
A Primer on Infinitary Logic

Fall 2007

These lectures are a brief survey of some elements of the model theory of
the infinitary logics L∞,ω and Lω1,ω. It is intended to serve as an introduction
to Baldwin’s Categoricity.

1 Basic Definitions

Let L be a language. In the logic Lκ,ω we build formulas using the symbols of
L, =, connectives ¬,

∧
and

∨
, quantifiers ∀ and ∃, and variables {vα : α < κ}.1

We define formulas inductively with the usual formation rules for terms,
atomic formulas, negation, and quantifiers and the following rule for

∧
and

∨
.

If X is a set of Lκ,ω formulas with |X | < κ, then

∧

φ∈X

φ and
∨

φ∈X

φ

are Lκ,ω formulas.
Satisfaction for Lκ,ω-formulas is defined inductively as usual. If M is an

L-structure and σ is an assignment of variables, then

M |=σ

∧

φ∈X

φ ⇔ M |=σ φ for all φ ∈ X

and
M |=σ

∨

φ∈X

φ ⇔ M |=σ φ for some φ ∈ X.

For notational symplicity, we use the symbols ∧ and ∨ for binary conjunction
and disjunctions.

We can inductively define the notions of subformula, free variable, sentence,
theory and satisfiability in the usual way.

Exercise 1.1 If φ is an Lκ,ω-sentence and ψ is a subformula of φ then ψ has
only finitely many free variables.

We say M ≡κ,ω N if
M |= φ ⇔ N |= φ

1For historic reasons we write Lω1,ω instead of the more notationally consistent Lℵ1,ω .
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for all Lκ,ω sentences φ.

Definition 1.2 Let φ is an L∞,ω-formula if φ is an Lκ,ω-formula for some
regular cardinal κ.

We define M ≡∞,ω N in the obvious way.

Exercise 1.3 Give an example of an set T of Lω1,ω-sentences such that every
finite subset is satisfiable but T is not.

Thus the Compactness Theorem fails in infintary languages.2

Exercise 1.4 Show that the following classes are Lω1,ω-axiomatizable for ap-
propriate languages L.

i) torsion abelian groups;
ii) finitely generated fields;
iii) linear orders isomorphic to (Z, <);
iv) connected graphs;
v) finite valance graphs;
vi) cycle free graphs.

Exercise 1.5 Show by induction that for each ordinal α there is an L∞,ω-
sentence Φα describing (α, <) up to isomorphism.

Exercise 1.6 Let κ be a cardinal. Show there are α, β < (2κ)+ such that
(α, <) ≡κ,ω (β, <).

Taken together these two exercises give examples of structures M,N with
M ≡κ,ω N but M 6≡∞,ω N for all κ.3

Exercise 1.7 Give an example of a countable language L and an Lω1,ω-theory
T such that every model of T has cardinality at least 2ℵ0

Fragments and Downward Löwenheim-Skolem

We will often restrict our attention to subcollections of the set of all Lκ,ω-
formulas.

For each formula φ we define ∼ φ, a formal negation of φ as follows:
i) for φ atomic, ∼ φ is ¬φ;
ii) ∼ (¬φ) is φ;
iii) ∼

∧
φ∈X φ is

∨
φ∈X ¬φ and ∼

∨
φ∈X φ is

∧
φ∈X ¬φ;

iv) ∼ ∃vφ is ∀v¬φ and ∼ ∀vφ is ∃v¬φ.

2By restricting the theories considered, restricting attention to fragments of L∞,ω with
strong closure properties and taking a generalized notions of “finite”, Barwise proved a in-
finitary compactness theorem that is useful in some settings. For example, it is useful in
descriptive set theory and in studying the constructible hierarchy. As it has not, as of yet,
proved very useful in model theory, we will not discuss it here. See [1] or [5] for further
discussion.

3For a specific example. Suppose κ < λ are uncountable cardinals. Then κ ≡ω1,ω λ, but
κ 6≡∞,ω λ. See [6] for details.
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Definition 1.8 We say that a set of Lκ,ω-formulas F is a fragment if there is
an infinite set of variables V such that if φ ∈ F , then all variables occuring in
φ are in V and F satisfies the following closure properties:4

i) all atomic formulas using only the constant symbols of L and variables
from V are in F ;

ii) F is closed under subformula;
iii) If φ ∈ F , v is free in φ, and t is a term where every variable is in V , then

the formula obtained by substituting all free occurences of v with t is in F ;
iv) F is closed under ∼;
v) F is closed under ¬, ∧, ∨, ∃v, and ∀v for v ∈ V .

