Scott Ranks of Counterexamples to Vaught’s Conjecture

David Marker

Mathematics, Statistics, and Computer Science
University of Illinois at Chicago

June 30, 2011
Conjecture

If T is a first order theory in a countable language, then

\[I(T, \aleph_0) \leq \aleph_0 \text{ or } I(T, \aleph_0) = 2^{\aleph_0}. \]

Let $\phi \in L_{\omega_1, \omega}$. If $I(\phi, \aleph_0) > \aleph_0$, then there is a perfect set of non-isomorphic countable models.
Morley’s Theorem

Theorem (Morley)

Let $\phi \in L_{\omega_1,\omega}$. Then $I(\phi, \aleph_0) \leq \aleph_1$ or there is a perfect set of nonisomorphic models.

So, counterexamples to Vaught’s Conjecture have exactly \aleph_1 non-isomorphic models.

Moreover ϕ is scattered, i.e., for any countable fragment Δ there are only countably many Δ-types.
We define equivalence relations \sim_{α} on \mathcal{M} as follows:

- $\bar{a} \sim_0 \bar{b}$ if for any atomic formula ϕ

$$\mathcal{M} \models \phi(\bar{a}) \iff \mathcal{M} \models \phi(\bar{b}) :$$

- for α a limit ordinal, $\bar{a} \sim_{\alpha} \bar{b}$ if and only if $\bar{a} \sim_{\beta} \bar{b}$ for all $\beta < \alpha$;

- $\bar{a} \sim_{\alpha+1} \bar{b}$ if and only if $\forall c \exists d \quad \bar{a}, c \sim_{\alpha} \bar{b}, d$ and $\forall d \exists c \quad \bar{a}, c \sim_{\alpha} \bar{b}, d$.
Scott rank and α-homogenity

We say \mathcal{M} is α-homogeneous if

$$\bar{a} \sim_\alpha \bar{b} \Rightarrow \bar{a} \sim_\beta \bar{b} \text{ for all } \beta.$$

For any \mathcal{M} there is $\alpha < |\mathcal{M}|^+$ such that \mathcal{M} is α-homogeneous.

The least such α is the Scott rank of \mathcal{M}.

For any $\alpha < \omega_1$ a counterexample to Vaught’s Conjecture will have at most countably countable many models of Scott rank below α.

Thus a counterexample, must have models of arbitrarily large countable Scott rank.

We will revisit this fact later.
John Baldwin observed:

Theorem

If T is a first order theory where Vaught’s Conjecture fails, then $I(T, \aleph_1) = 2^{\aleph_1}$.

Proof

- (Shelah) Vaught’s Conjecture holds for ω-stable theories.
- (Shelah) If T is not ω-stable, then $I(T, \aleph_1) = 2^{\aleph_1}$.
What about $L_{\omega_1,\omega}$?

Theorem (Harnik-Makkai)

Suppose $\phi \in L_{\omega_1,\omega}$ is a counterexample to Vaught's Conjecture.

- There is a model of size \aleph_1 that is $L_{\infty,\omega}$-equivalent to a countable model. (In fact there are \aleph_1 countable models which are $L_{\infty,\omega}$-equivalent to an uncountable model.)
- There is a model of size \aleph_1 that is not $L_{\infty,\omega}$-equivalent to a countable model.
What about \aleph_2?

Theorem (Hjorth)

If ϕ is a counterexample to Vaught’s Conjecture, then there is a counterexample ψ such that $\psi \models \phi$ and ψ has no models of size \aleph_2.

Hjorth’s proof uses heavily the descriptive set theory of actions of S_∞ and the construction of ψ from ϕ is a bit mysterious.

Sacks has tried to prove Vaught’s Conjecture by showing that counterexamples must have models of size \aleph_2.
Harrington’s Theorem

Theorem (Harrington)

If ϕ *is a counterexample to Vaught’s Conjecture, then for all* $\alpha < \omega_2$, *ϕ has a model of Scott rank at least* α.

In particular, $I(\phi, \aleph_1) \geq \aleph_2$.

Question

Can we improve this to $I(\phi, \aleph_1) = 2^{\aleph_1}$?

