Metamathematics I

Fall 2001

Problem Set II

Due Monday September 17

- 1) Let ϕ be an \mathcal{L} -sentence and let \mathcal{A} be an \mathcal{L} -structure. Prove that if there is an assignment α such that $(\mathcal{A}, \alpha) \models \phi$, then $(\mathcal{A}, \beta) \models \phi$ for all assignments β . [**Hint**: You will probably want to prove this by induction on formulas. You will need to first formulate the right generalization to formulas.]
- 2)a) Let \mathcal{L} be the language $\{+,0\}$ and consider the structure \mathcal{R} with universe \mathbf{R} (the real numbers) where + is interpreted as the usual addition and 0 as zero. Show that there is no formula $\phi(v,w)$ such that $\mathcal{R} \models \phi(a,b)$ if and only if a < b for all $a,b \in \mathbf{R}$. (**Hint:** Find a and b and an automorphism of \mathbf{R} such that a < b but F(a) > F(b)).
- b)[†] Let \mathcal{L} be the language of rings $\{+,\cdot,0,1\}$ and let \mathcal{R} be \mathbf{R} with the usual interpretation. Find a formula $\phi(v,w)$ such that a < b iff $\mathcal{R} \models \phi(a,b)$.
- 3) Let T be an \mathcal{L} -theory. We say that T' is an axiomatization of T if $\mathcal{A} \models T$ if and only if $\mathcal{A} \models T'$ for any \mathcal{L} -structure \mathcal{A} . Suppose T' is an axiomatization of T. Show that $T \models \phi$ if and only if $T' \models \phi$ for all \mathcal{L} -sentences ϕ .
- 4) If ϕ is a sentence, the *spectrum* of ϕ is the set of all natural numbers n such that there is a model of ϕ with exactly n elements.
- i) Let $\mathcal{L} = \{E\}$ where E is a binary relation. Write down a sentence ϕ asserting that E is an equivalence relation and every equivalence class has exactly three elements. Show that the spectrum of ϕ is $\{n > 0: 3 \text{ divides } n\}$.
- ii) Let $\mathcal{L} = \{P, Q, f\}$ where P and Q are unary predicates and f is a binary function. Let ϕ be the conjuction of:

```
\exists x \exists y \ x \neq y \land P(x) \land P(y)
\exists x \exists y \ x \neq y \land Q(x) \land Q(y)
\forall z \exists x \exists y \ P(x) \land Q(y) \land f(x,y) = z
\forall x_1 \forall x_2 \forall y_1 \forall y_2 \ [(P(x_1) \land P(x_2) \land Q(y_1) \land Q(y_2) \land f(x_1,y_1) = f(x_2,y_2)) \rightarrow (x_1 = x_2 \land y_1 = y_2)]
```

Show that the spectrum of $\phi = \{n > 3 : n \text{ is not prime}\}.^1$

- iii) Find a sentence with the spectrum $\{n > 0 : n \text{ is a square } \}$.
- iv) Find a sentence with the specturm $\{p^n : p \text{ prime } n > 0\}.$
- v)** Find a sentence with spectrum $\{p : p \text{ is prime}\}.$

Remarks • An interesting theorem from computer science says that $X \subseteq \mathbf{N}$ is the spectrum of a sentence if and only if X is recognizable in non-deterministic exponential time.

• Open Question: Suppose X is the spectrum of a sentence. Is $\mathbb{N}^+ \setminus X$ also a spectrum?

¹ **Note**: Another sentence with the same spectrum is the sentence in the language of rings asserting that we have an integral domain with zero divisors