Exercise 1.9 a) Suppose κ is regular (in particular this holds for Lω1,ω). If T

is a set of Lκ,ω-sentences with |T | < κ, then there is F a fragment of Lκ,ω such
that T ⊆ F and |F | < κ.

b) Show that a) may fail if κ is singular.

We write M ≡F N and M ≺F N for elementary equivalence and elementary
submodels with respect to formulas in F .

Theorem 1.10 (Downward Löwenheim-Skolem) Let F be a fragment of
Lκ,ω such that any formula φ ∈ F has at most finitely many free variables.
Let M be an L-stucture with X ⊆ M . There is N ≺F M with X ⊆ N and
|N | = max(|F|, |X |).

In particular if F is a countable fragment of Lω1,ω, then every L-structure
has a countable F-elementary submodel.

The proof is a simple generalization of the proof in first-order logic. It is
outlined in the following Execise.

Exercise 1.11 a) Prove there is L∗ ⊇ L and F∗ ⊇ F and M∗ an L∗-expansion
of M such that |L∗|, |F∗| = |F| and for each F∗-formula φ(v, w) with free
variables from v1, . . . , vn, w, there is an n-ary function symbol fφ such that

M |= ∀v (∃wφ(v, w) → φ(v, fφ(v))

b) Prove that if N is an L∗-substructure of M∗, then N ≺F∗ M∗.
c) Prove that there is an L∗-substructure N of M∗ with X ⊆ N and |N | =

max(|F∗|, |X |).

Exercise 1.12 For L and F define the appropriate notion of built in Skolem
functions. Prove that for any L and F and F -theory T there are L∗ ⊇ L,
F∗ ⊇ F and T ∗ ⊇ T with |F∗| = |T ∗| = |F| where T ∗ has built in Skolem
functions, and every M |= T has an expansion M∗ |= T .

Exercise 1.13 In first order logic, the Upward Löwenheim-Skolem is an easy
consequence of Compactness. In infinitary logics it is generally false. Let L =
{U, S, E, c1, . . . , cn, . . .} and let φ be the conjunction of

4We will usually assume v1, v2, . . . ,∈ V .
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i) ∀x U(x) ↔ ¬S(x),
ii) ∀x∀y (E(x, y) → U(x) ∧ S(y));
iii) ci 6= cj , for i 6= j;
iv) U(ci) for all i,
v) ∀y∀z ([S(y) ∧ S(z) ∧ ∀x ((E(x, y) ↔ E(x, z))] → y = z)
vi) ∀x(U(x) →

∨∞
i=1

x = ci.

Prove that every model of φ has size at most 2ℵ0 .

Lω1,ω and omitting first order types

For countable Lω1,ω-theories we can find an equivalent class of models of a first
order theory omitting a type.

Theorem 1.14 Let T be a countable set of Lω1,ω-sentences. There is a count-
able language L∗ a first order theory T ∗ and a set of types Γ such that: i) if
M |= T ∗ and omits all types in Γ, then the L-reduct of M is a model of T ;

ii) every model of T has an L∗-expansion, that is a model of T ∗ omitting all
types in Γ.

Proof We expand L and F so that for each formula φ in F with free variables
from v1, . . . , vn we have an n-ary relation symbol Rφ we add to T ∗ a sentences

i) if φ is atomic, add
∀v Rφ ↔ φ

ii) if φ is ¬θ, add
∀v Rφ ↔ ¬Rθ

iii) if φ is
∧

θ∈X θ, add
∀v Rφ → Rθ

for all θ ∈ X and let γφ be the type

{¬Rφ} ∪ {Rθ : θ ∈ X}

iv) if φ is
∨

θ∈X θ, add
∀v Rθ → Rφ

for all θ in X and let γφ be the type

{Rφ} ∪ {¬Rθ : θ ∈ X}

v) if φ is ∃wθ, then add

∀v Rφ ↔ ∃wRθ.

Let Γ be the collection of types γφ described above.

Exercise 1.15 a) Suppose M |= T ∗ and M omits every type in Γ. Prove that

M |= ∀v φ ↔ Rφ
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for all φ ∈ F∗.
Conclude that the L-reduct of a model of T ∗ is a model of T .
b) Prove that every M |= T has an expansion that is a model of T ∗ omitting

all types in Γ by interpreting Rφ as φ.

Lκ,λ

For completeness, we mention the the logics Lκ,λ. In these logics we allow a
more general quantification rule.

