi‘ From now to the end of the section,'suppose F is an ordered
rield, with order <pr Then we may order F((t )) s0 that the
canonical valuation v onto G 1is convex. Suppose x € F((tG))U and
x £ 0. Let g be v(x). as usual, let x be the canonical place
associated with v, is a map onto F. Then we say x ig positivc :
if end only if 0 <F n(t™8 - x). | -

Recall we write X for F((tG))c. We order K by:
X< ¥ “der ¥ = ¥ 18 positive

It is;easy to check that <k is an order on K, and that with respect

to this order v: K —9G is convex.

Lemma 10.25;“1% .F .is real closed, and G 4ig a D-group, then
F((tG))cr is real closed.

Proof. Let F, G be as in the statement of the lemma., fet 3 be a
square root of V—i, and le} Fi be F(i). Then by 1.3(b), F
algebraically closed of characteristic o, As usual, let K be

is

F((tG)) + Then since F has an order, K has ap order, by 10.24. Now

it is a simple observatlon that K(i) = F ((t )) But by Corollary 10.23,

F ((t )) is algebralcally closed . Therefore K(i) ig algebraically

Closed; Therefore by 1.3(b), K is real closed. This concludes the

proof.

10.26, we 1eave it as an exerclse for the reader to prove that if o ig

8n uncountable cardlnal +hen g is ecloseq under +, -, P apg q. From

maxinum of Ro and the cardinal of G, that if F is real closed and

G 15 a D—group then F((t )) 1is real ciosed. (This result is c13531ca1)

LR
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A final important fact, again left as an exercise, 1s that there E

are countable ordinals closed under +, -, P end g. We will later

make an application of this fact.
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Lemma 11.2. If xe1, there is a ne# (2]

o e e

Section 11. ‘ Closure

In this section (X,I) is g fixed pair of ordered fields, If

X, € are in X, we define Nbd(x,e) as (yly e x ~ [x - y] < €}. The

sets Nbd(x,e) form a basze for a topology 7 on K. Tt ig clear
that + and * are continuous in the product topology. The funcetion
f defined by £{0) =0, f(x) = xL otherwise, is continuous except
at O,

Let I, oe the Closure of the get .L in XK. T consists of those
elements k of K such that for each €>0 in K Nbd(k,e) N, £ o.
It is clear that kel ir and only if there is. an ordinal A, and a

geries [£ ] from L such that if ¢ is,any-positive element of

u<A
K, then there ig a Ry < A such that if u > Hos then ’k - Ep‘ < E.

~

Lemma 11.1, 1, ig discrete in X with respect to JJ ir and only if 71,

is not cofinal in g,

Proof. This is clear,

Let cf(K) "be the least ordinal A such that there exists a well-

ordered monotone 1ncrea31ng series (xT]T<1 which is cofinal in K,

< 1<cf(K) of elements of‘ L

such that (2 g, T<Cf(K) converges to x in [J.

Proof. 1f 7, is not cofinal in K, then L=T1 by 11.1, and the

result is trivial, K I _
Suppose L is cofinal in K, and x e I. Then there ig an ordinal
5 (2
. and a net ( qu<5
and ﬂ - R . - "l
[[ " xl]u<:5 is monotone decreasing to 0. Then [lﬂLl x] ]“<6

from L such that E“ =X for all , < 3,

.5l

i
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{s monotone Increasing and cofinal in K so that & > cf(K). Now let
{y }T<cf(K) be a monotone increasing series cofinal in K. We define
u(r), for t<cf(K), as the least u < & such that |£ - xl -1 Y.

Then clearly [gu(r)]r<cf(K) ronverges to x. This completes the proof.

Lemma 11.3. L dis a subfield of K.

Proof. It is clear that ‘0, 1 e L. We leave it as an exercise for the

reader to prove, on the basis of 11.2, that L is a subring of K. We

will show that if x ¢ I and x # 0, then xf; € L. So, suppose x ¢ L,
and x.f 0. Then, by a slight refinement of the argument of 11.2, one

can prove the existgnce of @ net Lgrlr<cf(K), of non-zero elements of

L, such that [ng<bf(K) converges to x in K, and, for 1 < cf(K),

Ix - £T| < |x/2l. But then lﬁT, > |x/2|, and so

PR | 2 -
Ix™ - g ;I__= Ix™" = .|.x - ”1_'_ < 2/x _l-x - zT.I‘ :

It"1s now simple to see that [ﬂT T<cf(K)
x—l

e L. Thus if x % 0 &nd x € L, then x ¢ T This completes

-1
converges to x 7, so

the proof.

Lerms 13.L4, Suppose {on]A<T, [xlhll< are serles’'in K such that

IXOA . ll]k< converges to O in the topology J . Then either a
Bub
series gf EXOA?A<T converges to 0, or a s?bseries of {x

lR)A<T
tonverges to 0.

PmOf. S ’ - . -
f. Suppose (XOA xlh}h<1 converges to 0. For 1 =0, 1
let Ai be the set of ordinals A with A < t such that
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Ixixl‘zlx(l—i)Kl' Without loss of generality Ab is cofinal in 1. Fo:
2 . 2
A in A, lxdﬁ . xlk’ > ’xlh: . It fql}ows that [th}ReA converges

to 0, and then it follows that [xlh]AEA converges to 0. This pProves
. o) .

the result.

cholléry 11.5. Let n be a positive integer, and let (x )A< ,

l<m<n, beseries in K such that (11 xmh]L< converges to 0 in the
topology ;T._ Then, for some nlo, a subseries of [meA]A<T converges
to 0. '
Proof. Obvious, from 11.4,

Since K 1ig formlly real, 1 ¢ K where 12 - ~l. Let Nm: K(i) - K

be the norm map

Theorem 11.6. If K and L are real closed, then L is real closed,
Proof. Suppose K and L are real closed. Let 1 = cf(K). We will
show that T ig felaﬁively algebraically closed in K. S

12 .;.,‘cn‘ are in L, and @ is in X and such that

o+ cian—l + oer €y =0+ By Lemme 11.2 there are nets (c

Suppose ¢
7 ml}h<r
(1 Sm< p) in L such that [cmk]k<r converges tg- e Then-
-1 -
(® + T S PP cnh]k< .

i.e., to o. By Theorem 1.1, L(i) is algebraically closed, so the

convefges to o + clan_l oo + c_,

equations

n n-1 : - o ,
x4+ ey X ARERE S0 | , (} < T)

split in ‘L(i). For each h <1 number the roots of the above equation

in L(i) as Qys voey %+ Then for each A,
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S
a“+cna“ +oeen +°n>.“g(°"°m>~) .

We take mOrms

Nm(a;lhuap-l%“h RE T rm(o0, )

Now

-an+clk(fl"'1+ e e, € Ky
so that
k}fm(of‘hl,\f‘i%"ﬁcm) - (a“wna“‘l+---+cm)2 .
It follows that

-1
{Nm(anmna“ T '*cnx).]_mr

-~

converges to 0. Then (I Nm(a—cxmh)}h{_[ converges to O. By the
o .

corollary to Lemma 11.h there follows the existence of & series
(O!p] u<t ;n L(1) such that [I{;n(o&-au)}u<6 converges to 0. Now clearly
there are, for each 1 <8, £, and mu in L such that
¢ = £ +1im , and then '
(MU n

Nef{o~o ) = Mn(0-2 “im ) = {2 )2 +m®
TR Tt m n

Since [Nm(.(:!b-t::u!:;)]-”_<5 converges to 0, it follows that. [(()&--ﬂp)a]‘I.L<B

converges to O, whence O | converges to O wrence.
g ’ { Bu]u<‘6 g ;, ¥h (ﬂp]u,(&

converges to «. Since the £ ‘are in L, 1t follows that O e L.
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clearly L = ¢, ¢

Thus L 15 relatively algebraically closed in K, and since K

is real closed it follows that L 1is real closed., This concludes the

proof.

11..7. There are certain other notions of closure which it is aprropriate
to consider. These are incorporated in the following definitions, where .

(K,L) 1s any pair of ordered fields.

11.7.1. CL 1s defined as the set of those x in K such that for al1

€>0 in L there fsan £ in L with |x - 4| < €.

11.7.2. Cright is defined as the set of those x in K such that for

all €>0 in K thereisan £ in L with x<f<x + E,

11.7.3, Cleft iq defined as the set of those x 1in K such that for

all €>0 in K there is an 2 1in L with x - €< 4 < g,

11.7.4. cL,right is defined as the set of those x in K. such that for

all €>0 on L there is an ¢ in L with x < ¢ <X+ s.

11.1.5. CL left is defined as the set of those x in K such that
2’

_ £ -
for all €>0 in I there isen £ in L with x - €< g <'x.

Lemms 11.8. 1If L is cofinal in K, then

[

=0, =

L= Cright “lert = Op,rignt = Cp,1es -

Proof, Suppose L is cofinal in K. Then L 1is coinitial in K. Then

I Cright = CL srights 80 Cpopy = Cp )
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We now show that Cright = cleft’ and it will clearly follow that

Crignt = Clert = L Firstly, one sees easlly that Cright is closed

under +. Secondly, since L 1s cofinal in K, it is clear that

LC Cright' Now suppose X € Cright’ apd & > 0. Then there is an
€ > 0 in L. such that 0 < g < &. Now -E, 18 in cright’ since it

{s in L. It follows that x - g 1s in Cpy.p,. Thus there is an f

in L with
x-g <2< (x—sl) + El‘=_x .

Then x —€ < £ < x. Since € was an arbitrary positive element of X,
c -

we have thus shown that _Cright < Cleft A‘similar argument gives the

converse,rso cright = Cleft' It follows that L = Cright = Cleft' The

lemma follows.

. —

Lemma 11.9. If L 1is not cofinal in K, then Clert = cright =5L = L.

Proof. This 1s straightforward.

11.10. We now show that if (K,L) is a pair of ordered fields, and

L 1is not cofinal in K, then C = Cp, right = cL;left, but none of
these sets is a field. | _

As usual, let VL bg the ring of I-bounded elements of K, and
let ' be the mximal ideal of non-units of- vY. Then VL/IL is an
ordered field M, in which L usy be éanonically enbedded. Ve have

the canonical place VF - M, and n is weakly order preserving.

{1 ’
Let L( ),b¢ the closure (ef. 11.1) of L in M

29




Lemma 11.1l. Suppose (K,L} is a palr of ordered fields, where I 1ig
ol ) ;

not cofinal in K. Then

(1) o v
(11) x e C;, 1if and only if T{x) ¢ L( )
(141) c. = ¢, =C

L L,right L,left _ -
{1iv) C,, is not a field. - ‘
Proof. Let (K,L) be a pair with L not cofinal in K.

L
But then lxl<|£|+l so x e V. Thus chvL.

(1) Suppose x € C.. Then there is an £ in L with [x -~ 2] < 1.

(ii) Suppose first that x ¢ C Let m be an arbitrary positive

L
element of VL/I » Since L 4s cofinal in’ VL/IL,. there is an ¢ in

L with 0 < £ <m. Now there is an 2, 1in L with [x-zl<z

But then by the fact that = is weakly-orderapreserv*ng,

[n{x) - .ell <2 <m. It follows that if x € Cr.s then =n(x) ¢ 'r:(").

Suppose conversely that x ¢ VX and n(x) e f(#). This means that
if m is an arbitrary positive element of VL/IL, then there is an 4
- in L such that ]ﬂ(x) - 2} < m. Teking m in L, we conclude that

it zl 1s an arbitrary positive element of L there is an 52 in L

such that [rn(x) - 'zel < 4,/2.. But. then Ix-z | <2, It follows easily

1

that x ¢ Ci . Thus if x ¢ v ang (x) e L( )! then x e C.

(iii) Wé leave this &8 an exercise. One uses the fact that I is
cofinal in VL/i and the same sort of argument as in 11.8.
(iv) Let t be a positive element of IL. Then + ¢ Cr, by (ii).

But clearly t J Cr, since ¢ E Ve
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gection 12. Algebraic Dependence

We refer to [23] for definitions of the basic notions perteining to
algebraic dependence, and for proofs of the basic results. In this

gection we emphasize certain facts about transcendence bases, needed for

Chapter‘2.

] c
Lemma 12.1. Let Fl, Fsy F5 be filelds, with Fl - F3, and let 312 be
a transcendence base for F2 over Fl’ and B23 a transcendence base

for F3 over F2. Then- B12 U 325 is & transcendence base for F5

over Fl.

Proof. Let Fl’ FB’ Bl2’ B25

F3 is algebraic over F2(B25), and F, is algebraic over Fl(Bl2)' Thus

be as in the statement of the lemma. a

F3 is algebralc over Fl(B12 U B25).

Suppose 1s not a transcendence base for F3 over T,.

325
Iet r be the minimum cardinality of a finite subset of 312 U B25
y i - ‘ . e U

algebraically dependent over Fl Select El, ’ gn in B12__ B25
such that (El, vee, En} is algebraically dependent over F,. We
distinguish two cases.

Case 1 [El, o En} _.B12 This cannot occur since B,, 18
independent over Fl' '

Case 2. Some £, 1is in B 0%’ Without loss of. generality, EO € B

25"
Since no proper subset of [El, cesy § } is algebraicelly dependent over

i

Fl, since n was chosen minimal, it follows , using the exchange pr1n01ple
for algebralc dependence, that Eo depends algebraically on (51, cery gn]
over F,. But then there is an integer k, and P, P, ...y B 1n

Fl[xl,...,xn] such that not all PJ are 0, and
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s

K K .
z PJ(gl,...,En) . EO = 0. By the minimality property of [Eo,...,ﬁn),
o
iot all Pj(gl,...,gn) are 0. Without loss of generality, either
[gl,...,gn] N By = g, or (&,...,6) N By = [gl,...,gnl] for some
o - In the first case, & is algebraic over Fl(gl,...,gn), a sub-
field of F,. In the second case, §_  is algebraic over F2(§1,...,§n ).
1

In either casé, we contradict the fact that 325 is a transcendence

tase for F:5 over F2. This concludes the proof.

| cF < ‘
Lemma 12.2., Let Fl’ Fé, F3 be fields with Fl < Fé < Fj’ and let

be transcendence bases of Fé over Fl, F3 over F2 i

312’ 325
respectively. Let 812’ 825 be subsets of BlE’ B25 respectively,

and suppose « is in F2 and algebraic over Fl(SlZ’SEB)' Then «

is algebraic over Fl(sl2)'

Proof. Let Fl’ Fé, Fj’ B12’ B25, 812, 825, @ be as in the statement

of the lemma. Let M be a subset of 812 U 82_j minimal with respect

to the property that @ 1s algebraic over Fl(M). Let M, be

512 N M, and let M2 be 825ﬂM. We claim L% is empty. Suppose

not, and select a fixed £ in Mé. Then by the minimality of M, and

e A I A b G LA S 1t gL

the ethange principle, £ 1is algebraic over Fl(a, M-{£}). But then ¢

[

1s algebraic over fFE(Mz-{g}), which contradicts the fact that 323. is a
transcendence base for F3 over Fz.f Thus‘ Mé =@, and a is algebraic

over F,(M ). This proves the result.

Lemma 12.%, Suppose (Fe, Fl) is a pair of ordered fields, with

card (Fé) = tr.d. F2|Fl.- Then there Is a transcendence base B12 of

F, over F,, such that B, 15 dense in F,.
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proof. Suppose (F,,F ) 1s & pair of ordered fields, with
0% 271

04

A<
A<H tk € Ih' Lgt Flu be the algebralc closure in- F2 of

Fl({th”kp' Then +tr.d. FlulFl<Ra, 50 Flu;éFz, and so, by

since '[tk}h<n
{t

X}NSFJ is algebraically independent over F,.

Now by transfinite induction we get a set {t ]. which is
1S kdﬁz

1S <¢q1. The lemma follows directly.

63

card(FQ) = tr.d. F2|Fl = Ra' Well order the set of non-empty subintervals
of F, as [Ihlh<wb' Let u be an ordinal less than «,, and suppose

the set (%) ig algebraically independent over F,, and for each

Lemma 3.8, Flp does not cover Iu' Select tu in Iu with tu ¢ Flu'

Then tp ‘48 not algebraically dependent over F, on {tk}k<uf and
is algebraically independent'over Fl it follows that

algebraically_independent over Fl’ and such that ‘tk e~I% for each

i
i
f
;
3
{
3
f




CHAPTER 2.

ISOMORPHISM THEOREMS

Section 15.7 qa—Systems '

Let 28 be a relational system, with domain A, such that H:?

bas among 1ts relations a unique linear order < on A.

Definition 13.1. ILet X and Y be subsets of A, Then X <Y if

and only if for every x in X and y in Y we have x <y.

Definition 13.2. Let @ be an ordimal. Then = is

o if and only

if for all 'X and Y of cardinality less than Ra, if X <Y there

i & t in A such that X < {t) < Y.

If 3 is (A,<) and D is o ¥e say simply that & isan
qa set.

' We make the simple observation that if =f is then the

T
cardinal of ®f is at least R o @t 3 has no first or last element
in the order | < .