For the remainder of the talk, I will give a sketch of Harrington’s proof.
Ingredient: The Model Existence Game

Let $\phi \in L_{\infty, \omega}$. We define a game G_ϕ.
Let Δ be the smallest fragment containing ϕ and let C be a countable set of new constants.
A play of the G_ϕ looks like:

```
I          II
\phi_0
\quad s_0
\phi_1
\quad \vdots
\quad s_1
\quad \vdots
```

where ϕ_i is $\Delta(C)$ and s_i is a finite set of $\Delta(C)$-sentences.
Player II wins G_{ϕ} if $s_0 \subseteq s_1 \subseteq s_2 \subseteq \ldots$ and

- either $\phi_i \in s_i$ or $\neg \phi_i \in s_i$, i.e., s_i commits to ϕ_i or $\neg \phi_i$;
- if $\phi_i = \phi$, then $\phi \in s_i$;
- if $\phi_i = \bigvee \psi_j$ and $\phi_i \in s_i$ then some $\psi_j \in s_i$;
- if $\phi_i = \exists v \psi(v)$ and $\phi_i \in s_i$, then $\psi(c) \in s_i$ for some $c \in C$;
- $c \neq c$ is not in any s_i;
- if $c = d$ is in s_i, then $d \neq c \notin s_i$;
- if $\phi(c), c = d \in s_i$, then $\neg \phi(d) \notin s_i$;
- if $\bigwedge \psi_i \in s_i$, then $\neg \psi_i \notin s_i$ (in particular $\psi, \neg \psi \notin s_i$);
- if $\forall v \phi(v) \in s_i$, then $\neg \phi(c) \notin s_i$.
Observations

- G_ϕ is an closed game –if Player I wins a play of the game there is a stage where it is determined that Player I has won. Thus one of the players has a winning strategy–If Player I doesn’t have a winning strategy , Player II wins by avoiding losing positions.

- If there is $M \models \phi$, then Player II has a winning strategy in G_ϕ–Player II just answers what’s true in M, where we assign constants dynamically in a reasonable way.
Observations

- If $\phi \in L_{\omega_1,\omega}$ and Player II has a winning strategy, then there is $\mathcal{M} \models \phi$ – Since $\Delta(C)$ is countable, we can consider a play of the game where Player I plays every $\Delta(C)$-sentence. Then $\bigcup s_i$ is a Henkin set describing a model of ϕ.

- For $\phi \in L_{\omega_1,\omega}$ if Player I has a winning strategy, then there are no models of $\neg \phi$. Thus for $\phi \in L_{\omega_1,\omega}$

 $$\models \phi \iff \text{Player I has winning strategy in } G_{\neg \phi}.$$

 ϕ is satisfiable \iff Player II has a winning strategy in G_{ϕ}
For $L_{\infty, \omega}$ things break down

There is an $L_{\omega_2, \omega}$-sentence ϕ in the signature $\{<\}$ such that $\mathcal{M} \models \phi$ if and only if \mathcal{M} is a well-ordering of order type ω_1. Let

$$\psi = \phi \land \forall \nu \bigvee_{i=0}^{\infty} \nu = c_i.$$

Then ψ has no models.

But Player II has a winning strategy in G_ψ—roughly Player II pretends to play in a generic extension where ω_1 has been collapsed.

Indeed for any $\phi \in L_{\omega_1, \omega}$, Player II has a winning strategy if and only if ϕ has a model in a forcing extension of \mathbb{V}.
Define $\models^* \phi$ if and only if Player I has a winning strategy in $G_{\neg \phi}$. We think of this as saying ϕ is formally valid or strongly valid.

Note that if $\models^* \psi$ then $\models \psi$ and the notions are equivalent for $\psi \in L_{\omega_1,\omega}$.

\models^* has many of the simple properties of \models.

- If $\models^* \phi$ and $\models^* \phi \to \psi$, then $\models^* \psi$.
- If c does not occur in $\phi(v)$ or ψ and $\models^* \phi(c) \to \psi$, then $\models^* \exists v \phi(v) \to \psi$.

These can be used by manipulating strategies in the games or by using the forcing characterization, but we will shortly give simpler proofs.
Recall: $H(\kappa)$ is the sets that hereditarily have cardinality less than κ, and $HC = H(\aleph_1)$ is the set of hereditarily countable sets.

Theorem (Lévy Absoluteness)

If $\kappa < \lambda$, $H(\kappa) \prec_1 H(\lambda) \prec_1 V$.

Here $\mathcal{M} \prec_1 \mathcal{N}$ if and only if for any Σ_1-formula $\phi(\overline{v})$ in the language of set theory and and $\overline{a} \in \mathcal{M}$,

$$\mathcal{M} \models \phi(\overline{a}) \iff \mathcal{N} \models \phi(\overline{a}).$$
The Absoluteness of \models^*

Lemma

$\models^* x$ is Δ_1 on $H(\kappa)$.

Proof.

If $\phi \in H(\kappa)$, then $\phi \in L_{\kappa,\omega}$ and if Δ is the smallest fragment containing ϕ then $\Delta \in H(\kappa)$. A winning strategy will be a function $\sigma \in H(\kappa)$.