Suppose φ is a formula and ~v is a sequence of variables freely occuring in φ

with |~v| < λ, then
∃~vφ

is a formula.
Thus we are allowed existential and, by taking negations in the usual way,

universal quantification over sequences of variables of cardinality less than λ.

Exercise 1.16 Show there is φ ∈ Lω1,ω1
such that M |= φ if and only if

|M | > ℵ0.

Exercise 1.17 Show there is an Lω1,ω1
-sentence φ such that (A, <) |= φ if and

only if (A, <) is a well-order.

Exercise 1.18 Show that is an Lω1,ω1
-sentence φ such that (A, <) |= φ if and

only if (A, <) ∼= (R, <).

Exercise 1.19 Recall that a linear ordering (A, <) is ℵ1-like if |A| = ℵ1 and
|{b : b < a}| ≤ ℵ0 for all a ∈ A. Show that the class of ℵ1-like linear orders is
Lω1,ω1

-axiomatizable.

2 Back and Forth

We begin with Karp’s “algebraic” characterization of ≡∞,ω.

Definition 2.1 Let M and N be L-structures. A partial isomorphism system
between M and N is a collection P of partial L-embeddings f : A → N where
A ⊆ M such that:

i) for all f ∈ P and a ∈ M there is g ∈ P such that g ⊇ f and a ∈ dom(g);
ii) for all g ∈ P and b ∈ N there is g ∈ P such that g ⊇ f and b ∈ img(g).

We write M ∼=p N if there is a partial isomorphism system between M and
N .

Exercise 2.2 If M and N are countable and M ∼=p N , then M ∼= N .

Definition 2.3 Let M and N be L-structures. The game G(M,N ) is played
as follows. At stage n, Player I plays an ∈ M or bn ∈ N . In the first case Player
II responds with bn ∈ N and in the later case Player II responds with an ∈ M .
Player II wins the play of the game is the map an 7→ bn is an L-embedding.
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Theorem 2.4 The following are equivalent:
i) M ≡∞,ω N ;
ii) M ∼=p N ;
iii) There is partial isomorphism system between M and N where every

every p ∈ P has finite domain;
iv) Player II has a winning strategy in G(M,N ).

Proof
iii) ⇒ ii) is clear.

ii) ⇒ i) Let P be a system of partial isomorphisms. We prove that for all
φ(v1, . . . , vn) ∈ L∞,ω, f ∈ P and a1, . . . , an ∈ dom(f), then

M |= φ(a) ⇔ N |= φ(f(a)).

We prove this by inducion on formulas. This is clear for atomic formulas
and the induction step is obvious for ¬,

∧
and

∨
. Suppose φ(v) is ∃wψ(v, w).

Suppose M |= ∃wψ(a, c). There is g ∈ P with g ⊇ f and c ∈ dom(P ). By
induction, N |= φ(f((a)), f(c)), so N |= φ(f(a)).

On the other hand, if N |= ψ(f(a), d). There is g ∈ P with g ⊇ f and
c ∈ dom(g) such that g(c) = d. By induction, M |= ψ(a, c). Thus M |= ∃φ(a).

This proves the claim. In particular, if φ is a sentence M |= φ ⇔ N |= φ.

iv)⇒ iii) Let τ be a winning strategy for Player II. Let P be the set of all
maps f(ai) = bi where a1, . . . , an, b1, . . . , bn are the results of some play of the
game where at each stage Player I has played either an or bn and Player II has
responded using τ . Since τ is a winning strategy for Player II, each such f is a
partial L-embedding. Since Player I can at any stage play any element from M

or N , P satisfies i) and ii) in the definition of a partial isomorphism system.

i) ⇒ iv) We need one fact.

Claim Suppose (M, a) ≡∞,ω (N , b) and c ∈ M , there is d ∈ N such that

(M, a, c) ≡∞,ω (N , b, d).

Suppose not. Then for all d ∈ N there is φd such that M |= φd((a, c) and
N |= ¬φd(b, d). But that

M |= ∃v
∧

d∈N

φd(a, v)

and
N 6|= ∃v

∧

d∈N

φd(b, v)

a contradicion.

We now describe Player II’s strategy. Player II always has a play to ensure
(M, a1, . . . , an) ≡∞,ω (N , b1, . . . , bn). As long as Player II does this the resulting
map will be a partial L-embedding.
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Exercise 2.5 † Prove that M ≡∞,ω N if and only if there is a forcing extension
V[G] of the universe where M ∼= N .