We now list some isomorphism theorems for oy systems of cardinality

® .

a .
Theorem.13.5. Let le, '982 be Ny Sets of cardinality - Ry Then Jl
is isomorphic to JE' Indeed, if JJ., 32 are subsets of ‘51’ ,32_

respectively, both of cardinality less than & , and © extends to an :

a}
isomorphism of Jl onto 52’ then @ extends to an isomorphism of

,31 ontp ;82.




Theorenm 13.%. Suppose « > 0. Let .31, ‘;32 be Ny D-groups of
cardinality Na. Then ,Sl is isomorphic to ée. Indeed, if ﬂl

and J o are D-subgroups of él’ ‘32 respectively, both of cardinality
less than Ra, and ¢ is an isomorphism of Jl onto 52 then @

extends to an isomorphism of J.‘L onto 32.

Theorem 135.5. Suppose @ > 0. .Let 981, ,82 be Uy real-closed fields
of cardinality Ra. Then ,9 1 is isomorphic to 32. In@eed, if

51’ 52 are r.eeli.l—r;‘.losed subfields of Jl, .92 respectively, both of
cardinality less than ‘ Ra, and ¢ 1is an isomorphism of Jl -or;to J2’

then ¢ exbends to a.n_isamorphism of Jl onto _.32.

Tt should be observed that ﬁhe restriction in 13.4 and 13.5, namely
that @ > 0, :Lé essential. -An o system 1s simply & system whose
ordering is a dense ordering without first or last element. It follows o
that all 'D—gro_ups and ordered fields are 7 systems. Bubt, as has been
observed many times, not all countable D-groups are isoﬁorphic and not é.ll

countable real-closed fields are isomfphic.
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Section 14, Pseudo-Completeness

Definition 1k.1. Let (K, v, G} be a valued field, and A e limit

ordinal. A well-ordered series [ap] s ©Of distinct elements of K ig
A-pseudo-Cauchy in (K, v, G) if ang only if for all p<eo< ¢

v(au—ap) < v(aT—aa).

Lemma 14.2. Suppose [ap]p<A 1s A~pseudo-Cauchy in (K, v, G). Then if

p<.o

v(aa—ap) = v(ap+l—ap) .

Proof. Suppose [ap]p%h s M-pseudo-Cauchy. If ¢ =p + 1, then
trivially

~ : v(ap+l-ap) = v(ac—ap)
I 6>p+1 then v(a -a) < v(ama ), so

v(a -a ) = v(a -a b1 ap) = v(a

o 2o te pt178%p) -

Definition 1k.3, Suppose {ap]9>h is 'Kﬁpseudo-Cauchy in (K v, G) and

X e K. Then X is a limit of [a } oy If and only if, for all p< h
v(x—ap) = v(a

p+1"ap) ’

Definition 14k, Let o be an brdinal and (K, v, G) be a valued field.

Then ,(K: v, G) is o o Peeudo-complete if and only if, for every A <cn

every A—pseudo—cquchy serles in (K, vy, G} has a limit 4n K.

)

iy
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Lerma 1k.5. Suppose (K, v, T) 1is a valued field.
lemma Li:)
a) If [a.p] o< i A-pseudo-Cauchy in (K, v,T), and [apK]Kq;

ig a8 subseries of (a} where p is & limit ordinal, then

p’ p<N

{a DK} K<t is p—-pseudo-Cauchy. |

b) Suppose [a.p] N is A-pseudo-Cauchy, and [apK}.K < li's a
cofinal subseries of [a.p] <N Then if x i a limit of (é'pK]Kq;’
x 1s & linit of (2] p<?s.; '

8) This is obvious from 1h.1.
b) Assume the hypothesis of (v). By (a), [apKf]K.ép is p-pseudo-

Suppose P < 0 < A Select

Cauchy. S se x is e limit of a .
uchy uppo , | of | pK}.Kq‘
Px with pK>cr. Then
v(x-a_) = v(a —a )
e Pkl K B
>v(a_ -a)

But then

n
<
~

A
o
3
p—

v(.x—a. p)

Therefore x 1s a limit of {ap] .
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lerma 14.6. Let K be an ordered field, with order <« such that X
lerma 4.0

KJ
5 Ny Let G be an ordered group, with order <; &nd let v be g
convex valuation of K onto G. Then (K, v, G) is —pseuﬁo—conrplete.
.'r‘roof. Let K, <K’ G, <, v be as in tne statement of the lemma. Suppose
(a p]p<?~. is A-pseudo-Cauchy in (K v, G), where A < ®@,. We are going
to show +that {ap)pﬂ. has & limit 'x in K. We distinguish two cases,
_CEE' There 1s a cofinal subseries {a.p }qu which 1s monotone
in the order <K

We will show that (a_ ) has @ limit x, and then, by 1k.5(b),

Pg’ K<

x will be a limit of {a } s+ Without loss of generality, therefore, we

can assume that [ap) o<h 18 monotone in the order <I{ Also, since x is
& limit of {ap] o<

assume without loss of genera.llty that {a ] o p

- in <K

For each p < A we define 7, &s v(a

if and only if -~x is a limit of [—ap} pcpy Ve can

is monotone increasing

p+1—ap)'_ Theln, by 1k.2,

is monotone inc'rea.sing. For

if o> p, v(ac—ap) =7, Also, {7p}p<;\_

ea . -o- : »
ch p <A we define bp+l as 'Ea“pﬂ{ a.p

Suppose o, p < A.

If o <p+1,

K p+l<K ot (pﬂa)‘bpﬂ

-

Suppose o > P+ 1. Then v(aa—-a. and

p+l) = 741

v(bp+l—a'p+l) = v(ap+l—a.p) =7, < 7 ot1

By convexity, lbpﬂ _ afp+l_l >K 'fla.c_- a’p+l.l" "But a'p+l <K s.a and

a ' R - : .
o+l <K bp—!—l It follows that bp+l >K a.a

._53
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It follows that for all o, P < N we have 4. <K bp+l' Since K
is Ny there is an x in K such that for all o, P < A wWe have
8, <l( x <K bp+l' We claim x 1s & lim.th of [E'p]_p<?~.' It 1s clear that
if p<g¢o lx - a.pl 21{ ‘.a'o - apl_, 80 by convexity

v(x-a.p) < v(ad-a.p) =75¢ On the other hand, suppose P < 0d < T. We have

lx - épl SK‘. lb'r'i-l - a.pl,' so that

"(?"‘e‘b) 2v(b ya)) = "(a-r+1’ar+ar+1"_ap) ’

Now v(a'-r+l_a'-r) =y a,) = 75- There#ore‘

T +lD

, and v(a

v(a"rﬂ- T+l ap) =7 'v(ac—ap)

Therefore v(x—a ) > v(a. -a ) Conbining our results, we have proved that

v(x-—a.p)J = v(aja—ap), if p<g, sothat x 1sa limit of [_ap}p<?\-

Case 2. No cofinal subseries of {B'p]p'<?s.~ is monotone in the
order ﬁ{ '

We observe first that if a <K a.pﬂ and o>p +1, +then

&, <g By For, since [a ) .is pseudo-Cauchy, v(a. - +l) > v(a.p_l_l p)

p<A
and so by convexity la - a'p-l-ll <K ls. - a.'p!- _ The result f_ollows. By
8 :
similer a.rgument we can easily show that if a'p+l <K a.p and o > p + 1,
then =& <K a . A simple consequence of these results is that 1f ¢

is a limit ordinal with ¢ <A, end T 1is an ordinal less tha.n g so that

a B - -
( D]TSp<c is monotone, then [a'p]'r:gpscr is momotone.
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s j ) - v
,
. i

Let Sl be {p‘ap <k a ], and let 82 be {pJap+1 <k a ]
Then by the remarks above, and since we are in Case 2, Sl and 82 are
both cofinal in A, Since the &, are distinct, Sl U 82 = A,

Let Zl be {ap!p € Sl], and let 22 be {ap!p € 52]. Let

8, Dbe a member of X, ang g a member of Z,- It is clear from
L 1 Py :

the results two paragraphs back, that ap <k a

Since K 1s Ny» there is an x sych that, for all fp in Sl

and Py in 82,' ap <k X <k &, « But now, by an argument just like

that in Case 1, we may show that x 4g a llmit of (a } o<

Thus in all cases {a }p<x has a limit in K, and the result is

proved.
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section 15. Extension Theorens
oechtion ~7 }

Theorem 15.1. Suppose ¢ > 0. BSuppose Kl and Ké are real-closed
fields. OSuppose M1 and NE are real-closed subfields of Kl’ K2

respectively, such that for i=1, 2, Mi is Mi—maximal in Ki, and

tr.d. KiIMi =i§a. Suppose H]- and H2 are rgal—closed subfields of

17 and tr.d.

HilMi < Ra' Suppose {p, V) 1is an analytic isomorphism of

% M x Y Y, .
H, v, [H]) onto (H,, v v.c[H¥]), such that

o bR vl oo U e T e Tig o

¢[Ml] = M,. Suppose ¥ extends to an order-isomorphism V¥ of

M, x Y

v, [K,] onto v,

0 Ty

onto K,, such that (p', ¥') 1is an analytic isomorphism.

Ki, K respectively, such that, for 1 =1, 2, Mif; H

(Ez, v
* . . . . )
[K2]. Then ¢ extends to an isomorphism p' of Ky

We are going to deduce Theorem 15.1 from a very important theorem

of Ax and Kochen. We need a few algebraic preliminaries.

Definition 15.2. Let (K, v, G} be a valued field. Then (K, v, G)

has the unlqueness ﬁroperty if and only if v has a unique extension to

every finite algebraic extension of K.

Lemma 15.}. Suppose‘ K. is‘real closed, and v 1s a convex valuation of
K onto G. Then {K, v, G) has the unigueness properfy.
Proof. Suppose K is real closed and v 1is a’convex valuation of K onto
G. By 1.3, K has only one proper algebraic extension, namely K(i). -

‘It is & standard fact of valuation théory that there exists an
extension of v %o K(i);

Suppose v, is @ valuation of K(i) onto &, with v, extending

V. Let V, V

1 be the valuation rings of v, vy respectively, and «x,
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:& the places of v, V1 Tespectively. Now
2v. (1) = v (12) = v (-1) = v{-1) =0 .
1 Sl 1
Since G, is torsion—free, vl(i) = 0, Also,
2. 2y 1) o o
() (1)) = % (i%) = m(-1) = -1 ,

Now, since K 1is real Closed and v ig convex, n[V] is real closed,
by an argument like that in ?.8. Let j be _ni(i); Then 32 = -1,
and “i[V1] 1s the algebraic closyre of n{v]. _

Let Z be an arbitrafy element of K(i). 2 pag & unique represep—

tation as x + iy, where x, y ¢ k. It x/y ev,

v,(2) = vi(y) + vi(x/y + 1)
| =v(y) +v (1) + vy (141 (-x/y))

=v{y) + vl(l+i(—x/&)) . ' .

If y/x e v, v, (2) = v (x) + vi(I+ ¢ y/x). Thus we see that v, is

- determined by the values vi(A+it) where t e v, gyt if ¢t e v,

1+ it ¢ Vi and
xl(l+it) =1+ % (it) =1+ Jx(t) =0 .

Then vy (1+it) = o, -

Thus vy is unique, ang the lemma is broved,

15.4. As formulated in 15.2, the uniqueness Property is defineqd by
quaﬁtification over field extensions, I¢ is a remarkable ang important faet
that this second-order Quantification is not essential for the definition

of the uniqueness Property,
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Tt has been shown that an arbitrary valued rield (X, v, G) has

.
i

4

%

I3
I

the unigueness property if and only if Hensel's Lemma holds for

(K, v, G). (In the notes we give references for this result.) In

gecordance with this result, we shall say that (K, v, G) is Henselian

Sl it

4f and only if {K, v, G} has the uniqueness property.

S

We do not use the following result 15.5, but state it here, without

o i

proof, on the grounds of its relevance and importance.

lLemma 15.5. Buppose (K, v, G) is Henselian, with place x  and
valuation ring V, and suppose x[Vv] has characteristic 0. Let M Dbe
any subfield of X maximal with respect to the property that v*[M] = 0.

Then n: M - x{V] is an isomorphism.

Remark. By 15.3, 6.8 is a special case of 15.5.

’ *
Definition 15.6. Let (F, v, G) be a valued field. A map T: G—F

is a cross section of V if t© 1is a homomorphism of G into the

E *
multiplicative group F, and Vv OT is the identity on G.

Lemma 15.7. Suppose F 1is real closed and v 1s a convex valuation of
F. onto G. Then there exists a créss seetion 1 of V. |
Proof. Suppose F 'is real closed, and v 1s @ valuation of F onto G.
Then G 'is ﬁrD-group, by 8.6, and so may be construed as & vector space
_over .Q, the rationals. let [gi]ieI be a b;sis for G over Q. For
esch 1 in I select a positive x, in K such that v(xi) =g .By
x,/n

1 , Wwhere m, n € Z, we understand the positive nth root of x?.‘-If

g € G, there is an integer k, and il, ceny ik in I, such that

k .

g= QJr." Xi s where the Xy are in Q. We define (g} by
F) : b
d'—_-
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k rj
g) =M x
()= Ty

. It is clear that t 1s a cross section of v.

| | }
gemark. The above proof clearly shows that if - H is a subfield of

X then there is a cross section <t such that t[v[H*¥]] C H.

Sefinition 15.8. Let (K, v, G, ) be a valued-field with cross-section

1. Let =« be the place of v. A subfield H of K 1is normalized,
with respect to v, if for every g in v{H*] there is an x in H
such that v(x) =g and =n(x : 1(-g)) = 1. (In particular, if

1[v[H*¥]] is a ‘subset of H, H 1is normalized with respect to 71.)’

Definition 15.9. For i =1, 2 1let (Ki, Vis Gy ri) be valued fields

with cross section, and let T be the place of Vs Let Fl’ F2 be
subfields of  Kl’ KE- respectively, and let {m, ¥} be an analytic
isomorphism of (F;, vi.1 Fi, vl[Fl*]) onto (FE’ v, 1 Fos VE[FE]>.
Then {m, ¥ is a norm-isomorphism if and only if for every g in

*] there is an ; h that (-g)) =1 d
vl[Fl ere is an x in F, suc a nl(x 7,(-8)) = » an
ﬂe(qj(x) ¢ Te(“k(g))):: 1.

We can now state the théorem'of Ax and Kochen.

: :

Theorem _5;10. Suppose o> 0. Supp05e_ (Kl, Vs Gl) and (K2, Voo G2)
are Henselian valued fields with fixed cross-sections Ty and To
respectively. Suppose that the residue-class fields of vy and v, are
of characteristic 0. For i = 1, 2 let Mi be a subfield of Ki

. * ) N
maximal with respect to the property that vi(Mi) = 0. Suppose +tr.d.
Ki,Mi =Ry for i=1, 2, and (Ki, Vi Gi) is w -pseudo complete.
Suppose, for i = l, 2, that Hi is a normalized, relatjively algebraically

Clo i . t .Cr. sile . x .
sed subfield of K, such that M, ©H end tr.d | HllMl < B _. Suppose

T4



{9, y) is a norm-isomorphismn of Hy onto  Ha» such that Q[Ml] = Mye
guppose Yy extends to an order-isomorphism y' of Gl onto Gpe Then

¢ extends to an isomorphism @' of Kl' onto Koy» such that (o', ¥")

is an analytic i somorphism.

proof of 15.1. As formulated, the hypotheses of 15.1 closely resemble

those of 15.10. To prove 15.1 we need only the observations below. We

assume the hypotheses of 15.1.
m,
a) Let G, Ve vKl_[x.l] cor i =1, 2. Them, B 15.3,

M.

- i . . .
(Ki, Vg Gi} is Henselian for i=1 2.
. Mi .
b) BY 1h.6? (Ki’ Vi s Gi) is qa—pseudo complete, since K, is
i :

N

c)' By the remarks after 15.7 we gselect B cross section T4 of -

M, ” ' '
v 1  such that T [v [H 1] C:H . We then define & Cross-
1 M2 ' )
. -1 .
section 12 of er by: Tp T 0] 0711 o ¥ ~. Then Hl and H2

are normalized, with respect to Ty and Tos and {9, ¥) is a
ormplsomorphlsm. For i=1, 2, Hy 1s real closed, and S0,
by 1.7, ﬁi is relatlvely algebraically closed in K-

Thus we See that all the hypotheses of 15.10 are satisfied, and 15;11

follows.

15.11 ll- we recall from field theory the notion of linear disjointness.
suppose P and L &are subflelds of a fleld K. It is a standard result

that the following two conditions are eqvaalent
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(1) Every finite subset of P that ig linearly independent over
LOP is also linearly independent over L.

(1i) Every finite subset of 1, that is,linearly independent over
LNOP is also linearly independent over P.