Then $\models^* \phi \iff$

\iff Player I has a winning strategy in $G_{\neg \phi} (\Sigma_1)$

\iff Player II does not have a winning strategy in $G_{\neg \phi} (\Pi_1)$
Corollary

If $\models_\ast \phi$ and $\models_\ast \phi \rightarrow \psi$, then $\models_\ast \psi$.

Proof.

The statement that for all ϕ and ψ the Corollary holds is a Π_1-sentence Γ. Since for $L_{\omega_1,\omega}$ the sentence is true for \models, $HC \models \Gamma$. Thus by Lévy Absoluteness it is true in \mathbb{V} and in any $H(\kappa)$.

Similar proofs work for other useful simple properties of \models_\ast. For example,

Corollary

If $\models_\ast \phi \rightarrow \theta_i$ for $i \in I$, then $\models_\ast \phi \rightarrow \bigwedge_{i \in I} \theta_i$.
The most difficult part of the proof is a careful analysis of the countable case.

Let ϕ be a counterexample to Vaught’s Conjecture.

Lemma

For any $\alpha < \omega_1$ that is at least the quantifier rank of ϕ there is $\mathcal{M} \models \phi$ that is not α-homogeneous with Scott rank at most $\alpha + \omega$.

We can inductively define formulas $S^n_\alpha(x_1, \ldots, x_n, y_1, \ldots, y_n)$ such that for any \mathcal{M}

$$\mathcal{M} \models S^n_\alpha(\bar{a}, \bar{b}) \iff \bar{a} \sim_\alpha \bar{b}$$

Using these formulas for any α we define σ_α a sentence asserting that \mathcal{M} is not α-homogeneous.
Let Δ be the smallest fragment containing $\phi \land \sigma_\alpha$.

Every formula in Δ has quantifier rank less than $\alpha + \omega$.

Since ϕ is scattered, there are only countably many Δ-types for models of $\phi \land \sigma_\alpha$.

Thus there is a Δ-atomic model \mathcal{M} of $\phi \land \sigma_\alpha$.

\mathcal{M} has Scott rank at most $\alpha + \omega$.
Finding Scott sentences

Let ϕ be a counterexample.

Lemma

Let $\alpha < \omega_1$. Let A be an admissible set containing ϕ and α. Then A contains the Scott sentence of a model that is not α-homogeneous.

Admissible sets are transitive models of “enough set theory”.

Sketch: Suppose, for simplicity, that ϕ and α are countable in A.

The set of canonical Scott sentences for models of ϕ of Scott rank at most $\alpha + \omega$ is a countable set that is $\Sigma^1_1(\phi, \alpha)$.

By Harrison’s Theorem every such Scott sentence is hyperarithmetic in ϕ, α and hence in A.

More work is needed for the general case.
Fix \(\phi \). We want to show that for \(\alpha < \omega_2 \) there is \(\mathcal{M} \models \phi \) that is not \(\alpha \)-homogeneous.

Let \(\Gamma \) be a sentence of set theory asserting:

For all admissible \(\mathbb{A} \) with \(\phi \in \mathbb{A} \) and for all \(\alpha \in \mathbb{A} \) an ordinal, there is \(\Psi \in \mathbb{A} \) such that:

- \(\Psi \) is formally satisfiable, i.e. \(\not\models_{\mathbb{A}} \neg \Psi \);
- \(\models_{\mathbb{A}} \Psi \rightarrow (\phi \land \sigma_\alpha) \);
- \(\Psi \) is formally complete, i.e., for all \(\theta \), \(\models_{\mathbb{A}} \Psi \rightarrow \theta \) or \(\models_{\mathbb{A}} \Psi \rightarrow \neg \theta \);
- (formal atomicity) for all \(\theta(\vec{v}) \) if \(\models_{\mathbb{A}} \Psi \rightarrow \exists \vec{v} \, \theta(\vec{v}) \), then there is \(\hat{\theta}(\vec{v}) \in L_{\mathbb{A}} \) such that
 - i) \(\models_{\mathbb{A}} \hat{\theta}(\vec{v}) \rightarrow \theta(\vec{v}) \);
 - ii) \(\models_{\mathbb{A}} \Psi \rightarrow \exists \vec{v} \, \hat{\theta}(\vec{v}) \);
 - iii) \(\hat{\theta}(\vec{v}) \) is complete.
• Γ is Π_1;
• $HC \models \Gamma$; We choose Ψ to be the Scott sentence of a model of Ψ that is not α-homogeneous and use the fact that \models agrees with \models^* for $L_{\omega_1,\omega}$.
• Thus, by Lévy Absoluteness, $H(\aleph_2) \models \Psi$.