Exercise 2.6 We say that M ∼=α
p N if and only if there is a system

P0 ⊇ P1 ⊇ . . . ⊇ Pα

if and only if for β + 1 ≤ α

i) for any f ∈ Pβ+1 and a ∈ M there is g ∈ Pβ with g ⊇ f and a ∈ dom(g);
ii) for any f ∈ Pβ+1 and b ∈ N there is g ∈ Pβ with g ⊇ f and a ∈ img(g).
Prove that M ∼=pα N if and only if M |= φ ↔ N |= φ for all φ with quantifer

rank less at most α.

Exercise 2.7 We say that M ∼=λ
p N if there is a system of partial L-embedings

P such that if f ∈ P and C ⊆ M with |C| < λ then there is g ⊇ f with g ∈ P

and C ⊆ dom(g) and if D ⊆ N and |D| < λ there is h ⊇ f with h ∈ P and
D ⊆ img(h).

Prove that M ∼=λ
p N if and only if M ≡∞,λ N .

Exercise 2.8 Prove that any two ℵ1-like DLO are L∞,ω1
-equivalent. Hint: Let

(A, <) and (B, <) be ℵ1-like orders. We say A0 ⊳ A if A0 is a countable dense
initial segment of A with no top element and no least upper bound in A \ A0.
Let

P = {f : A0 → B0 : f an isomorphism , A0 ⊳ A and B0 ⊳ B}.

Note these arguments do not show that A and B are isomorphic. Indeed there
are 2ℵ1 non-isomorphic ℵ1-like DLO. See for example [8] Exercise 5.5.10.

Scott’s Theorem

We will show that for any M there is a single sentence that characterizes M up
to ≡∞,ω. Note that for countable models this means that M is characterized
up to elementary equivlance.

For each ordinal α, we will have a relation (M, a) ∼α (N , b) where a ∈ Mn

and b ∈ Nn and n = 0, 1, 2, . . ..
(M, a) ∼0 (N , b) if M |= φ(a) if and only if N |= φ(b) for all atomic L-

formulas φ.
For all ordinals α, (M, a) ∼α+1 (N , b) if for all c ∈ M there is d ∈ N

such that (M, a, c) ∼α (N , b, d) and for all d ∈ N there is c ∈ M such that
(M, a, c) ∼α (N , b, d).

For all limit ordinals β, (M, a) ∼β (N , b) if and only if (M, a) ∼α (N , b) for
all α < β.

If L is any first-order language and M is an L-structure we define a sequence
of L∞,ω-formulas φM

a,α(v), where a ∈ M l and α is an ordinal as follows:

φM
a,0(v) =

∧

ψ∈X

ψ(v),
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where X = {ψ : M |= ψ(a) and ψ is atomic or the negation of an atomic
L-formula}. If α is a limit ordinal, then

φM
a,α(v) =

∧

β<α

φM
a,β(v).

If α = β + 1, then

φM
a,α(v) =

∧

b∈M

∃w φM
ab,β(v, w) ∧ ∀w

∨

b∈M

φM
ab,β(v, w).

Lemma 2.9 Let M and N be L-structures, a ∈ M l, and b ∈ N l. Then,
(M, a) ∼α (N , b) if and only if N |= φM

a,α(b).

Proof We prove this by induction on α (see Appendix A). Because (M, a) ∼0

(N , b) if and only if they satisfy the same atomic formulas, the lemma holds for
α = 0.

Suppose that γ is a limit ordinal and the lemma is true for all α < γ. Then

(M, a) ∼γ (N , b) ⇔ (M, a) ∼α (N , b) for all α < γ

⇔ N |= φM
a,α(b) for all α < γ

⇔ N |= φM
a,γ(b).

Suppose that the lemma is true for α. First, suppose that N |= φM
a,α+1(b).

Let c ∈ M . Because
N |=

∧

x∈M

∃w φM
ax,α(b, w),

there is d ∈ N such that N |= φM
ac,α(b, d). By induction, (M, a, c) ∼α (N , b, d).

If d ∈ N , then because

N |= ∀w
∨

c∈M

φM
ac,α(b, w)

there is c ∈ M such that N |= φM
ac,α(b, d) and (M, a, c) ∼α (N , b, d). Thus

(M, a) ∼α+1 (N , b).
Suppose, on the other hand, that (M, a) ∼α+1 (N , b). Suppose that c ∈ M ,

then there is d ∈ N such that (M, a, c) ∼α (N , b, d) and N |= φM
ac,α(b, d).

Similarly, if d ∈ N , then there is c ∈ M such that N |= φM
ac,α(b, d). Thus,

N |= φM
a,α+1(b), as desired.