When either condition holds we Say that I ang p are linearly
disjoint 6ver LNP., It is easily seen that if L and P are linearly
disjoint over T, n P, and B is g transcendence base for I, over
LNP then 3 is algebraically independent over P, so that if Ip
is the compositum of L and P thep B is a transcendence base for
LP over p.

Now suppose (XK,L) is a Pair of fields and p. jg a subfield or .
We say that P ig L-independent if P and 'L are linearly disjoint

over L N p.

15.12, Suppose  (K,I1) 1is a pair of ordered fields, and p is a subfielg

of K. P ig said to be L-placed if ang only if
. ‘
U1 R TS . L] .

(In more Plcturesque language, every element of p that ig L-boundeq in

K is L-infinitesimally cloge to an element of p L.)

15.13. Suppose m and n  are finite ordinals, and ¢ is ap arbitrary
ordinal. Then ¢ =m (mod n) if ang only if either ¢ is a positive
finite ordinal and g =p (mod n) in the usual sense, or g is A +'Oi’
where A is a limit ordinal and 0y is g positive finite ordinal and

9 ¥m (mod n) in the usual sense,
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15.14. If K is a real-closed field and P 1s a subfield of K,
ReP is to be the real-closure of P in K, i.e., the relative

algebraic closure of P in K.

Theorem 15.15. Suppose «@ > 0. For i =1, 2, suppose Ki is a real-
closed field, and Mi is an Mo reél-closed subfield of Ki’ of
cardinality Ra, such that Mi is Mi-maximal in Ki. For 1 =1, 2,
suppose Bi is an Mi—placed, Mi-independent, real-closed subfield of
Ki’ of cardinality 1less than Ra.l For i =1, 2, let Ti be the

real closure_of MiPi Jin Ki. Suppose ¢ is an isomorphism of

(Pl, Py q Mlj onto (PE’ P, N M2). Then ¢ extends to an isomorphigm
@' of (Tl, Ml) onto (T,, M2)°

Proof. Assume thé hypotheses of the theorem. It is clear for i =1, 2
that tr.d. _Mi]Mi 0 Pi = Ra._ Using 12.3, we select transcendence bases

B)s B, for Ml over M, ﬂ‘Pl, M, over M, n Py respectively, such

that Bl is dense in Ml and 32 is dense in M2. Well-crder Bi’

for i=1, 2, as [bhj . As observed earlier, B, is a trans-

h<w

cendence base for Ti over Pi, for i =1, 2.

We are going to define inductively for each A< %1, real-closed
. N . X A _A onto A
fields Pi’ with Pi c ?i’ and isomorphisms @ : Pl —_— P2 such that:

o0 . 0 .
i) Pi = Pi and Py = Ps

i1) If p <A, POCP and oF _cp1P§‘_,

iii) a) If A =0 (mod 2) then Pi = RePih 1)(b ), where
' ; (A-1)
v, o= vl(h) = the least ordinal v < & such that b ¢ Py R
N a1}, Vo v, vy v,
and P, = RePé )(be ); where b,” € By, and (b ) =b,";




, . "
b) If A=1 (mod 2) then Pz = ReP£ l)(bll), where
A (A1), H2 ,
b Bl’ and P, = ReP, (b2 )}, where My = HE(A)
= the least < w, such that b"l £ P(A-l), and

.cp(b )-b

¢) If A is a limit ordinal, = U P‘° and 9" is the I
p<A :
union of the maps mp, for p < A,
We show how to achieve the inductive step. The case (iii)(e) 1is
easy, and (iii)(b) is just like (iii)(a), with the roles of B, and
"B, reversed. (iii)(a). Suppose A =0 (mod 2), and we have carried

out the construction for all ordinals p < A,

The following may easily be verified, using transflnlte induction:

1, (A. 1) -
2. P£l -1) has cardinal less than Ra; ;
3. Pghpl) is Mi-placed; _ - ' o

i, m(h-l)lmaps M; N Pik-l) onto M, N Pé}"l).

(1) and (2) are clear, (3) is obtained by repeated use of 7.4 and 7.5,
and (h) is obtained by repeated use of 12.2.

By (1) and (2), and the fact that tr.d. T [Pl =R, We see that
there are v < ﬁy ‘such that bI £ P£K-l). Let wv. be the leasf such v.

i

v v
bll ‘mekes the cut tz(P(h-l), b l) in P(kpl). Let A be

(X l)[&.’(P\?"l), b, )] and let T be P(}‘ l).-A Then A < T,
Thgn AN M, < t n M,, and by the. N Property of M, there is a

non-émpty interval I of M, such that AN M,<I<rAn M2. Since B,

R | | ,é



T %_?U]
™"

\

|

intersects 1. Let Vo be thé least Vv such that

A- v A- Vo
';,‘; ¢ I. We claim f(Pé l), b22) - A. Suppose t € Pg 1) and t < b2 .
= v v

gince b22 € M‘2’ t 1sg either Mg-bounded or t<0K< b2 .

Case A. ¢ is M2-bounded. Since _g\ l)

(A-1)

is dense in ME, B

B A O L

CRPRS

is Mz-placed, there is a

'_-‘W-Fn*!m.*m-..n Py VAR T s

unique min M, NPy such that t -m is Me-infinitesimal.

f o eeemliit R i .

[- Suppose G)(}"l)(ml) =m, and q)( )(tl) = t. Then m, € Ml’ and

t, = Wy is MlﬂP(}"l)- jinfinitesimal. Since Pg_)"l) is Ml-placed,

1
v‘
fi g, - m, 1is Mi—infinitesimal. Since m € M, n P(}\ l) and m < b22,

1 1
1ows t Y1, put si b1 d t '
jt follows that ml < bl Bu since Dy € Ml, arn 1 my is

Ml-infinites:_mal , it follows that t < b l But then since

Q(}"l)(tl) =1t, it follows that T € A,

v ' v
case B. t <0< b22. Since O € My, it follows that ©0 < byt
v

(A1) by

Suppose @ (tl) = t. Then %, < 0< b Therefore t € &

. . (A1) Vo
Thus in either case We have shown that if t € P2 and t < ‘t::2 ;

then t € & Conversely, we suppose U € A, and show that u < b2 .

Smce ned, u Ma-bou.nded, and so, since Pg\-l) is Mz-placed,

there is en m 1in M2 such that u -1 is Mz-:l.nflm.tes:.ma.l. Then,

gince b eM,a,

v v
" 2 2
u<b2 @m<b2 .

Thus we may assume without loss of generality that u.e€ Mye Suppo.seﬁr %

A-1
( )(m)-u. Then my € My, and, since ueA m1<bl It

ll

follows that (N'l) (ml) < b, V2 nis concludes the proof that

e
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it now follows by familiar principles that Q(kpl) extends to an

{somorphism Q( ) of Re P(K l)(b 1) onto Re P(h l)(b 2)

such
that o )(b 1y - b22 Thus the inductive step is achieved.
It is easily verified, for i = 1, 2, that P? =T,,
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and that o', the union of the Ql for A< Wys - is an isomorphism of
Tl onto T2’ mapping Ml onto M2. Clearly o' extends @, and we
are through.

We are going to combine 15.1 and 15.15 to get the final theorem of

this section. First we need a lemma.

Lemma 15.16. Suppose K is a real-closed field and M is a subfield.
Suppose T 1s a real-closed subfield of K, with M & 7., Let m be
the dimension.of vM[T], construed as a vector space OVer Q. Then

m < tr.d. T M.

Proof.. S&ﬁpose s o> & are in VM[T] and linearly independent
over Q. Select Xy, «cey ¥ in T such that for 1< i <Kk,

vM(xi) = g;- Suppose

) - n Tk

m X, -.
K-tuples T RE

=0

where the summation is taken over all k-tuples of non-negative intégers,

each nm ié in oﬁl finite m are non-zero
(n ae M, y nt :l-y (nl,- .,nk) o < ?

)

and m(o 0 o) is non-zero. It follows that there are distinct k-tuples,
’--a, , : . -
(nl,...,nk} and (n ,...,nk> - such that

T

nl t

v (m(nl,_a.’nk)x ) =V (m(n,,_. ,nk)x ---x )I..

M M
Nof v (m(nl""’nk))= v (é(ni""’ni)) = 0. Therefore

k n!

k 'n,
iglvm(xil) ) i§1VM(xil)
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an isomorphism ¢t or (T, M) onto (T,, M,). It is clear that o

- 1s an analytic isomorphism. Now since 'Pi has cardinality less than

Therefore

S S M

™M
fa]
()
]
.
]
™M
=]
[te]
| o
LD I Ty

But this gives a dependence between the g's, which is a contradiction,

e B Y ST P

Thus Kis eeey X, are algebraically independent over M. The result

follows,

Theorem 15.17. Suppose a > O. Suppose Kl and K2 are Moy real-
closed fields, For i = 1, 2, suppose Mi is an et real-closed

subfield of Ki’ of cardinality Ra, such that tr.d. Ki[Mi = ﬁa,

- - - 1 N ‘a = N
M, is M, -maximal in Ki’ and v [Ki] 1s n, of cardinality Ra.

For 1 =1, 2, suppose P, is an M, -placed, M, -independent, real-
closed subfield of Ki’ of cardinality less than Ra' Suppose @ isg
&n isomorphism of (P_, P, D Ml) onto (P2, P, N Mé). Then ¢ extends-

to an is?morphism of (K., Ml) onto (Ka, M,).

.t

Proof. Assume the hypotheses of the theorem. For i = 1, 2, 1let Ti

be the real closure of MiPi in Ki' Then by 15.15, ¢ extends to

M -
induces an isomorphism ¥' of v.l[Tl] onto vMé[TEI, s0 that <¢', ?')

Ra, it follows that tr.d. Pi]Pi n M, < Ra, and so, since P, 1is

R B LS e LA AR Szt o

M, -independent, tr.d. Ti[Mi < Ry By Lemma 15.16, the Qimension of

Mi _ ' M. _ :
v [Ti] is less than Ra, and so v 1[Ti] has cardinal less than - Ra.
, : ' M

But then by 13.4,’ ¥' extends to an isomorphism ¥" of v l[Kl] onto

-
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v [K2]. Thus Theorem 15.1 applies, and @' extends %o an isomorphism

A s S 4T R

o" of (Kl,Ml) onto (K2,M2). This proves the theorem.

Corollary 15.18. Suppése o > 0. Suppose Kl and K2 are T, real-

closed fields. For i =1, 2, suppose Mi is an 7, real-closed

g AR, BN ST T A

subfield of Ki’ of cardinalily Ra, Mi is Mi—maximal in Ki, and

vﬁi[Ki] is na of cardinality Ra. Then there is an isomorphism

%

of (Kl,Ml) onto (Ke,Mz)._

Proof. Assume the hypotheses of the theorem. Let Pi be (the copy

of) the real algebraic numbers in X,. Then P, is Mi-independent,

Mi-placed, and of cardinality less than -Rd. Let Ra. let ¢ Dbe the

jdentity” isomorphism of  Pl onto P2. Then by 15.17, @ extends

to an isomorphism of \(Kl’Ml) onto (KQ,ME).

P R
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section 16. " The Dense Case

Theorem 16.1. Suppose o > O. 'Suppoée, for i =1, 2, that Ki is

an 1, real-closed field of cardinality Ra, and Li is a real-
closed subfield eof Ki such that Li is dense in Ki and tr.d.
KilLi = R Suppose P,, for i=1,2, is an L, -independent real-
closed subfield of K;, of cardinality less than Ra, such that

tr.d. Ki[LiPi f Ra. Suppose ¢ is an isomorphism of (Pl, Pl_ﬂ Ll)
onto (P,, P, N L2)' Then ¢ extends to an isomorphism @' of
(Kl,Ll) onﬁo (K2,L2).

Proof, Assume the hypotheses of the theorem. We observe that Pi N Li
is relatively algebraically closed in Ki’ and so by 1.7, Pi N Li is
real closed. <

It is clear that Ll and IE are of cardinality Ra, and

ey
.d. ln = . 1 = .
tr.d LilPi Li‘ Ra, for i 1, 2 _
By 12.3, we select a transcendence base Bi of Li over Li ﬂ.Pi,
with B, dense in L. .. Then B, is dense in K,. Well-order B.
i i i i i

A ’ : -
as [bi]X<w - Again, by 12.3, we select a transcendence base Ci of

’ : . . ' A
K, over L.P,, with C; den§e in K;. Well-order C, as [ci]X<w

We observe that B, U C; 1is a transcendence base for Ki over P..

We will define inductively, for each A < %I’ real-closed sub-

. A -
fields Pi of Ki’ and iscmorphisms @h: P; onto Pg, such that;

N Q Q
(1) B =P, By =By, 9% = g5
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b A TR Hppe:

it R A A S P

(1it)

trivial.

()

)

()

(@)

(e)

(£ A =0 (mod &), then 7} =

b ¢ P(h l) and v, is such that b 2 ¢ Py

-1s such that C ﬁ P

' - »
(41) If e < %, then PP < Py, and el 199

(l-l)(b ), where

v, =V (l)'= the smallest ordinal Vv < %1 such that

1

(M- l) and

Ay v

S, 2
¢(bl)=b2)

A A1), M
1f » =1 {mod &), then F; = RePg l)(bil), where g
is such that b # P( l) and py = pe(k) = the
o A-1
smallest ordinal u < @, such that bp ¢ P( ), and
Y o
@ (bl) =
' A A-
1f A =2 (mod 4), then P, = ReP( l)(C‘. }, where
8, =D (X) - the smallest ordinal B < W, such that
5
' ;A=
w c ﬁ P(h l), and ®, is such that 022 £ Pé' l),A and
o) o]
Mo L 2
CP(C1)=C2,

Ir A 5‘3 (mod h), then Pl ReP(h l)(C ), where €&

U l) and 52 ; eo(l) = the

(A-1)

smallest ordinal £ < wy such that C ﬁ P , and
r, 51

. . A
If A is a limit ordinal, then P = Pg and Q

p<7L
is such that @kj Pg = qP.

We show how to perform the inductive step. The case (1ii)(e) 1is

We discuss (iii){(a) and (iii){e). The other cases are similar,
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with the roles of Pl and P2 reversed,

O (mod 4), and we have accomplished

Case (iii)(a). Suppose X

the construction for all ordinals less than A, It is easily seen that
A- .
the cardinality of. P§ 1) is less than Ra, for i =1, 2. Thus there

- ;
exist ordinals v < w, such that b; 4 Pi l). Let vl(l) be the
) e

i 1 ,
v (%) o ot 1 nalt
(A-1) . (A1) (A-1) 1'"/)). This set is of cardinality
Pl . Consider o Léy(Pl s by

A-
Yeast such ordinal wv. makes the cut é?(P£ l), b ) in

less than Ra.; By the Uy property of K2 it follows that there is a

non-empty interval I in K2 such that for all x in I
‘ ») . .

A-1 A-1 A-1)  Vaf
EE ) < oM gD, )

A-] :
B, 1intersects I, ' and, of course, I N Pé 1) = 0. ILet v, be the

€ I. By 1l.11 and 1.8 it follows

J1. Since B, 1is dense in Kss

least ordinal v < ua such that b;

A~
that m( 1) has a unique extension to an isomorphism
Vs o
5 -

v Vv
A
RePé l)(1[:22), such that @l(bll} =

ne

Moo (1), "1

P ..RePl (bl )
| A A-1), Y1 Y A1), Va2

We set P =lReP£ )(bl ), and P, = RePé )(b2 )» and the

induction step is achieved.

Case (iii)(e). . This is analogous to the previous case, except that

we work with the Ci rather than Bi, and use the density of C We

2.
omit the details.

Thus the construction can be carried out. But then it is completely

' A
clear that (J P, =K., and that the union of the ¢k, for A< w,,
Aow  * i _ a
— 04 .
is an isomorphism of Kl onto Ky« Let @' be this union map. Then
?' maps Bl onto B2, and so @' maps Ll onto LE‘ Obviously o

extends ©. The proof is now complete,
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corollary 16.2. Suppose a > 0. Suppose, for i=1, 2, that (Ki’Li)

are pairs of 7 real-closed fields of cardinality R, such that
L. 1is dense in K, and tr.d. K.IL. = R . Then there is an isomorpnism
i i il a ‘
Q': (Kl’Ll) = (KE’LE)‘
proof. Assume the hypotheses. Let Pi’ for i =1, 2, be the relative
algebraic closure of & in Ki, i.e., the real algebraic numbers.
Then P; 1is L.-independent, and tr.d. K, [p,1. = tr.d. K, [L, =B,
: i i'titi i1 o
Let © De the "jdentity" isomorphism of Pl onto P2' Then by 16.1,

¢ extends to an isomorphism @': (Kl,Ll) = (KE’LE)"
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CHAPTER IIT

THE ELEMENTARY THEORY OF PAIRS OF REAL-CLOSED FIELDS

- Section 17. Definition of the Elementary Theory

17.1l. We assume familiafity with the conventional axiomatization of the
class of real-closed fields, as the class of those ordered fields in
which every positive element has a square root, and in which every
polynomial of odd degree has a root. Tt is, of course, clear that in
this axiomatization we could dispense with the order relation, and add
extra axioms saying that any eleﬁent is either a square or the négativei
of a square, and the set of non-zero squéres is a semi-group under

‘addition.