Let $\hat{\alpha} < \omega_2$ and let $A \in H(\aleph_2)$ be an admissible set containing $\phi, \hat{\alpha}$. Let Ψ be as in Γ.

Our remaining problem is that $\not\models^* \neg\Psi$ (i.e., formal satisfiability) is not enough to conclude there is a model of Ψ.

Let $C = \{ c_\alpha : \alpha < \omega_1 \}$ be a new set of constants and let $C_\alpha = \{ c_\beta : \beta < \alpha \}$.

Let $\{ \exists v \delta_\alpha(v) : \alpha < \omega_1 \}$ list all $L_A(C)$-formulas such that $\models^* \exists v \delta_\alpha(v)$. We assume $\delta_\alpha \in L_A(C_\alpha)$.

For example, we include all formulas

$$\exists v (\exists w \psi(w) \rightarrow \psi(v))$$

which will help us Henkinize.
We build $\Sigma_0 \subset \cdots \subset \Sigma_\alpha \subset \ldots$, $\alpha < \omega_1$ where Σ_α is a countable set of $L_\mathbb{A}(C_\alpha)$-sentences such that:

- $\Psi \in \Sigma_0$;
- For all $\bar{c} \in C_\alpha$, there is $\theta(\bar{c}) \in \Sigma_\alpha \cap L_\mathbb{A}(\bar{c})$ such that $\theta(\bar{\nu})$ is complete;
- $\delta_\alpha(c_\alpha) \in \Sigma_{\alpha+1}$;
- If $\theta_1, \theta_2 \in \Sigma_\alpha$, then there is no ψ such that $\models_\ast \theta_1 \rightarrow \psi$ and $\models_\ast \theta_2 \rightarrow \neg \psi$.

Let

$$H = \{ \psi \in L_{\mathbb{A}}(C) : \models_\ast \theta \rightarrow \psi \text{ for some } \theta \in \bigcup_{\alpha < \omega_1} \Sigma_\alpha \}.$$
$H = \{ \psi \in L_\Delta(C) : \models_{\ast} \theta \rightarrow \psi \text{ for some } \theta \in \bigcup_{\alpha < \omega_1} \Sigma_{\alpha} \}.$

For any $\psi(\bar{c}) \in L_\Delta(C)$. Suppose $\bar{c} \in C\alpha$. There is $\theta(\bar{v})$ complete such that $\theta(\bar{c}) \in \Sigma_{\alpha}$. Then $\models_{\ast} \theta(\bar{c}) \rightarrow \psi(\bar{c})$ or $\models_{\ast} \theta(\bar{c}) \rightarrow \neg \psi(\bar{c})$. Thus one of $\psi(\bar{c}), \neg \psi(\bar{c})$ is in H.

H is Henkinized.

Suppose $\bigvee \psi_i(\bar{c}) \in H$. We claim that $\psi_i(\bar{c}) \in H$ for some i.

There is $\theta(\bar{c}) \in \bigcup \Sigma_{\alpha}$ such that $\theta(\bar{v})$ is complete. If $\models_{\ast} \theta(\bar{c}) \rightarrow \psi_i(\bar{c})$, then $\psi_i(\bar{c}) \in H$, so assume $\models_{\ast} \theta(\bar{c}) \rightarrow \neg \psi_i(\bar{c})$ for all i.

But then $\models_{\ast} \theta(\bar{c}) \rightarrow \bigwedge \neg \psi_i(\bar{c})$, a contradiction.

Thus we can build a canonical Henkin model of H.
Constructing the Σ_α

- $\Sigma_0 = \{\psi\}$.
- Given Σ_α. Let $C_\alpha = \{d_0, d_1, \ldots\}$. There is $\psi_n(d_0, \ldots, d_{n-1}) \in \Sigma_\alpha$ complete. We build $\theta_n(d_0, \ldots, d_{n-1}, c_\alpha)$ complete.
 i) Choose $\theta_0(v) \in L_\Lambda$ complete such that $\models* \psi \rightarrow \exists v \theta_0(v)$ and $\models* \theta_0(v) \rightarrow \delta_\alpha(v)$.
 ii) Given θ_n find θ_{n+1} complete such that $\models* \theta_{n+1}(d_0, \ldots, d_n, c_\alpha) \rightarrow (\theta_n(d_0, \ldots, d_{n-1}, c_\alpha) \land \psi_{n+1}(d_0, \ldots, d_n))$.