Lemma 2.10 For any infinite L-structure M, there is an ordinal α < |M |+

such that if a, b ∈ M l and (M, a) ∼α (M, b), then (M, a) ∼β (M, b) for all β.
We call the least such α the Scott rank of M.
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Proof Let Γα = {(a, b) : a, b ∈ M l for some l = 0, 1, . . . and (M, a) 6∼α (M, b)}.
Clearly, Γα ⊆ Γβ for α < β.

Claim 1 If Γα = Γα+1, then Γα = Γβ for all β > α.
We prove this by induction on β. If β is a limit ordinal and the claim holds

for all γ < β, then it also holds for β. Suppose that the claim is true for β > α

and we want to show that it holds for β+1. Suppose that (M, a) ∼β (M, b) and
c ∈ M . Because (M, a) ∼α+1 (M, b), there is d ∈ N such that (M, a, c) ∼α

(M, b, d). By our inductive assumption, (M, a, c) ∼β (M, b, d). Similarly, if
d ∈ M , then c ∈ M such that (M, a, c) ∼β (M, b, d). Thus, (M, a) ∼β+1 (M, b)
as desired.

Claim 2 There is an ordinal α < |M |+ such that Γα = Γα+1.
Suppose not. Then, for each α < |M|+, choose (aα, bα) ∈ Γα+1\Γα. Because

Γα ⊆ Γβ for α < β, the function α 7→ (aα, bα) is one-to-one. Because there are
only |M | finite sequences from M this is impossible.

We conclude this section with Scott’s Isomorphism Theorem that every
countable L-structure is described up to isomorphism by a single Lω1,ω-sentence.

Let M be an infinite L-structure of cardinality κ, and let α be the Scott
rank of M. Let ΦM be the sentence

φM
∅,α ∧

∞∧

l=0

∧

a∈Ml

∀v(φM
a,α(v) → φM

a,α+1(v)).

Because all of the conjunctions and disjunctions in φM
a,β are of size κ, φM

a,β ∈

Lκ+,ω for all ordinals β < κ+. Thus ΦM is an Lκ+,ω-sentence. We call ΦM the
Scott sentence of M. If M is countable, then ΦM ∈ Lω1,ω.

Theorem 2.11 (Scott’s Isomorphism Theorem) Let M and N be a count-
able L-structures, and let ΦM ∈ Lω1,ω be the Scott sentence of M. Then,
N ∼= M if and only if N |= ΦM.

Proof Because α is the Scott rank of M, M |= ΦM. An easy induction
left to the exercises shows that if N ∼= M, then M and N model the same
L∞,ω-sentences.

On the other hand, suppose that N models ΦM. We do a back-and-forth
argument to build a sequence of finite partial embeddings f0 ⊆ f1 ⊆ . . . from
M to N such that if a is the domain of fi, then

(M, a) ∼α (N , fi(a)). (∗)

Let m0, m1, . . . list M and n0, n1, . . . list N .
At stage 0, we let f0 = ∅. Because N |= φM

∅,α
, M ∼α N and (∗) holds.

Suppose we are at stage n + 1. Let a be the domain of fn. Because
(M, a) ∼α (N , f(a)), N |= φM

a,α(f(a)). Because N |= ΦM, N |= φM
a,α+1(f(a))

and (M, a) ∼α+1 (N , f(a)).
If n + 1 = 2i + 1, we want to ensure that mi is in the domain of fn+1. If

mi is in the domain of fn, then fn = fn+1. If not, choose b ∈ N such that
(M, a, mi) ∼α (N , f(a), b) and extend fn to fn+1 by sending mi to b.
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If n = 2i + 2, we want to ensure that ni is in the image of fn+1. If it is
already in the image of fn, let fn+1 = fn. Otherwise, we can find m ∈ M such
that (M, a, m) ∼α (N , f(a), ni) and extend fn to fn+1 by simply sending m to
ni.

Corollary 2.12 Let φ be a satisfiable sentence of Lω1,ω. The following are
equivalent:

a) φ |= ψ or φ |= ¬ψ for any ψ ∈ Lω1,ω;
b) φ |= ψ or φ |= ¬ψ for any ψ ∈ L∞,ω;
c) φ is ℵ0-categorical.

If these equivalent conditions hold we say that φ is complete.

Proof b)⇒ a) is clear.
c) ⇒ b) by Scott’s Theorem.
a) ⇒ c) by Downward Löwenheim-Skolem.

Exercise 2.13 Give an example of an ℵ1-categorical Lω1,ω-sentence φ that is
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