17.2. We are going to work"with an applied first-order predicate logic
with identity. This logie, é;?, has the usual symbols. = AV, 1,
> €2, % J,  and individual variables o
Xor Xy evey ¥, Yis eevs 2, Zis eee s (The above logical symbols are

o} 0 Q

to be given the usual interpretation.) 1In addition, & has individual

constants 0, 1, binary pperation—symbqls + and -+ , a binary relation-’

symbol <, and a unary predicate symbol L;

| A model for é;?. is & T-tuple (K, Ly, +, », b, 1, <>, where K ig
& non-empty set, L is a subset of K, + and + are binary operations
from K XK into K, < is a binafy relation on X, and "0 ang 1
are elements éf X. No-confusion should arise from our use of the samé-
names.for symbols of éif, and for the interpretation of those symbols

in a model of 3. We will often identify a model (K, L, +, -, 0, 1, <)

with its domain x.
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We assume familiarity with such fundamental concepts of model-

theory as satisfaction and elementary equivalence. If Ml and ‘M2 are

models of 58 then we write Ml = M2 to mean that Ml is elementarily
equivalent to Mss i.e., that M, and M

1 2
of E;f

Finally we assume we have some definite recursive definition of the

satisfy the same sentences

relativization to L of an arbitrary formula ¢ of 52 If 9 is an

.
arbitrary formula of 56,. then @~ is to be the relativization to L

of .

17.3. We a.ré going to consider models (K, L, +, «, 0, 1, <) of 52

that are pairs of real-closed fields, in the sense that (K, +, -, 0, 1, <}

is a real-closed field with addition +, multiplication , zero O,

unit element 1, and order <, and L is (the domain of) a real-closed

subfield of (K, +, +, 0, 1, <. |
Let YN be the class of models of 58 thaf. are pairs of real-closed

fields, It is easy to see fthat m may be chara.ctérizad. as the class

of models in which a certain set of sentences of j is satisfied. Fix

a defini’ge recursivg set Aé of sentences of EE, not involving L,

which expresses that (X, +, *5 0, 1, <) 1is a real-closed field. Let

A]é' | be th.e set of sentences {q)L: o € Ao]. ‘ Then AO U A]c-')' is a

recursive set of axioms, which is satisfied in a model

(k, L, +, «, 0, 1, <) if and only if the model is a pair of real-closed

fields. In the remainder of this paper, Q. is, by def‘initioh, -

A U‘Ag, and T 1is, by definition, the set of logical consequences

of (L. Then T is the elementary theory of pairs of real-closed fields.
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17.%. The following interesting result is simply a restatement of
A. Robinson's theorem that the theory of real-closed fields is model-

complete,

Theorem 17.5. Let w(xo,...,xk) be a formula of Ei? in which 1L
does not occur, and in which X5 vees xk' are the only free variables.

Then ©* is in T, where o* is

(V65) oo (VR)UDx, A =oAL A 9, x) (e esx )]
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gection 18. The Principal Positive Results
gection ¥

}_E}_.__]_._. In Chapter I we introduced, for any pair (K,L) of real-closed
rields, the valuation vL, the valuation-ring ‘VL, the maximal ideal
iL, the resn.due -class field GL(L), and the canonical place :tL. Now,
in order to avoid confusion, we modl"y our notation. For a given pair

(K,L), let v VL, I,, @ (1) and ri be respectively v , VL I ,

Q, (L) and :IL.

18.2. 1In Section 6, we showed that if (K,L) is a pair of real-closed

fields, then (rcL[L], @ (L)) 1is a pair of real-closed fields, and
1(;[L] is cofinal in @; (L), We define Res[ (X, L)] as

(K]L([L']’Q’K(L))' Res is a map from models of (, to models of Q.

It is clear that if (K{,Iy ) = (K5sLp ), then Res[(Kl,L 1 = Res[(s{g,L2)].

The converse is not true. Let (Kl,Ll) ve (R R), and let (K515 )

be (R ((‘tQ‘)), R) . Then clearly (Kl,Ll) is not iscmorphic to

(K, L

2). Tt is, however, clear that

RES[(KI,L]—)] = Res[(KE’La)] = (]R: ]R) .

Let 77L be th;e class of models of (. Let 7}7,;0 be the subclass
of‘ Y, consisting of those models (K,L) such that L 1is cofinal in K.
Let M, De the suﬁclass of YU consisting of the models (X,L} such
that I is not cofinal in K. It is clear tha’c there is ‘a. sentence ¥
of &P, such that 777;0 is the class of models of (DU (¥), while ml

is the class of models of auv{ v.

Lemma 18.3. a) If (X,L) € M, Res{(X,L)] ¢ M_-

b) If (K,L) € . then Res[(:( )] = (I{ L).
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.c) Ir (K sL,) € 772 » there is g (Kl,Ll) in 'm,l such that
Res[(Kl,L )]l = (X, »L.).
d) 1Ir (K-,L ), (K ,'L') are in ‘m. and
Res[(K L )] = Res[(K',L )1, then (x ,LO) o (Ké,Lé).
e) There are (X,, l) (K ) in ml with |
Res[(K,, l)} Res[(K', l)] but such that (Kl,Ll) is not
isomorphic to (KJ'_,LJ").
Proof. a). Obvioﬁs.
b) Obvious,
©) Suppose (k.. ) e o7 Tet (kL) be (K ((s%), 1),
Then clearly (Kl,Ll) is in 7??'1,‘ and
Res[(K;,5,)] = (K a1 ).
d) Obvious, by (b},
e) Let (Kl,Ll) be (IR((tQ)), R), and let (Ki,Li) be
(JR.(I(tJR)), R). Then clearly (Kl, l) ~1s not isomorphic to

(Kl, l)’ but Res[(Kl,L )] = Res[(K’,L')] 2 (R sR ).

Recall that = ig €lementary equivalence, with r'espect to c%a
Lemma 18.%, 1r (K »Ly ) = (KE’L ), then Res[( ] ERes[(Ke,Le)].'

Proof. By 5.1k, VL and IK are definable, in an arbitrary model
(x, L), by means of formulase of af It follows that we may interpret

&P the elementa.ry theory of @ K(L) and n{(“ The lemma follows.

Theorem 18.5, 1r (Kl,Ll') and (K2,L2) are in 7)2:1, and

Res[(K),L,)] = Res[(K,,L,)], then (K151)) é.(Ke,Lé).
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R
proof. 1In this proof it is convenient to assume 29 - Rl. Later we
Jacit

indicate how to dispense with this assumption.

We use the method of ultrapowers, and assume the basic facts about
the ultrapower construction in model theory. In addition we assume
Facts 1, 2, 3 1isted below. In each of ther, I 1s a countable index
set, and @ 15 a non-principal ultrafilter on I.

Ro
Fact 1. (Assuming 2 = = Rl)‘ If ;3 R ,282 are countable relational
systems of the same type, with Jl elementarily equivalent to 4572,

then
YD = dyD.

Fact 2. If 3, is a countable ordered field, then AL s
of cardinality 2R°. | _
Fact 3. if °~81 and 232 _are countable fields, with Jl c Qge,
such that for every positive integer n there is an element x in ,32
which is not algebiaic of degree at meost n over él; then tr.d.
YD1 3D =2°.

These facts are well-;}_cnown, and in the notes we éive references
for them. |

To prove our theorem, it clearly suffices to prove its statement
for countable pairs (Kl,Ll) and. (KE’Lz)’ because of the Lowenheim-
Skolem theorem. -

Suppose, then, that (Kl,Ll) - and (KE’LE) are countable models in
7}21, such that Res[(Kl,Ll)] = Res[(KE,Lz)]. Using 6.5, select, for

i=1, 2, Li—ma.xima.l supfields M, of K. Then by 6.8, for 1L =1, 2,
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L, - '

M. 1is real-closed, and nKl[M.] = GL (L.). By definition, I, € M.,

i i * Kil T i
and so (Mi,Li) = Res[(Ki,Li)], for i =1, 2. Note also that since
(KifLi) is in jbzl; K, #M;, and so, since K; and M, are real-
closed, tr.d. Ki[Mi-z 1,

We observe that the condition that Mi be Li-maximal in Ki

is elementary, sihce it is equivalent to the statement that every
Li-bounded element of Ki is Li-infinitesimally close to an element of

Mi’ and every element of Mi is Li—bounded. |
et I be a countable index set, and let EE) be a non—ppincipal
witrafilter onr I. (Such Q) exist, by the axiom of choice).
Consider, for i =1, 2, the triples (KiyED, Miﬁa ,ZLiﬁf)).
Concerning these triples we have the following, assuming 2R° = Rl.
(a) (Kgﬂfa, Mi[E), LiﬂEDJ is a triple of real-closedlfields.
(v) MJ.I./Q is L:l.[/s -maximal in Ki/f).
(e} Ki%f) is Ny, of cérdinality B, |
(@) tr.d. K/O IMf/Q = .. | -

(M0 ,12/D).

Al

(e) There exists an isomorphism ®: (MiAED, L{/Q))

SR TR SN o M G K Sl e '

(a) is clear, by basic préperties of the ultrapower‘construction.
(b) follows from our discussion of the elemenfary nature of
L-maximality, and the basic properties of the ultrapower construction,
(c) follows from Fact 2, and the continuum hypothesis.
(d) follows from the fact that tr.d, K, [Mi > 1, Fact 3, and the

continuum hypothesis.

(e) is seen as follows. Since Res[(Kl,Ll)] = Res[(KE,LE)], and

for i =1, 2, Res[(Ki,Li)] = (Mi,Li), it follws that (Ml,Ll) = (Ma,Lz).

By Fact 1, (e) follows.
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since (a), (b), (c), (d), (e) hold, we are in a position to apply
15.1. Since MEAED is Liﬁg)-maximal in KEAED, it follows easily
. . . I
that MJI_/B is Mi/,@ -maximel in Ki/D. It now follows that the map

@ of (e) extends to an isomorphism
I I ~ I T
' (Kl/'a ’ Ml/Q) = (K2/9 ) MZ/Q) .

It is clear that ¢' maps Li/,@ onto Lé/b, since @' extends O.
Thus (Kl,Ll) and. (KE’LE) have isomorphnic ultrapowers, and &0
This concludes the proof.

(K sLy) = (KpoDp)-

}_8_6_ In order to eliminate the continuum hypothesis from the preceding
proof, we give a reformulation of 18.5 as a relative completeness theorem.

Let f be an applied pred.ica.te calculus, with the same . vocabulary
as c;f , with one of the standard, recursrve sets of logical axioms and
rules, and having in addition the axioms a for pairs of real-closed
fields. We assume that the syntax of 2‘1 is arithmetized in some
definite fashion.

In the preof of 18.1;, we said that we may 'interpret within a model
(K,L) the system Res{(X,L)]. At that point it was unnecessary to
elaborate, since Lemms. 18.4 is almost tran-sparent. Now we supply a
little more detail. We claim there is a recursive map F from sentences
of EE to sentences of ;f such that for ail q>l, 092,

F(cpl—> q32) F(CPl) -rF(q)E), and such that for any pair (X,L) of real-
closed fields, F(wl) holds in (K,L) if and only if @, holds in
Res[(K,L)]. The existence of such & map is clear from the mea.nlng of

G,K(L). It is easy, but tedious, to give a recursive definition of such
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en F. We feel Justified inp omitting the details, Let F be g fixed

map with the above properties.

of ¢lass 7720. Consider the ¢lass \.7!./; of consistent sets A of sentences
in 5(01 such fha.t QU () S A, Then A ¢ IO only if A hgs a model
(K,L) sueh that T, is not cofinal in g, For any A in K e define
uw(d) as (@[r(p) is provable from A, Tt is cleap that . ig
arithmetical, Tt is clear that r(A) is consiustent, for if (K,L) is

8 model of A thep Res[(K,L)] is a model of u{4a). Moreover, if A

is closed under dKeduction, then so is u(a), For, suppose qnl and

re i - ; i A,
cp_.j_—i»cp2 are in u(d).  Then F(fpl) and F(cpl) -»F(cpe) are in

If Ae F ang A is complete, then L)y is complete. ?o Prove
this, suppose A is coﬁplete.. By defihition of JZ, Fa) Iis consistent,
and. so by Godel's completeness theorenm it follows thas there is a model,
(K,L) such that A is precisely the set of sentences holding in (x,L).
Suppose Q is é.n arbitrary sentence. Then either ¢ op 19 holds
in Res[(K,L)], and so- elther F(p) or F(M9) holds in (K,L). Thus T :
either FPlp) or F(9) is in A, and so either P or Mo iz in | ;
H(A), Therefore k(4) is complete, |

For any set x or sentences of ao, let Th(X) be the set of o _ :
all sentehces Provable from X, |

We claim now that 18.5 ig equivalent to 18,7 beloy,

A ] e e R il e At o1



(18.7). If L€ X, and Th(u(A)) is complete, then Th{d) 1is

complete.

We prove the equivalence of 18.5 and 18.7 without the use of the
ﬂ continuum hypothesis.

Assume 18.5, and suppose & eﬁﬁf, and Th(u(A)) is complete.
suppose Th(A) is not complete. Since & is consistent, Th(d) is
consistent. Thus there are models (Kl,Ll) and (K2,L2) of Ta(h),

f such that (Kl,Ll) is not elementarily eguivalent to (KE’LE)‘ Since

beF, (K;,L;) is in 7y, for 1 =1, 2, By 18.5 it follows that
Res[(Kl,Ll)] is not elementarily equivalent to Res[(Kz,Lz)]. But

if ¢ e p(d), F(p) is provable from &, and so F(p) holds in both ;
(Kl,Ll) and (K2,L2), and so ® holds in both Res[(Kl,Ll)] and !

Res[(K,,L5) ). Thus Res[(Kl,Ll)] and Res[(KE,Lz)] are models of *

the complete set Th(u(4)), and so are elementarily equivalent. This

gives a contradiction. It follows that 18.5 implies 18.7.

For the converse, assume 18.7.  Suppose' (Kl,Ll) and (K2,K2) are
in 77, and Res[(Kl,Ll)] = Res[(K ,Le)]. Letr X be the set of all
sentences holding in Res[(Kl,Ll)]. Then X is the set of all sentences
holding in RES[(KE,LE)]. Let A be F[X] UQ U (Yy)]. Then A e JZ%
and A .is‘satisfied in both (Kl,Ll) and (KE’LE)' But n(8) =X,
and X is complete. By 18.7, Th(A) is complete, and so

(Kl,Ll) = (KQ,LE). It follows that 18.7 implies 18.5.

Now in terms of the arithmetization of syntax of gxp, 18.7 is
arithmetical in the parameter A. We now know that 18.7 is provable in
seﬁ theory, using the axiom of choice and the continuum Hypothesis. By
working in the universe of sets constructible from A, we may eliminate .

the use of the axiom of choice and the continuum hypothesis.
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Thus 18.5 does not depend on the continuum hypothesis.
18.8. Consider the following four classes 4, B, C, D of models of (b,
Class A, This class consists of ell pairs (K,L) such that K = L.

Class B. This class consists of all pairs (K,L} such that X AL

and L is dense in K.

Class C. This class consists of all pairs (K,L) such that I is

net cofinal in X angd Res[(K,L)] is in A.

Class D. This class consists of all pairs (K,L) such that I, ig

not cofinal in ¥ and Res[(K,L)] is in B,

Each of the above classes is non-empty. (R,R) is in 4, (R,
is in B, where § is the Tield of real algebraic numbers, CR((tQ))gR)
is in C, and GR((tQ)),Q) is in D. '

It is obvious that each of the classes A, B, C, D has a recursive

axiomatization.

Theorem'18.9. Let J be one or the classes A, B, C ;r D. Suppose
(Kl,Ll)_ and (K2,L2) are in J, Then (Kl, l) = (K2,L2).
Proof. 1If J =4, -this is no more than a'resfatement of Tarski's
classical theorem. ’
If J =B, this is.a theorem of.A. Robinson. We will prove this
- theorem later, 7
- If J =C, the result folloys from 18.5, and the case J - A,

B,

It

If J =D, the result follgys from 18.5, and the case J

e

Corollary 18.10. Let J be one of the classes A, B, C, D. Then g

is decidable, l.e., the set of sentences holding in all numbers of J *

is recursive, o

%




proof. This 1is an easy consequence of the fact that J has a recursive,

complete axiomatization.

ggpollafy 18.11. There is a decision procedure for determining whether

an arbitrary sentence @ holds in all pairs (K,L) of real;closed fields

such that either K or L is archimedean.

Proof. a) Suppose (K,L) is a pair of real-closed fields, where K

is archimedean. Then, without loss of generality, K and I are sub-.
fields of R, Dby a classical result. Then clearly K =1L or KAL

and L is dense in K.

b) Suppose (K;L) is & pair of real-cloéed fields, where L 1is
archimedean. lIf L is cofinal in K, theﬁ K is archimedean, and we
have already discussed this. In any case L is cofinal in (R;K(L), and
S0 QJK(L) is archimedean. Then L é@K(L), or L is dense in @JK(L).

Thus if (X,L) is a pair of real-closed fields, one of which is
archimedean, then (X,L) is in A UplUcUD. On the other hand, as
we showed by exaﬁples, each of the classes A, B, C, D coﬂtains a pair
(K,L) such that either K or L is archimedean.

The result follows by 18.9-and 18.10,

18.12. From results about elementary eguivalence, we now turn to results
about elementary extension. (We assume the reader ié familiar with tﬁe
reiation of elementary extension, written ={).

Suppose (Kl,Ll) and (KE’LE) are models of @ . Then, oy
definition, (Kl,Ll) c (K2,L2) if and only if X is a subfield of K,
and Kl N 1'..2 = Ll' We are interested in finding conditions under which
(Kl’Li) = (KE,Lé); Our main result in this direction is an analogue of
18.5. We now prove the basic result from wnich the main result will follow.
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Theorem 18.13. Suppose (Kl,Ll) and (K2,L2) are pairs of real-closed

fields, such that (Kl,Ll) < (K2,L2), L, 1is not cofinal in K, and

I is not cofinal in KQ. Suppose Ml, M2 are suofields of Kl, K2

=),
2
respectively such that the following conditions hold,
L L
1. v2 0k, vt
2 1

2, M is L.-maximal in Kl'

3. M is Le-max1mal in K2.

2
4' (Ml,Ll) —< (M2,I-'2)'
Then (Kl,Ll) -< (M2JL2)'

Proof. We prove the result by the method of ultrapowers. We will use

the contlnuum hypothe51s but this may be ellmlnated, as we indicate at

" the end.

Recall the proof of 18.5. There.we stated without proof certain

important facts about the ultrapower construction. For the present

-proof we BE&Q almost the same Tacts, the only difference being that

:'Fact l is to be replaced by the follow1ng Fact 11, (As usual, I is

& countable index set and SE) is a non-principal ultrafilter on I.)
Fact 1'. (Assuming. 2 %o =R). If ﬁgl’ hge are countable relational
systems, with _qgl -{ {82, then the injection i: qSl - ég ~ extends
to an isomorphism of ggiyﬁa onto ggg/iﬁ.
| In additior to this rather profound fact 'we make constant use of
the elementary fact that if *8 is a relatlonal system then |
B < S0

As a preliminéry to the proof of 18.13 we show that it sﬁffices to

prove the result for countable pairs (Kl,Ll) and (K2,L2). For,
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suppose we have proved the result for countable pairs. Let X

Ké, L2, M2 satisfy the hypotheses of the theorem. Let Xy

be (finitely.many) elements of K,. By the LoWenheim-Skolem theorem

. . ~ ' ¢ =%
there is a countable subfield X, of K; such that {x, «.., xn] < K,

and (Kl,Kl N M ,K) n Ll)‘ < (Kl,Ml,Ll). Similarly, there is a countable

subfield X, of K, such that K &X

2 5 1 and

2
Fal ~ ~ ~

(K2,K2 N M, K, n LE)-ﬁ (KE’ME’LE)' Then clearly K n L, 1is not cofinal
in Kl, and %2 n L2 is not cofinal in %2. If one recalls the remarks
in 18.5 on the elementary character of maximality, one sees that

~ ~ . ~ ~ ~

Ky M is (Kl n Ll)-max1mal in X, and K, N, is. (K2 n L2)-

maximal in K2. We leave to the reader the exercises of showing that

% N5 % n
K. N K. 0L
2 ~

Ko 1 K

and that
(Kl QM K, n Ll) < |(K2 N M,,%, A L2) .
It follows by the countable case of 18.13 that

(KoK N L) < (KK O L)

- Now suppose Q(xl,...,xn) is a sentence of Zf, with parameters

X

)y eees X

,» such that @(xl,...,xn) holds in (X,,L,). Since

- (¥g5K, ﬂ.LE)—< (KyoLy)s ®(%y5.--5%,) holds in (X,,%, N L,). since

(KK N L) ~ (¥5,K, N L), q>(xl,...,;<n) holds in (K ,K; nl L)
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Finaily, since (X ,K NL ) -, (Kq,L ) @(xl,...,xn) holds in

(Kl,Ll). Since xl,...,xn were chosen arbitrarily from Kl’ we
conclude that (KlLl) -<'(K2,L2). Thus the general case of 18.13 follows
from the countable case, and henceforward we confine ourselves to the
countable case.

12 Ly M 53 L2, M2 be countable real-closed fields
sat:l.sfylnD the hypotheses or 18, 13. ILet I be a countable index set

Thus, let x

and © & fan-principal ultrafilter on I. (Such EED exist by the
axiom of choice). Our objec@ive is to show that the injection
(Kl, l) —>(K2,L ) extends to an isomorphism of (KEA£D,ALiAE)) onto
(K%ZE}, 2/g>,. From this result, and the standard facts about the
ultrapower construétion, it will clearly follew that (K 2Ly ) -4'(K2,L2).
We first observe that Kl and Mé_ are linearly disjoint over Mi.

For suppose His een, B, are in Mé and linearly dependent over Kl'

Then there are x > +ess X In K., not a1l Zero such that
1 rn 1
Xy - Hy + oee 4 X - Ry = 0. We may Suppose, without loss of generality,
that, for 1 <Ji<n ]x | < lx . We deflne, for 1 <£J<n, yj as
-1 . . Ly .
xj X Then ¥y = l, and, for 1 £J<n, yj € Vkl. Since Ml
is L,-maximal in K,, there are elements my; of M, such thet, for
1<Jj<n, ,yJ - glj is L,~infinitesimal, Clearly my = 1l. Now,
yl'.ul+..-+yn.p'n=o’
and so

(yl-ml) * I“"l + st 4 (yn-mn)u‘n = "ml . Hl - tes = mﬂ ‘ “n € M2 .
Since Vs - m is L,-infinitesimal, Y. - m.ois Mé-infinitesimal.
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Therefore (yl-ml) Ty F e (yn—mn) . nﬂ is Me-infinitesimal. But
(y,-my ; T (yn—mn) s €My,
50
(yy-my) + ug + o + (yn-mh) ‘=0

Therefore my ot Hq +oeestmo M, S 0, and since m, = 1, it follows
that Mys =ees Mg ere linearly dependent over ‘Ml' Since M, = Kl M
by conditions 1, 2, 3, it follows that Kl and M2 are linearly disjoint
over their intersection Ml. '

We next observe that, by Fact 17 'and the_assumption that
(Ml,L ) < (M, LE)’ the injection J: (Ml,L ) -a(M2 L2) extends to an
isomorphism ¢ of (M AED, lﬂf)) onto (NE/ED, 2A§)) Now, let B
be & transcendence base for Kl over Ml. By basic properties of the
wltrapower construction, B 1s algebraically independent over Miﬂf},
co that ' B is a transcendence base for K, -'M;AED over Mi[f). Since
Kl and M2 are linearly disjoint over Ml’ B is algebraically
independent over M, and so over Mé/f;h- whence B is a transcendence

base for K, MEAE) over M2[£D By the Steinitz theory, 9/ has a

unique extension to a field-isomorphism @, of Ml[E)(B) onto

, MEAED(B), snch that - @, 1is the identity on B. Then g, is the

jidentity on Ml(B) .
We now show that P is order-preserving. It suffices to show

. ’ T
that ¢, is order-preserving on Mi/ED[B]. This will follow from (%)

below.

101

A ATE LAY




.4
7
L8

R e s g,
i

b 4, e

(*} (n a positive integer)., 1r Hys «ves b €M ﬁE), and

tos een, tn € Mi(B), and By m b+ e s Hp * T, >0, then

Polug) * 6y + -en 4 Poluy) -t >0,

We prove (*) vy induction on n, I1Ff p - 1, the result is clear,
Suppose we have proved the result for all n < N. Suppose
ks cees My eM/ t,, ...,tNeMl(B), and
4o tl F oeea 4 “N . tN > 0. Select d with 1 <J <N such that
Itj[ is meximal among ItlI, v, [tNl. Then . Ith > 0. For
1< n.< N, define ’c.lj1 as tn . [tJ. [-l Then tJ! is 1 or- -1, and,
Ly
for 1<n« N, t! is in vy -+, Since M. is [, “maximal in K., there
= =7 "n . Kl 1 1 1

are, for ] Sn<N, u in y such that t'- - u: is Ll-infinitesimal.

n 1 n
Note that u:J = tJ'.. By basic Properties or ultrapowers ' tI"1 - un is
. o2 Ly
l/% -infinitesimal in Kl/B Also, since K2 N K, = VKl, ! - u

L2-:Lnf‘1n:|.te_sz.mal in X5, and so I/.@ -infinitesimal in x /f)
Define €, as tI; - W,. Since Hy tl +oeee 4 My tN > O,'
ul-t£+f--+uN-t1\'I>O. Thus (u+el)+----'1-p . u\T+EN)>O
Now, My Sl + oeee 4 Hy * & is l/'g-lnflnltesmal in k /_9 and
Hpotougp ot v uN is not L /8 -infinitesimal, unless

By soug o+ e + My u, = C. We dlstlngu:.sh two cases.

Case 1, SEREL T © Uy ,é 0. Then clearly

'.ul . u.:L + oaee o4 “N . uN > 0, B8ince cpo 18 an order—lsomorphlsm and

®, is the identity on Ml’ cpo(“l)., T Uy oee. 4 qao(,uN) T up >0,
Ev:.dently qal(gl) TUL et q)o(uN) * Uy is not Lg/e-lnflnltes:l.mal,
whereas cpo(ul) TE e g cpd(pN) © gy is Lg/g -infinitesimal. Therpe.

tr >0

fore q)o(ul) '- ti + .'.. + (po(p_N) . N
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Case 2. pl-_ul+---+pN-uN=O. Then

cpo(p'l) 'ul+"'+cpo(pN) 'uN‘—"O. AlSO, ul.€l+...+uN. E'N>O'

Recall that Ej = 0. Then, by the induction hypothesis,
Polky) » By + oo + o (ny) © gg>05 '

so that - : ' T

D (1)) B+ e T @)+ by >0

Thus, in all cases,

- e i a1

ARG '_'"“po(“N) "y >0

This completes the inductive step for (*), and so (*) is proved.
Thus cpl is order-preserving.

By 1.8, ®, has a unique extension to an isomorphism @, of
Re(Kl . M]I_/B) onto Re(Kl . M;/Q). Clearly ¢, is the identity
on Kl' -

Since K, is countable, tr.d. Re (X, - l/@)/M /ﬁ) <R, and
tr.d. Re(X; ° W/D)N/D < ¥y. By arguments similar to those of 18.5,
one sees that Ki/.‘é) and Kg/.‘q') are 1) real-closed fields, Mi/@ is
MJ_]:/E -maximal in K:{/B , Mé/f;) is ME/E) “maximal in Ké/.@ ) |
Ctrad. ORMD = ¥y, wd tr.d. KO /D =&y

and 15 1 it follows that ¢, extends to an isomorphism g of K:]L:/,@

From 9.2, 13.4

onto 1{2/,9 Clearly O3 maps Ll/,g onto LE/B’ and extends

i: (Kl,Ll) - (KE’LE)' This concludes the proof of 18.13.
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18,14, we how indicate hoy to eliminate the continuum hypotheses from the

above proor, The basic ideg 1s quite standard, in that we replace 18.13

out the use of the continuum hypothesis). Recall that in the Preceding

proof’ we showed that 18.13 is €quivalent to the "countable" Version where

10 Ky, 2 My are restricted to pe countable. We noy Indicate

. .~
g
=
ct
j=u
=
&

"countable® version ig equivalent to g syntactical result.
We consider tyo extensions a‘("l and 302 of the logic 5< ‘R?L is

i.-,a * e

obtained from ao by adjoining individual constants a5 ae, n?
Q‘Fe is obtaineq from &;?L by adjoining g unary bredicate-sympo], M. Re-
call that J’ has €Xactly two individual constants, O- and 1. 71r 5
is any set of sentences of fE’ we define dom(S) ag the set consisting
“0of the individual constantsg O, 1 and a11 individua]l cbnsta.nts occurring
in members of 5. We say 8 4g Complete if fop any sentence P, whose
individual constants lie ip dom(8), either P or mo9 is in S. Sup,po.se
5 ig complete, l_Then We zay § ig existentially ¢cmplete if fop any

Sentence (3 x)9(x) in g there is an individual cor':,ts.tant C  such that
?{C) is in g, If g is.existentially complete, we defipe diag(s)

(the diagram of 5) .as the set Of atomic sentenceg of s,

For seritences of o‘{gl we fix gz definite recursive definition of
relativization to M, such that thig relatiirizatio'n is the identity op |
atomic sentences, For a sentence P of &pl let q)(M) be the relativi-
zation of ¢ to M. Then cp(M) is a sentence of ig If s isa
set or sentences of Sfe we define A(8) as the set of gl1] sentenceg

® orf .-;fl such that cp(M) € 8.

j : Let (Max) be g Fixed recursive Set of sentences of - QZ, (with

No individual constants éxcept 0, 1), characterizing the class of nodels
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(K, Ly My +5 *» 05 1 <) such that X is a real-closed field, L
end M are real-closed subfields of X, L 1s not cofinal in K and
M is IL-meximal in K.

Iet lnf(x ) be a formula of <§f with x, as its only free
varisble, which expresses that X, is not in Ve (i.e., x; 1s
L—infinite). Tt is easy to devise such formulae, and there seems little
point in writing oné out.

We can now state the syntactical equivalent 18.15 of the "countable"

version of 18.13.

T. are consistent, complete, existentially

1?2
complete sets of sentenées of 5(;. Suppose the following conditions

18.15. Suppose T

hold.

1. dlag(T ) ST,

2. TFor any individual constant C of 219, if inf{C) is in
then inf(C) 1is in Ty

I3

3. (Max) =T, N Ty

b, x(frl) c K(Tz).

Then Tl.E Té. N

We will leave to the reader the exercise of showing that 18.15 is
equivalent %o the “countable" ver51on of 18. 13. The connectlon hetween
countable models of éx; and consistent, complete, exlstentlally complete
éets of sentences of 5{; ought to be clear to anyone acquainted both
with Henkin‘s proof of GBdel'sICompleteness Theorem, and with A. Robinson‘s
notion of the diagrém of a model. |

Now we note that 18.15 is arithmetical in the parameters T, and

T2.' Therefore, by working in the universe of sets constructible from
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e Kot m 5

Tl angd 7T y We can elimingte the conﬁinuum hypothesig from any oroof
(in set theory) or 18.15. rhys 18.13 does not depend on the continuunm

hypothesig,

18.16. We now apply 18,13 t¢ €et an analogue of 18,5, Recall the

notation or 18.5. The required analogue ig 18.17 veiow,

Theorem 18,17, Suppose (Kl, 1) and (K2, 2) are in 7%1, and
~=<orem 18.17

: L L
(Kl,Ll) S (&3,L,).  Suppose further that Vk; Nx, = yki.
Rgs[(Kl,Ll)] EfRes[(Ké,La)], and if Res[(Ki,Il)] at Res[(KE,Le)] then

Then

Proof. ILet (Kl,Ll), (Ké,Le) satisfy the hypothesis or 18.17. Since -
: L

VLQ N Kl =V l, it is clear that the Valuation v & is an extension

Ké Ky Ko

I,

of the valuatiop vki, and it folloys easilynthat Res[(Ki,Ll)] is
haturally €mbedded in ResE{KE,Le)]. Tﬁis Proves the fipgt part of
the theoren, ‘ o
Now suppoge in addition that Res[(Kl, l)] = Bes[(Ka,Le)J. Letr
Mi be any Ll-maximal Subfielq of Kl' We clainm Mi . L2 is a sub-
field or Vig. Suppose noff Then-there is an integer n, ang non-zerg

elements My eas, m of M

e T '
A 12> and non-zerg elementg 31,1,.., zn pf

L, such that

. ! ‘e B L r
ml ﬂl + + mh. En

18 a non-zero L2-infinitesimal. Clearly s 1, and let yg &ssume
n is chosen minimal with the Property that there exist

My eesym ﬂi, vea, ﬂﬁ 88 above. Thep
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L | L L L
n l(ml) . ,12(31:_) b oree 4 T l(mh) “x 2(JzI'_L) =0,

‘But since Res[(Kl,Ll)] A Res[(KE,LE)], it follows that there are

elements £ cavy En in Ll sucn that

l.‘l
L L L L

x amy) - ;rl(zl) deee s mI(m) o ox (L) =0 .

Then
Ll
7t (ml t Ay Foeec b ﬂn) =0 .
Ll
Since My is a subfield of V 7, with Ll S M, it follows that
m, - El toeertmoo £o= 0. Then
by (ml nAp ety Eﬁ) -4 °.(ml;’£l Torer oty ﬁn)

is a non-zero L2—infinitesimal. Then

i 1 T t
A mlgﬂnzl_gnzl) Toeee ¥ mh—l(znzn—lngnzn—l)

is a non-zero L2—infinitesimal,-qontrary to the minimality of n. It
I ,

follows that Ml * Ly, is a subfield of ng, and by Zorn's lemma

Mi‘- L2 extends to an Lz—maximal subfield of Ké. Let; Nb be such an

extension. Then clearly (Ml’Ll) c (Mé,LE).. Equally clearly,

Res[(Ké,Le)] is isomorphic to (NE’LE)’ by an isomorphism that maps

, Res[(Kl,Ll)] onto (Ml,Ll). It follows that (Ml,Ll) < (Mz,Lz). By. |

18.13, it follows that (Kl’L’) - (Ké,LE). This concludes the proof.

18.18. Recall the classes A,B,C,D "of .18.8. In 18.9 we showed that if

J 1s one of the above classes, and (Kl,Ll) and (Ka,Laj are in J, then
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T

(Ki’Ll) = (Ké’L2)' We now prove an analogous resylt Tor the notion of

‘elementary extension, However, this result 1s not ag neat as 18.g,

Theorem 18.20. Suppose (Ki’Ll) and (Ké,Lq) are pairs of regl-
_-_-_"'_'——-—__ [

closed fields, with (Ki’Ll) Ef(Ké,LE).

a) Ifr(Kl,Ll) and.(KE,Lz) are in A, thep (Kl,Ll)-< (K2,L2).

b) If (Ki’Ll) and (Ké,IE) are in B, apg K, ang L, are
linearly disjoint over Ll’ then (Ki’Ll) -1; (Ké,La). .

. > _
e) If (Kl,Ll) and (K2,L2) are in C, ang vKE n K =v

1
Ki’
then (Kl,Ll) = (%,,5,).

' . : Ié ‘ Ii
d) Ir (Kl,Ll) ~and _(fca,Le) are in D, and‘ sz n K §VK1, and
I? Il I? I?
T [Vki] and ¢ [L2] are linearly disjoint over x “[L_]

then (10 ,L, ) < (%,,L,).

c) This follows fronm (a) ang 18.17.

a) This follows from (b) ang 18.171.

Remark. 4. Robinson showed by means o= an example that the restrictive

clause in (b}, namely that K ang L, are linearly disjoint over L,

1s fecessary.

ive Clause, namely that

v 2 n Ki =V l, is necessary. Iet o, be R,
1Y !
°ver R , and order R(t) so that t>R.

Let t pe transcendental

Let Ki be the real-closure
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of R{t). Then clearly (Ki’Ll) {s in C. Let u be transcendental

~over K, and order Kl(u) so that u > K. Let K, be the real-

2
closure of Kl(u). Let L, be the real-closure of R (t+1/u). Then
it is an exercise for the reader to verify that (Ké,La) is in C, and
L L

(K.L’Ll) c (K2,L2). We observe that t £V l, whereas t e V 2, Then

Ky K

clearly (Ké,u2) is not an elementary extension of (Ki,hl).
A similar example‘will show that the restrictive clause in (d) is

necessary.

18.21. We will conclude this section by proving, via ultrapbwers,
Robinson's result about Class B. Before doing so, we mentlon an operatiorn,
on pairs of‘real—cloged fields, which seems to us to be of interest, but
about which we know almost nothing.

Let (K,L) be a pair of real-closed fields, and let L be the
elosure of L in K, in the sense of Section 1l. Theﬁ .(K;f) is also
a pair of real-closed fields. We define clos{(x,1)] as (X,I). Itfiér
quite obvious théﬁ if (Kl,Ll) = (KE,LZ) then élos[(KiLl)] = clos[(Ké,L2)].
We observe that Class A consists of all pailrs cloé[(K,L)} where (K,L)

is in B.

Thoerem 18.22. (i) If (Ki,Ll) and (Ké,LE) are iﬁ“Class B,lthen
(,1) = (KLp) -
(i1) If (Ki’Ll) and (Ké,Lz) are in Class B, and
(Ki,Ll) < (KE,L2), and K; and L, are linearly disjoint
over I, then (K ,1,) < (%y,Lp)-
EEEEE'l By the Lowenheim-Skolem theorem it suffices to prove (i) and (ii)
subject to the restriction that K, L,, K, L, are countable (Recall the

proof of 18.13).
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by the Usual method we My eliminate the continuum nypot“esis because
Our conclusions are €quivalent tq Syntactica] results,
(1) Suppose (Ki’Ll) and (Ké,L ) are in Clags B, where

Kl' Ll" KQ’ are countable, et I be g countable index set, and let

, Further_, we will use the Continuum hypothesis in our proor, However,
;

}

1

; D ve s non-principal ultrazllter on I. Thep ii/f), L [E) Ké/@ -
é N

?

and [, /,f—) are nl real—«.losed fields of cardlna.llty Rl (assuming
ERO = R’ ) Further L A@ is dense in KI/E and LI/@ is dense
in KEI/@ Flnall,/ assuming 2 % = N, tr.d. Kl/b Lt /@ R, and
tr.d. g /5 L - Ry- Therefore by 16.5, clé/ﬁa L /5) 2 (iG/D, Lo

We conclude that (Kl L) = (Ke,L'E).

oy

T L,

R R g sl KR, sy, R R T

(1i) rLet (K ,L ) (K2 L,) be as in (1) above, angd Suppose in
addition that (Kl L)< (KE,Lg), and K ang L, are lineariy disjoint
over Ll' Let I and Q be as ip (:L) above. By basice Properties gf the

ultrapower construeuon Kl L /@ s and ' Kl and L]I_/ED are

llnea.rly disjoint overp Ll Slmllarly, using the ‘fa.cts that
(I{_L,L ) < (KEJL ) ang K.L and L2 are linearly disjoint over Ll one
Sees thai K ng /9 =Ly, ang K ena g /9 are linearly disjoint over

L. Thus K is both | Ll/.E)-:Lndependent and [ /E)—lndependent Using
(Kl_,Ll) - (KE’LE) extends to gpn 1somorphlsm of (R’i‘r@ L /.E)) onto

(KEI/-D , Lg/a). It follows that (1{1 L ) ~ (KE L,).

This toncludes the Proor,
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Section 19.

Gaps

In this section, (Q31,¢32) is either a pair of D-groups, or a

- palr ol ordered rings. Let 0, +, < be respectively the zero, addition

and order on ,Ql. Our definitions below are to be understood as

relative to a given pair (31, QSQ)

Definition 19.1. For x, ¥y, z in

Definition 19.2. For x in le, r'(x) = [tl(vfy € 932) - B(x,y,x+t)).

Definition 19.3. S = (x|{vy 6-232) — B(x,y,2x)] (Alternatively,
S = (x]x e I(x))). -

Lemma 19.4. 2) For all x, O e I(x).
b) For all x, TI(x) 1is convex in le
¢) O0esS

d) Forall x, if x e S then -x € S.

Proorf. Trivial.

Lemma 19.5. If I(x) is symmetric for all x, then S = {0).
Proof. Suﬁpose r(x) 1is syuretric for each x, and suppose s is a
non-zero element of S. Since S is symmetric, we may assume without

loss.of generality that s > 0. Since s e S and B(s, 3s/2, 2s), it

follows that 3s/2 ¢ 091, and so s ¢ le' Then 2s ¢ cgl. Now, since

-~ there 1s no element of le between s and 2s, it follows that
-s ¢ I'(2s), and so, by symmetry of [(2s), s e I'(2s). But then there
- is no elgment of egl tetween 2Zs apd 35, and, since 2s £ q}l, it

' follows that there is no element of &yl between s and 3s. Then

111
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2s € I'(s), and S0, by syrmeiry, -25 ¢ I(s). But this implies that
there is np element of .81 between -s and s, _But C e .31 and

-5 <0< s, This contradiction proves that § {0).
Lemra 19.6. Tf g - {0}, then each I(x) is a group.
=2 19.6

{0).

Part a). We show that each I(x) is symmetric, Suppose t ¢ I(x).

Proof. Suppose S

Case (i). + > 0. Suppose -t ¢ I(x). Tren there isa g in 291 such
that x - ¢t < g < x. Let T be x - - Then 7>0, and since § - {0)
there is an h 1ip le Such that t < h <21, We observe that T < b,

Then

x='r+g<h+g<2'r+g

T+ T+ g

it

1l

T+ x

<t+x=x+t.

But h+g ¢ 99i, and 5o t € I'(x). This contradicts our assumption that

t e I'(x). Thus, in Case (1), -t « r(x).

Case (ii). t <o, Suppose -t # I(x). Then there isa g ip ‘81. such
‘bh&t-x<g<x—t. Let 1 bpe g - X. Then T >0, and since S = (0}

there is an h in ’81 with T < h < 271, . Wé:observe that . 1t < ¢, Then
X+t <x- 72 B-2t<g-hc< g~ T=x.

But g - he EQL’ and so % é F(x), contradicting ocur assumption that

t e r(x), " Thus, in Case (i1), -t ¢ r{x).

This concludes the proof of Part (a),

i12.
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Part fb). By {(a), and the convexity of each r{x), we will have
proved the lemma as soon as we nave proved that if t € F(x)- and
+ >0 then 2t € r(x). |

Suppose t-e r(x) and 't >0 and 2t ¢ P{x). Then there is a
g in Cgl such that x < g < x +2t. Then, since t ¢ rix),

xtit<g<x T 2t. We distinguish two cases.

case (i). x +t =g. Select n' in 281_ witn t/4 < h' < %/2. Then
one may easily check that x <g - h' <x +t, and since g - h' ¢ ;21,
t ¢ r(x), contrary to assumption.

case (1i). x tt<g<x +2t. 'Let 7 be g- (x+t). Then t > 0.

Select 4 in Jl with T < h < 27. We observe that T < t. Then

f

x<xt+tt-~T1=g-2t1r<g-h<g-T=X 4 +%t. But g-h ¢ égl’ and

'so t ¢ P(x), contrary to assumption.

Phus if + >0 and t e I(x), then 2t e [(x). This completes the. .

proof of the lemma.

19.7. After Lemma 5.135 we mentioned the convex valuation vZ on an

v (y)

if and only if there are positive integers m, n such that x| < miy|

ordered field QS. We observed that, for x, ¥y in ‘Qséﬂ vz(x)

and Iyl < nlxl. It is clear that by the latter properlty we may define
a convex group-valuation on an arbitrary ordered group. We denote the

resulting group-valuation by 2 also, without risk of confusion.

* '
Lemma 19.8. If x ¢ 2., then x ¢ S if and only If VZ(x) ,«!vz[é:].

Proof. (It suffices to prove the above statement for x positive, since

3 is symmetric, and vz(x) = vz(-x)).
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2]. Suppose x ¢ S. Then

with x <y < 2x. Then by convexity

¥
a) Suppose x >0 ang vz(x) ¢ VZ[Q
there is & y 1in qu
VZ(Ex) < vz(y) < vZ(x). Since VZ(Ex) = vz(x), it follows that
.
vz(x) = vz(y) € VZ[.92], which contradicts our assumption. Therefore
*
if vz(x) £ VZ[.SEJ then x ¢ §.
' | Z Z, q* s

b) Suppose x >0 and v (x) e v (,32]. Then there 1s a positive

¥ in ‘§2’ and positive integers m, o such that x Smy and

¥ £mxX. - Then x Smy < mnx, and my € 32. We distinguish two cases,

Case (i). For some Positive integer k, my = kx. Then x ¢ 282, by

Givisibility. Then 3}:/2 € q82, and x < 5}:/2 <2x, so x ﬁ' 3.

Case (ii). For all positive integers k, my # kx. Then there is a

posivive integer £ such that Jsx <my < (£+1)x. Then

E.-i-l)
£

x<nfi -y < - x<ex .

Since m/,e * Y € JE it follows that x £ s.

- * .
Therefore if vZ(x) € vz[£21, then x ¢ 5. This completes the proof.

X
Corollary 19.9. 3 = (0} if ang only if vzf,gf] = VZ[Se].

Proof. Trivial, by 19.8.

Lemma 19.10. Suppose (,31, ,,82) 1s a pair of ordered .fields,
==Te 24,10

8) If S£(0), then S is cofinal ama coinitial in ugl.-

b) If s ¢S and n Z, and x" = s, then x ¢ g,
‘_c) There ismo s in S witn 1<s <2,
. *
Proof. a) Suppose s e s and s £ 0. Then VZ(s) é vz[gz], by 19.8.
Without loss of generality, s > 0, We have vz(s) £0. Let x ve an

arbitrary pos:tive element of gSl. There are two cases.
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7. q%
case (i). x ¢ S. Then by 19.8, VElx) e v [82]. It follows that

: i o ox
VZ(sx) g(vz[,g ;], and vz(s lx) £ v L,Sal. We have, therefore, by 19.8,

- ' -1
that sx e & and s lx € S. We have elther 0 <sx <x <5 X, O0Ir
-1

0<s "x <x < sx.

' *
Case (ii). x e S. Then by 19.8, vz(x) sa’vz[,g2]', and so

VZ(x/E) p.’vz[q‘b;], and VZ(Ex) d vz[,ﬂ,;]. Aéain by 19.8, x/2 € 8,

‘and 2x ¢ S. We have 0 < x/2 < x < 2x.

This proves (a).

b) Suppose s € S and x =s. By 19.8, vz(s)?[,vz[ngz]. ‘Ir
vZ(x) € VZ[,SZ], then nvz'(x) e VZ[,%Z], and so vZ(xn) e‘vz[,g;].
Therefore VZ(x) { VZ[,S;], and, b:.yr 19.8, .x ¢ S. . |

c) Suppose s €S and 1<s <2, Then vZ(2) < vz(s) < vz(l).
Therefore vz(s) =0 ¢ Vz[qg;]. Therefore, by 19.8, s # 8. Therefore
there is no s in 8 with 1 < s < 2. -

This completes the proof. -

Definition 19.11. (Suppose (;31, )82). is a pair of ordered fields).

We define A as (x|x > A {(vs e 8)—B(1,s,x)}.

Lemma 19.12. If (&, s§,) is a pairiof real-closed fields, then A

is qua.si—&rchimedean.h | .. -

Proof. Suppose (,Sl, ‘;82) is g pair of real-closed fields. Then i9.lo(c)
s_hows that 2 ¢ A. All elemgnts of A are poéitive, by definition. ;‘fhus_,
to show that A is quasi-archimedean, we have only to show that A 1is

closed under multiplication.
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Suppose X) <X, and X%, ¢ A. Then there is an s i g with
1<s < X %, < xs Let Vs be the Positive square roct of g, Then,
by 19.10 (b), 5 ¢ S. But 1< /< X5, and so X, £ A,

It follows that A 15 closéd urder multiplication, and we are done.

19.13. For the remainger of this section, (J§ s J ) is to be g pair

—

of real-closeq fields, By 19.12 we get a convex valuation V‘A on ’egl'-

X
Let G, be the D-group v L'qgll, and G, the D-subgroup VA[BEL and

A *
G, the D-subgroup VA[3;]. Let Hl be the D~group vzfﬂl] and H,

2
*
the D-subgroup VZ[§2]. Lest H3 be the unique maxiral subgroup of H2
which is convex in Hl. |
-1 -1 ~ =1 i
Let A be (x|x~- €A}, and let A be ATy {1} U &, Using
19:10(0) With n = -1, ye see asily that ANs =y ang 1 is a

convex set gf Positive elements,

Lemms, 19.14, 71r X 1s positive, then xel ir and only if + (x) € Hjﬁ
==mme 19.14

Proof. a) Suppose x ¢ i, wut v (x) £ H3 Then there isa y 4p
Hl ~ % such that 0 < y < fv (x) l Let 5 be g Positive element witp
vz(s) = 7. Then, by convexlty since v (l) <v (s) < Jv (x)f it

follows that either x < 5 <« 1l or x -1 <8 <1, Now s € 5, since

v (s) ¢ v [;3 . 1% Tollows that x ;{ A, a contradiction, Therefore

I X ¢ A thep v(x)eHj

b} Suppose x > ¢ and v (x) € H and suppose x £ A Thep

3’
there is an ¢ in 8 witp elther x < s « 1l or 1<s« X. In either
case [vz(s)f < IVZ(xH, whence v (s) € H3 < Hy. But since g € 8,
vz(s) d Hy,. Therefore, ir X>0 and vz(x) e H3, then x ¢ A, puig

Completes the proor,
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Lerma 19.15. vt (the valuation-ring of A) is equal to

(x](37 e H5)(vz(x) > 7)) U (o).

Proof. According to 5.12, vV is equal to (x1(3y e A)(Ix] <))

a) If yeA and lx’ <y, then elther x =0 or
vz(x) > vz(y) € Ho. L
z 3 . R
b) If 7y e H5 and vZ(x) >y, then vz(x) > vz(y) for some
positive y in A. But then for some integer n, le < 2" . y. If
v € Afl, then |x| < 2" and so x| <y, for some y; 1n A. If
vy e AU {1}, then 2" - y e A, and so x| <y, for some y, in A.
Thus in elther case, {x] is bounded above by an element of A. This

completes the proof.

. Y |
Corollary 19.16. If x ¢ é&l, then VA(X) = 0 if and only if vz(x) € H3'

Proof. Trivial by 19.15, and the convexity of H3.

1 ~ N . - r » - ] ’ -
Lemma 19.17. Gl C2 is coinitial in Gl' |
ETéof. G, and G, are D-groups. If & e G ~Gy, then 5/2 ¢ G ~ Gy,
so that if 0 <5, then 0 <5/2 < d.
' * A ' ‘ . Z
Suppose X € g32 and v (x) > 0. Then, using 19.15, v (x) >7
for all .y 1in HB.' By the definitionrof H5 as the maximal subgroup
of H2 that is confex in Hl’ there 1sla 7, in Hl ~ H2 such thet
vZ(x) >y, > 0. But, by 19.8, 7y = vZ(s) for some s in S. By
. A A A
convexity, |x| < Is| <1. But then v '(x) >+ (s) >0. 1If v (s) =0,
then by 19.16, VZ(S) € H5 C E,, contrary to 19.8. Therefore,
VA(S) >0, If vA(x) = VA(S) then VA(x/s) =0, so by 19.16

vz(x/s) € H5. But then vz(x) - vz(s) € H3' and since vz(x) e Hy, it

L1117



follows that vz(s) € Hy, contrary to 19.8.

2

' VA(X) > vA(s) > 0. But clearly § n :32 =g,

This proves that it & ¢ G2

and O < 8,

Therefore

and so vA(s) €G ~gG

1
there is an € 1in

_Gi ~ G2 such that ¢ < ¢ « 5. This concludes the proof.
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Section 20. The Elementary Theory of Pairs of D-Groups

In this section we give a very brief indication of what we mean
by the elementary theory of pairs of D-groups. We work with an applied
first-order predicate logic S£' with identity. S{' has the usual
symbols =, A; V, -, =, <>, V¥, 3, and individual variables

T X s X9 ...,'yo, Yyo vevs Zgr Zys eee o The above symbols get the

usual interpretation. In additian éf' has an individual constant O,

a binary operation-symbol +, a binary relation-symbol <, and a unary .

predicate-symbol H. A model of 5?' is a 5-tuple (G, H, +, O, <),
where G is a non-empty set, H 1is a subset of G, + 1s a blnary
relation from G X G into G, O is an element of G, and < 1is'a
binary relation on G. As in 17, we use the s;me symbols for symbols
of éi?' and.for the interpretation of those symbols in a model. ‘Also,
we identify-g model--<G, H, +, 0, <) with its domain G.

Tt is clear what we intend when we say that a model of é;?' is a
pair (G,H) of D-groups. It is equally clear that the class of pairs
of D-groups has a recursive axiomatization in 5’3‘. Let B be -a fixed

recursive set of axioms in ;i?' for pairs of D-groups, and let U be

the set of logical consequences of 48. Then U -is the.elementary theory

of pairs of D-groups.

Remark. The theory of a single D-group is slightly complicated by the .
fact that there are trivial, one-element D-groups. All non-trivial

D-groups are elementarily equivalent.

Let us assume the notion of relativization to H has been defined,

Just as relativization tc¢ L was defined in 17. The following lemma
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is simply a restatement or A. Robinson's theocrem on the model-—

completeness of the theory of non- -trivial D-groups

Theorem 20,1, rLet ¢ (x ,...,:ﬁ{) be a formula of Lt oin which ¥
—=-Tfm 0.1

does not occur, and in which Xos ovey X are the only free Variables,
Then cp is in U, where cp+ is
(vx ) - (ka)[((-ayo)(Hyo A Y A0 A Mg A wre A A Plxgseix )

BRI
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R
Section 21. There are 2 ° Elementary Types of Pairs

of Real-Closcd Fields

21.1. In 19.11 we defined, for a pair (s3,, J,) of ordered fields,
the sets § and A, and the valuation VA. Suppose now that (381, .92)
is & pair (X,L), where (K, L, +, *, O, 1, <) is a model of (&, the
axioms for a pair of real-closed fields. It is completely c¢lear that 5
and A are definable by formulae of 55 Since A 1is definable, we
can interpret within T the theory of the pair of D-groups
A ¥ A, ¥
(x'], vz .
We want to find out which pairs (G,H) of D-groups can occur as
A _* * : '
the pair (v [K ], vA[L 1), for some pair (K,L) of real-closed fields.
' A * Ap %o o
In Lemma 19.17 we showed that v [K ] ~+v [L ] is coinitial in
*
vA[K }. Thus a necessary condition, for (G,H) to occur as a pair
A, ¥ A._¥ . . cos . .
(v'[K ], v'[L 1), is that G ~H is coinitial in G. The following

lemma shows that this c:ondg'.tion is also sufficient.

Lemma 21.2. Suppose (G,H) is a pair of D-groups with G ~ H coinitial
in G. Let R lbe the reals. Let Jagl be the feal-ciosed field
IR((tG)), and 982 the real-closed field IR((tH)) Then, for the pair
(;él, ,82) we have (VA{,,S;], VA[SZ]) = (G,H).

Proof. Let G, H, é%l, §, be as in the statement of the leuma, Tt is
clear that (VZ[cgil, VZ[QSZ]) ¥ (G,H). It follows that

‘VZ[.;S;] ~ VZ[Q)Z} is coinitial-in vZ[ES;’]. Therefore {0} 1is the
unique ﬁma.iimal subgroup of -vz[,%;] that is convex in vz[.gz]. Then,

A &
by 19.15, ¥ and Vv have the same valuation-ring. Therefore
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n?

A3, A g (L3 8 = o

This proves the result,

It follows that we can interpret within T the theory of pairs
(G,H) of D-groups, Subject to the condition that g ~ g is coinitia)
in G. Thys there are gt least gs many elementary types of pairs of
real-closed fields as there elementary types of pairs (G,H) of D-groups,

subject to the condition that G~H ig coinitial ip G.
21.3. Let © pe the sentence (of K1)

(on)(ﬂyo)[xo SOvx =0 v (O<yo AV, <x A —HY )] .

® holds ip a model, (G, Hy +, 0, < ir and only G ~ g is coinitia]
in G. et Bl ve BU (g, g et U be the set of logical conge.
Quences of .é&. Then Ui: is the theory of pairg (G,H) or D-groups,
subject te the condition that G~H be coinitial in" G. our immediate
-aim‘is to show that Ul has 2 © complete eonsistent-extensions. We
will do thisg by interpreting within Ui the theory of an arbitrary
linear order with First element, _ ,

In 19,11 we defined the set § rpop a pair (Egl,rgga) of D-groups.
Suppose that (le,ggg) is:a‘pair (G,H), where (G, H, +, 0, <) is
@ model of B. It i5 cleap that § jg definable by a formula of S,

We_recall that 0 ¢ 3.

informal definitions, both of an €quivalence relation g on the non-
Negative elements of S, and of g, linear order y on the set Ci({E)

oF equivalence classes of E. Tt win be clear that E g definable

P
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in the logic 5f', and equally cilear inat we may interpret in U

the theory of the ordered set {c1(E}, W),

Definition of E. For 55, Sp in 8, with s, 2 0 and S, 2 0,

E(sl,sz) =qef (¥ x)[B(sl,x,sg) —~+x € 8] .

Tt is clear that E is an equivalence relation on trie non-negative

elements of S.

Definition of W. If Xl, X2 are equivalence classes of E, then

W(XysXp) =ger (V51 ¢ X )V sy € Xp)lsy < 55)

One may easily check that W 1s a linear order on CL(E), the set
of equivalence classes of E. Let XO pe the eguivalence class of O.
Then X is the least element of {CL(E), W).

We wanit to find out which ordered sets (X, <X) are isomorphic to
é an ordered set {CL(E), W) for a pair (G,H) such that G ~H is
é coinitial in G. We know from the previous paragraph that CL(E) has
 a least élement under W.  Thus if {X, <X) is isomorphic to a pair
(Cl(E), W), then X has a least ‘element under <y
| The converse is true, as we now show. Suppose (){, <){) is an
ordered set ¥ with least elerent X, Let V' Dbe the ;:onverse
;;. ordering, i.e., (X, >X)" et J be thé set {0, 1), ordered by
0 <, 1. Let /\0 be the lexicog:aphic product J XV'V X J. We imbed
v' in A 5 oY the map x ~> (1, x, 0}, andwe identify V' with
' its image in A . Let A\ e /\o~t{1, x_, 11}, Iet A, ve

' /\l ~ (/\l Nvt'). Then (7\1, /\2) js a pair of ordered-sets, with the
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following three properties, which may easily be checked:

i) For each ¢ in /\l there is an 2' in /\l ~ /\2 with

with 2 < '

TAL
i1} 1If 2 </\ 2°'

2" in’ A, with g <

i) A~ p =W

and 2 and £' are in /\l ~ /\2, there is an

1

" < A

A

Let G Dbe the Hahn group T E&, where IRE =R for all 2.
ﬂe/\l :

Let H Dbe the Hahn group r Ir,.

£€A2 £

Then G and H

and H 1is a subgroup of G. Because of (1) ébove, G

in G.

Let : G* —>/\l be the canonieal valuation. On

* :
that if g€ G then ge§ if and only if wv(g) ¢ ZAVRRNS -

Sy € S and Sq >0, s

2

are D-groups,

~H is coinitial

e may easily checik

l,

> 0, then, by (ii) above, E(Sl’SE). if and

only if v(sl) = v(se). Also by (ii), if s € 8 and

E(0,s) if and only if v(s) = (1, X 0J. It follows

s >.O' then

easily that

(CL(E)), W) 1is isomorphic to the converse ordering of ‘/\l ~ /\2, i.e.,

by (iii) to the converse ordering of V , i.e., to V.

This completes the proof of the converse,

We have thus shown that an

(CL(E), W), for a pair

ordered set ¥V is iscmorphic to & system

G,H) such that G ~H ig coinitial in @, if
>

and only if ¥V has a least element,

Thus we can interpret in Ui the theory

Ol of an arbitrary linear order with first élement.

Therefore Ul has

at least as many complete consistent extensions as 0.  has.

1
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R
It is krown that Ol nas 2 ° complete consistent extensions.

We sketch a proof of this result. Let f{o ) be a sequence of O's

n’ n<
and 1l's. To (an>q<d we assign an order-type g((an)n<u) by the
rule:
t({e ) ) =1+ ZB
n' n<w’ oW
where
1+w  if =0
5n = W+ + W i an = ’
and

*
B=2+Lﬂ if O€n=l.

P S !
Then ¢t ({& >n<03 has & first element. Suppose (an)n<u) and (an)n<w

are distinct sequences. Let §\<O£>n<03) be 1 + Z: Bn, and let -
. . < .
r . ! 1 . "y
§(<an)n<aa) be 1+ I:B‘, where B, B, are determined by the rule

n<w

above. Let k Dbe the least n for which O% # o%, and suppose without
loss of generali ty that & = aﬁ -~ 1. We now descrive & first-order
property dlstlngulshlng ;((oh)n<a) from £{{a' >n<u3-' In

C((a ) the kth, among the elements that nave no immediate successor,
n' n<ay ’ :

has no immediate predecessor. In g((a )n<u) the kﬁh among the elements

that have no immediate Successor, has an immediate predecessor.

- h
It follows that there are at least 2 © elementary types of models of

hy

Ol' But, in general, for a countable logic, there are at most 2 ©

~
elementary types of models of a given set of sentences. Thus there are
Ry )

exactly 2 complete, consistent extensions of O, .
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By the Dreceding discussion we have now establisheq:

R
Theorem 21,4, a) There are 2 ° elementary types of pairs (G,H) of
-ﬂ_—__——_____ .

D-groups satisfying the condition that G~H is coinitial in G.

R
b) There are 2 ° elementary types of pairs (K,L) of real-
closed fielgs.

Closer inspection of the Preceding arguments shows that there
are 2 © elementary types or pairs (G,H) of D-groups satisfying the

condition that ¢ ~ g is coinitial iy G, and 5 £ (0},

Remark. By 3.7 we see that, for pairs (G,E) or D-groups, ¢ ~ g is
€oinitial ig g if and only if G ~ g is dense ipn G, Thus ‘there

are 2 ° elementary types of pairs (G,H) of D~groups subject to the
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Section 22. The Case S = {0}

In this section we discuss pairs (K,L) of real-closed fields
subject to the condition S = {0). Tt is clear that the condition
g = {0) is elementary. We will.say that I 1is weakly dense in K
if S = {0)}. It is clear that if L 18 weakly dense in K, then L
is cofinal in K. It is equally clear that if L 1is dense in K,

then L is weakly dense in K.

Lemna 22.1. There exist pairs (K,L) of real-closed fields such

that I is weakly dense in K, Dut I is not dense in K.

Proof. Let 4 be the field of real algebraic nurbers. Let G be

a non-trivial D-group. Let K De IR((tG)), and 1et L be @((tG)_).

Since IR and 5 are archimedean it follows that vZ[K] = G =:v2[;1ﬁ?5? 

By 19.9, S = (0} for the pair (K,L). o Lo
Now let -7 .be a positive element of G, -and let p be a

transcendental real nuuber. Let x be the element W -+ ty. I% is

2y

simple to check that for any. £ in L, |% - 2\ >t Thus L is

not dense in K, and the lemma is proved.-

Remark. ILater we show, by a different technique, that there are at

least R elementary types of pairs (ﬁ,L) of reai—closed fields

subject to the condition that S = (0} and L 1s not dense in K.‘
By inspection of the proof of 22.1, we see that for the pair

(K,L), constructed in that proof, L is closed in K. We can prove

22.1 by a different construction, as in the following lermma.
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Lemma 22.2, mThepe exist pairs (K,L) or reai—closed Tields such
thati L is weakly dense in K, L is not dense in K, and I ig
not closed in k.
Froof. Let K e IR((tQ}), and let L be the real-closure in K
of a(t). We see easily that the residue—clas; Tield of I, witp
respect to VZ,I‘iS ﬁ,_ 80 L 1s not dense in K,
Clearly 1 is Countable, and K hgs cardinality ERO- Since [
contains /1 for all integers onowith 1 40, 1t is cleap
that v*[K] = y2[1) . Y ThUS, BY 19.9, S - (0] for tne pair (K,L),
Let KO be Ei((tz)'). K is a subfieldq of K. (KO is not real-
closed.) Clearly KB is or cardinality QNO, S0 KB is not a subset
of L. we now show that K6 is g subfield of f, .the closure of ‘L
in K,
Let x be ap arbitfary element or g |, Then for n ¢ 7 there

o

8T G 10 Q, and Negz gy et € =0 if <N, suen tha —

g n
X = ‘Z'Cn %
neZ
~Since 7 ig cofinal in Q, it 4g4 completely clear that X may be
approximated arbitrarily closely in g by 1its bartial Sums, which are

elements of L. Thus KB is g subfield of T.

It follows that [, #L, 1:e., L is not closeq in K.

22.3. Suppose M is a mode] (K,L) or @, for which § - {0). 1t is

obvious that for the model  clos(M) we have 5 = (0} a1so.

Conversely, suppose M 1is a moge1 (K,L) or &, such that in

the mode: clos{M) we have § = (0}. We claim 8§ = {g} for (K,L).
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For suppose x € K and x> 0. Then there is a A in L such
that X < M < 2x. DNow there 1s an Z in L such that
In - 2] < min (1x - a1, lox - A|). Therefore x < £ <2x, and so
s = {0) for thé pair. (K,L).
As in 17.3, let ) De the class of pairs (K,L) of real-closed
fields. Let jOQé. be the subclass of Y7, cousisting of those pairs

for which & = (0}. Then the preceding paragraphs show that the map

clos waps Mg Into M, and m ~ Mg into 7~ -

———

22 ., Our final result will be that 77%8 contains at least X
elementary types. In order to motivate our construction we need

certain preliminaries. Recall the sets r{x) introduced in Section 19.

Lemma 22.5. Suppose (K,L) is a pair of real-closed fields, for which

g = {0}). Let x be any element of K and define
. Z Z
r (x) = ly € K[(v 2 € DV () > v7G=a))

where we adopt the convention that vZ(O)_= w > vz(k) for all k in K.

Then

Fl(x) = I'(x)

Proof. Assume the hypotheses of the lemma.

Suppose first y € {x). Then there is an £ in L such that
B(x, £, x + y}. Then, by the convexity of VZ, we get 'vz(y) < vz(x—l),
50 y-e Pl(x). Therefore Pl(x)-E P(x). (We did not use S = {0)] for

this).
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Suppose now y ¢ Fl(x). Then there is.an 4 1 T, and a
‘Posltive integer np such that |x - 2| <n - ny. Since S = {0},
Mx) 1is symmetric, and so ny 4 P(x); But, again since § = {Oj,
I'(x) 1is g group and so y £ I(x). Therefore T(x) E'Fl(x).

It follows that Mx) = J."l(x).

22.6. From 22, > we see that if (K,L) ¢ 771 and X ¢ K then r'(x)

is of the form
Z
(yIv®(y) > B)

Where B is g subset of the group VZ[K]

For an arbitrary subset B of v [K] we define Q(B) as
{y!v (¥) >B}). It is obvious that Q(B) 18 a convex subgroup of K.
Clearly 1 ¢ e(B) if and only ir ¢ > 3, (When 0 > B e say B
s negative),

: v

Suppose B 1ig negative. We define B as the set of those

in VZ[K] Such that y > B apg -7 > B. Since B is negative,
v

0 e B. It is clear that B is convex ang Symmetric,

Suppose § is & group. Suppose yi, ¥y e 8(B). Then vz(yl) > B,
and v (ya) > B. We have v (ylye) = (yl) + v (yé) If V1%, ¢ 6(B),
there Isa b in B gyep that v (j Y+ v (yé) Sb. Then without
loss of generality v (y ) <v/e. Since yi€ 8(B) it follows that

. o
b/2 > B. Therefore b/2 >1b, g5 < 0. It follows that b/2 ¢ B,
RV v
&nd since B ig g 8Toup, b.e B. But then b >p, 4 contradiction,
' v

It follows that Yi¥> € 6(B)., We have thus shown thau if B is a group

then 8(B) is a convex subring of K.
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Suppose conversely that g(B) is a convex subring of X.

. Buppose 7y 7o € E, Select yl, Yo in K such that vz(yl) = 71

. and vz(yz) = 7,- Then, since 7 >B and 7, > B, it follows that
¥ € 8(B) and vy, ¢ 6(B). But then Yi¥, € 8(B), and so

7y t7p = vz(yl) T vZ(yz) > B. A similer argument shows that

—(7l_+ 72) > B. Therefore, if 7., 75 € ? then 7, t 75 € B, and

v w

so, by the symmetry of B, B 1is & group. We have thus shown that
if ©(B) 1is a convex subring then E' is a group.

Thus if B is negative, a necessary and sufficient condition for
6(B) +to be a convex subring of K Is that B should bve a sﬁbgroup
of vZ[L].

. Y _
We noktice that we may define 6(B) in terms of B by:
v Z
6(B) = (y1[(B7 e B {y) >7)

We leave the verification of this as a simple exercise for the reader.

From the preceding counsideratlons we deduce the following lemma.

Lemma 22.7. Suppcse (K,L) € Vns, and x ¢ K. Then a necessary and
sufficient condition that [(x) should be a subring of K 1s that

there is a convex subgroup H of VZ[K] such that

Mx) =y (37 ¢ B)(v*(y) > 7))

Corollary 22.8. Suppose (K,L) € THS, and v2[K] is archimedean.

Then if x ¢ K and I(x) is a subring of K, we have

r(x) = (y V2 () > o)
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lProof Assume the hypotheses of the coroliary. The only convex
subgroups of v [K] are (€] and VZ[K] We observe that we cannot

have P(x) = K, and our result £ollows by 22.7.

Lemma 22.9. There are (K,L) 1in s, with L not dense in K,

such that for no x in g is r{x}) a subring of K.

Proof. As in 22,1, Ilet x pe ‘E((tQ)), and let L be §((+%)).

Since Q is archimedean we may identify vZ with the canonical valuation
v of K onto Q. It is quite clear that if x e K, then either

M'(x) = (0) or there is an r 14p Q@ such that I(x) = [y[vz(y} >r),

For suppose x ¢ K- L. Then x 1is of the form 2{ C g7
red

s Where

& is a subset of Q well-ordered by the natural order, and the Cy
are in IR. Moreover some C7 R ~ Q. Let r be the least y for

which this happens. Then one may eesily verify that
I 4
L(x) = (yv(y) > )

Now we observe that because of the preceding paraaraph no I(x)

is of the form [yfv (¥) > 0). It follows by 20.8 that no I'(x) is a

subring of K,

In contrast, the following simple lemma holds.

Lemma 22,10, Suppose simply that L is cofinal in K, but I, ig not
—_—c cc. Y

lense in K. Then there exists an x in X such that 1 e I'(x).
EToof, Suppose I, ig cofinal in but not denge in K. Then there

-$an X in K such that T'(x) £ (0). Suppose T € I'(x) and < £ 0.

ince I is cofinal in X, there is an 2 in I such that it > 1,

132

i
4
I
H
'
{
1
H

s e

et T it



Suppose there is an £, in L with B{ix
B(x, 4 * ¢t 1), and oz - ;L ¢ L, contradicting the fact that

¢ € [(x). It follaws that 2t € (2x), and by convexity 1 € I'(4x).

gt). Then clearly

7

This proves the lemma.

22.11. Let (K,L) be in M. We define JC as t.he set  {T(x))_ o«
3¢ is a set of convex subgroups of K. 3¢ is linearly ordered by
inelusion, with maximal element {(0). ILet 5° ©ue the subset of IC
consisting of those [I'(x) that are subn-:'ings of K. 3% is also
linearly ordered by inclusion, and does not contain {0). We have seen
that, even if I is not dense in K, 3¢ ° may be empty. _

Let CZS be a recursive set of sentences of 5{’, extending Q& and
axiomatizing 7725. Tt is clear that such sets exist. We see easily

that we may interpret within the Sheory of as the theory of the ordered

set B¢ and its subset 30, R

Let a,; ] be a recursive set of sentences of .;F, extending Q’s’
and axiomatizing the class of models (X,L) of Os ‘for which 3(’,0 ,éﬁf'
It is clear that such sets ‘ex';'l.st. Moreover, in any model (X,L) of
a,:, L is not dense in K. H |
' We see easily that we may interpret within the theory of C?,: the
theory of the ordered set (3(30, C), where © ié inclusion. We have
been unable to ascertain for which linear orders (X, <}() there is a
model (K,L) of (7, such that (3%, @) = {x, <. (1% is consistent
with what we know that all linear orders occur in this way.)} However,

we have the following result.
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Lemma 22.12. Suppose (X, <X> is a finite linear order. Then there
is a model (K,L) of CL; such that (3€°, <) = {(x, <X>'

Proof. Let (X, <k} be a finite linear order, of cardinal n, say.

Part 1. We construct a D-group G which has exactly n proper convex
subgroups.
If n=1, let G be Q. TIf n> 1, let Xl be the ordered set

got by removing from X its greatest element. Let @G be I gz,
LeX
1

where each Q£ is -Q. Then vZ may be identified with the canonical

group-valuation of G onto Xl. It is a simple exercise to show that

the proper convex subgroups of G are precisely (0} and the groups

{g!vz(g) > xl], where X, € Xq.

Thus we see that G is a countable D-group with the. property that
the ordered set consisting of the proper convex subgroups of G, ordéred

by reverse inclusion, is iscmorphic to (X, <k).

Part 2. Let A be a countable limit ordinal, and let H be a proper |

convex subgroup of G. We claim there is a well-ordered series (g ]“<A-of
L

elements of G, satisfying (a), (b),-(c) below.
(&) {gu}p<h is 1ncrea51gg in <G’ the order on G. ' B

(b) If W< XA and h e H, then. g, <gh | E

(¢) If yeG and 7 <z h for all h in H, then there is g

< A c¢h that . ' '
K su ' <'C_rgLL _ j

We prove this by a variant of a classical argument of Cantor. First

we enumerate the ordinals less +than A, say as (1)

n’ neo Next, we

enumerate, as [7n}n<&9 those 7 such that for all h in H 7 < b

We cbserve that in ¢ (7 )

nncy IS densely ordered without first or last
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element, since G 1is a D-group. |

We define g, as ¥ Suppose we have defined & for all b
o n r

n< N, soas to satisfy the following conditions (1), (ii), (dii). B

(i) If ny, By < N and 1 <7, then g < &; - .
1 2 ny n, )

(ii) For all n< K, and 2 in H, &  <g®- : ;
n

(iii) If n <N, and g_ >, &, for all m < n, then
3

n ¢ ' |
g >, max 7.. ?
"n ¢ o<i<n Y |
- |
We now define &, Let E  be the set of n <N such that
N .
1< 1. Let E' be the set of n <N such = < 1t _. Then
n N : N - n
E <y < E, both " and E are finite, and at, least one of them

is non-empty. Let F  be the set {g_[ne EJ}, and lev F' be the
n .
set (g_ In e gt). Then ¥ < F, by (i), and clearly F~ and F
n .
sare finite. Since. G is a D-group, there are g in G with

F<g<TF.

If F' is not empty, we select g, ~asan arbitrary g such that

oy )
- + - S !
F <g<F. Sucha g 1is antomatically less than any element of H. |

If F+ is empty, we choose g, as an arbitrary g such that $
: N . o ‘ '

F U [70, cees 759 < g <H. Itis clear that such g exist, since 3

- U . P
F (70, vy 7N} is a finite subset of {7n]n<uf

With this choice of g_, we see easily that (1), (ii), (iii)
N
now hold with N replaced by N + 1. Thus, by induction, we define

{g1r ]r<u so that (i), (ii), (iii) hold for all N. Thus we have
oo

135

) Ay —



and it is clear that conditions (a) and (b) hold.

defined [g“]u<h,
We now show that {c) holds.
Suppose ¥ € G "and 7 <Cr h for all h in H. Now, for some n,

7 =7 . Suppose that for all k >n there is an m < k such that

n
g, SG 8. Then by induction one sees that, for all integers 2,
k m
g < max g_ . But then (g )} has a maximum element, contrary
'rz GOSJ'SH TJ. T, £<w

to (a2) and the fact that A is a limit ordinal. We have thus shown that

there is a kK >n such that for all m< k  we have g <, g
o " - o] Tn G Ty
o}

But then by condition (iii), g > max 7. > Y, = 7. Thus
"k, o<ji<k, ?

g 27, and since A is a limit ordinal there is an integer m such

Tk
(]

that €. > 7. Thus condition (c¢) is satisfied.
m

This concludesg Part 2.

Pért 3. Now let AN be a countable ordinal closed under +, , P and g,
From the definition of P and a it is clear that there are such A.
Let L be 13_((1;9))}\._ Then, by 10.25, L is real-closed. Let X be
R ((tG)). Thén,-by 10.26, K is real closed.

We will show that (K,L) is a model of m;, and that for" (X,L)
the associated system (SCO, <) is isomorphic tb (x, &)

Since R is archimedean, we may identify vo (on K) with the

4 s o
(L] =G, it is

canonical valuatior of K onto G. Since vZ[K] =V
clear that (X,L) 1is a model of [,'LS. By 22.7, we see that if x e K,
then I(x) € ©° ir and only if there is a proper convex subgroup H

of G such that [(x) = {y/(T7e H)(vz(y) >7)}. We know by Part 1
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that G has exactly n proper convex subgroups. Thus the cardinality

of 3¢° is at most n. We show that 5¢° has cardinality n.

Let H be a fixed proper convex Subgroup of G. Then according to

Part 2 there is a monotone increasing series [gu]pds such that

and such that for no g in G do we have

g
Let x be the element D t ML t° of X. We claim
p<h '

Fx) = (vl@n ¢ BEE) 260

Suppose Z ¢ L and h ¢ H. Then we cannot have vz(x-—f,) >g B

T

For, since {gu}u<h < B this would entail that each g, ves in the .

support of £, so that ||ﬂ,i| > A, contrary to the definition of L. |

Thus if £ € L and h € H then vZ(x-z) < h.

g
Suppose on the other hand that 7 <, g, - Let £ be 2 t M,
o ' Wi

Then £ ¢ L and vz(x-g).>G g“ >G 7 Thus if ‘7<G H, then there
. O .

is an £ in L such that _vz(x-ﬂ) > 7

Tt follows now from Lemma 22,5 that

rx) = (rl@n e M) 2 B - o .
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Since H was an arbitrary proper convex subgroup of G, it follows

by 22.7 that to distinct Dreper convex subgroups of @ there correspond
distinct elementg of 3¢ °, Thus 3C° has cardinality n,
It follows that (360, <) is isomorphic to {x, <k> and the lerma

is proved.

Theorem 22,13, CL; has at least RO complete consistent extensions.

Proof. It is clear that for each Positive integer n there is a sentence
. . . + . o
hn of c5€ which holds in a model of CLS if and only 3¢ ° has

Cardinality n. By 22.12, Cl; U {hn] is consistent,
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Problems

section 23. Conclusion: Some Ozery

1. Are there any other axiomatizable typs

than those corresponding to Classes A, B?

a reascnable place to look for them would]

but the final section of the dissertation

quite complicated.

s of pairs (K,L) other
¢ and D? If there are,
be in the case 8 = {0},

shows that this case is

:

2. Is the elementary theory of pairs of
Is the elementary theory of pairs of D-gr
case, a decision procedure would give a n

the theory of an arbitrary linear order.

3. If L, is cofinal in X are there

elementary types of pairs (x,L} such thag

L. PFor fixed L, are there only finitel
pairs (K,L}? (For certain K, e.g., an

all countable real-closed fields, there a

pairs (K,L).)

5.' If (Kl,L) c (KE,L), and (Kl,L) = (]

|

|

teal-closed fields decidable?
ups decidable? 1In either

bw decision procedure for
3
3

at most finitely meany

clos[{¥,0)] = (Kl,Ll)?

? many elementary types of

[ .

L

n-principal ultraproduct of

R
be 2 © elementary types of

|

;E,L),'does it follow that

6. If we assume the generalized continu

hypothesis, then we can prove,

for regular «, %the existence of Ng T€ 1-closed fields of cardinallty

R, Is it true that all pairs (K,L), -w:ere K is n, of cardinality

ﬁi’ and L 1is _na of cardinality Rﬁ’

139

dnd 0 < p < aiREET

e = e &, AT N AT L e .



elementarily equivalent? It is easy to see that for fixed o, B all

such pairs are isomorphic. If there is in fact enly one such type,
can we characterize it in an elementary way? For such a type, L is

not cofinal in K, nor is L dense in G{If

7. It would be interesting to investigate the theory of pairs of

p-adic fields. It appears thatlsome of the ideas and methods of this
work‘could be used. Note that it is trivial to see that one can interpret
within the fheory of pairs of p-adic fields the theory of pairs of

Z-groups.

Lo




10.

12,

13.

1k,
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Notes., The following%are some bibliocgraphical references for specific

' t
sections of the dissertation.
F
- f
Introduction. Steinitz's results are in [45]. Tarski's are in [49],
!
and Coken has a simplification 'in [11]. Robinson's results are in' {35].

1 ' . .
In [27], Keisler extended Robinson's results about algebraically closed

fields.
Section 1. see [3], (4], [61, (i8], [23) and [37].
Section 3. Lemﬁa 3.4=£s from [42}. Lemma 3.8 is from {13].

Section 4. See [18].?
%
Section 5. See [1], [2], [18], (231, [29], [30] and [41].

Section 6. See [1], [E] and [30].

E

Section 9. See [1], [?], and [18]. _
E
b . .

Section 10. See [1], E21= (6], (8], [18], [52], and [53].

Section 11. See Scott:[k2].

Section 12. See [23].

Section 13. For a > dr ql-sets were introduced by Hausdorff (22], who
showed that the ey1stence of Wx sets of cardinality R implies tnat
s, there

: R
¢ 1s regular and Ra =Z 2 h Conversely, if Ra = Z 2 N

exists an N set of c;rdinality ﬁa‘ The existence of 1, D-groups

- and real-closed fields of cardinality R on the assumption of the

l,

- LRl
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continuous furdctions on completely regular topological spaces. See

: R
(19). The existence guestion for o > 1, and assuming Ra = EE 2 k,

was settled affirmatively by two methods. Alling [2] used the theory

of formal powgr-scries. Xeisler [26] used ultrapowers to prove -a vastly

more general ¥esult. The method of Morley and Vaught [32] establishes

the same genemal result.

a

Hausdorfi# (22] proved 13.3. Erdds, Gillman and Henriksen proved

13.5 in [13], énd Alling and Kochen {independently) proved 13.4 by a
gsimilar method See Kochenx[EB]-for metamathematical applications of
fhese results.% Kochen's method generalizes, by [26] and (32], and the
papers [7], [85, [9] of Ax and Kochen, and (15] of Ersov, are beautiful

3
examples of the method's vower.

t - 3 -
Section 1k, ske (6], [24] and [k1) for more details about pseudo-Cauchy
sequences,
[
3

Section 15. Te theorem of Ax and Xochen needed here is in [6]. See

also [7], [8],}§(9] and [15].

o

Section 18. Fér the requisite information about ultrafilters, see {6],
[17], [26] and}{28]. For deiails about the constructible universe, see

Gddel [20].

Section 21. I} Zausdorff [22] there is an example which shows that there

T

o} 1 - “ s - l\ - :
are 2 © elemerfiary types of linear ordering. Enrenfeucht [123 showed -

that the elemerfary theory of enrarbitrary linear order is decidable. TFo

a proof, see Lalienli and Leonard f31].
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